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As the use of humanoid robots proliferates, an increasing amount of people may

find themselves face-to-“face” with a robot in everyday life. Although there is a

plethora of information available on facial social cues and how we interpret them in

the field of human-human social interaction, we cannot assume that these findings

flawlessly transfer to human-robot interaction. Therefore, more research on facial cues in

human-robot interaction is required. This study investigated deception in human-robot

interaction context, focusing on the effect that eye contact with a robot has on honesty

toward this robot. In an iterative task, participants could assist a humanoid robot by

providing it with correct information, or potentially secure a reward for themselves by

providing it with incorrect information. Results show that participants are increasingly

honest after the robot establishes eye contact with them, but only if this is in response to

deceptive behavior. Behavior is not influenced by the establishment of eye contact if the

participant is actively engaging in honest behavior. These findings support the notion that

humanoid robots can be perceived as, and treated like, social agents, since the herein

described effect mirrors one present in human-human social interaction.

Keywords: human-robot interaction, honesty, deception, gaze, eye contact

INTRODUCTION

With the increased prevalence of robotic agents in various aspects of life, understanding
the mechanisms of human-robot interaction (HRI) and how this differs from human-human
interaction is becoming more and more important. Developing robots that are able to effectively
communicate with users is not only beneficial to the robot’s task-efficiency (Imai et al., 2003),
developing a highly social robot is also a goal in itself. Socially competent robotic systems may
be used as companions or socially-assistive robots and have already found applications in, among
others, geriatric care and mental health settings (Libin and Cohen-Mansfield, 2004; Moyle et al.,
2013; Rabbitt et al., 2015).

In order to understand the kinds of robotic behavior that lead to effective communication,
current HRI research has focused on many different aspects of robot behavior, ranging
from movement kinematics (Takayama et al., 2011) to language (Sirkin et al., 2016)
and more inherently social cues, like gaze and facial expression (Han et al., 2013;
Johnson et al., 2013). Despite humanoid robots seldom being capable of producing facial
expressions that resemble those of humans in terms of nuance, they quite often evoke
anthropomorphized judgements concerning their meaning as well as the robot’s perceived
personality (Diana and Thomaz, 2011; Kalegina et al., 2018). Additionally, social cognitive
mechanisms depending on interpretation of others’ gaze direction such as gaze cueing are
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elicited by both depictions of robots and embodied robots (Wiese
et al., 2012; Wykowska et al., 2014, 2015a,b; Kompatsiari et al.,
2017; Özdem et al., 2017). Still, the sparsity of degrees of freedom
in many robots’ facial expression [highly realistic androids like in
Nishio et al. (2007) excepted] combined with the inherent novelty
of robots to many users leads to high levels of ambiguity in the
interpretation of a robot’s facial expression (Raffard et al., 2016;
Hortensius et al., 2018).

Even in human-human interaction, social cues that may
be highly ambiguous in isolation are given meaning in an
environmental context. The meaning of an agent’s gaze in a
certain direction can only be fully interpreted when we know
what the target of this gaze is, and what the mental state of the
agent is as it pertains to this target (Barrett and Kensinger, 2010;
Neta andWhalen, 2010). Robotic agentsmimicking human social
cues will encounter the same obstacles in attempting to achieve
clear and unambiguous communication, possibly even more so
than is the case in human-human interaction (Bennett et al.,
2014). To investigate the role of context in the interpretation
of social cues, the current paper presents a novel experimental
paradigm. This paradigm gives participants the possibility to
provide truthful or deceptive information to a robot, which then
exhibits various forms of gaze behavior, with interpretation of its
meaning presumably dependent on the specific context.

The experiment is thus framed in the context of deception
and honesty, which in itself presents another aspect of interest.
Although trust is a much studied phenomenon in HRI research,
it is usually a user’s trust toward the robot that is under scrutiny
(Hancock et al., 2011). Further, trust in HRI is generally framed
in terms of (mechanical) reliability; with trustworthy robots
being those that make fewer errors in executing their tasks
(Salem et al., 2015). A different aspect of research investigates
trust due to anthropomorphic features of the robot (e.g.,
Martelaro et al., 2016). These aspects are different from the
mechanistic capabilities usually investigated, and are especially
important in social or socially-assistive robots (Tapus et al.,
2007). It is this type of anthropomorphized trust that participants
will be breaking when they decide to deceive the robot in
this experiment. On the topic of deceptive behavior toward
robots, little research has been done so far, though it may
well become a more important topic as robotic agents take
over functions in the public sphere (e.g., shopkeepers) and
users may have interests that do not align with those of the
robot. It is also interesting from a more theoretical point of
view, as feeling uncomfortable with deceiving a robot can be
interpreted as an implicit marker of treating the robot as a
social agent.

Deception in human-human interaction, on the other
hand, has been studied extensively and much is known
about its mechanisms and the physiological markers that
accompany deceptive behavior (Sip et al., 2008). Galvanic
skin response (GSR) and heart rate, specifically, have been
extensively studied in this context (Bradley and Janisse, 1981;
Furedy et al., 1988). Specifically, the mutual influence of
deception and gaze behavior has received much attention
(Kleinke, 1986). This research often emphasizes the gaze
behavior of a deceiving agent, and how this may be a

cue to identifying deceptive behavior (DePaulo et al., 2003).
Findings generally indicate that liars, on average, make less
eye contact. Conversely, being watched has been shown to
increase prosocial behavior, and decrease dishonest behavior
(Burnham, 2003; Nettle et al., 2012). This effect is generally
observed over longer time spans, and averaged over participants,
less is known about the immediate effect of direct gaze on
honesty. Recently, researchers found for the first time that
briefly being gazed at directly increases honesty in an iterative
task (Hietanen et al., 2018).

This experiment had several goals. Primarily, it aimed to shed
light on how people interpret social cues from a humanoid robot.
By placing identical gazing behavior in one of several different
contexts, we hypothesized that the interpretation will differ
accordingly, with the robot’s look being received differently when
it follows a trial on which the participant lied than when it follows
a truthful trial. Secondly, the concept of deceptive behavior
toward a robot is of interest, as it is an implicit marker of treating
robots as social agents. Finally, this initial experiment acts as a
validation of a novel experimental paradigm, for potential future
extensions into more ecologically valid protocols.

In the present study, we investigated the direct effect of gaze
on honesty in a HRI setting. Given the explorative nature of
testing a new paradigm, as well as the extensive body of literature
validating the use of pictorial representations of social cues as
substitutes for physical ones, this paradigm was implemented as
an on-screen experiment (Friesen andKingstone, 1998; Schilbach
et al., 2006; Frischen et al., 2007). We also incorporated GSR
and heart rate measures in this experiment, which provide a
more implicit measure of participant’s state of arousal when
lying to the robot. The experimental task herein introduced
revolves around providing feedback to a social robot, iCub (Metta
et al., 2008; Natale et al., 2017), as it performs a “memory task.”
Participants are told that the robot has to remember and replicate
a sequence of stimuli in the correct order. In providing feedback,
participants decide whether to provide correct feedback, or
incorrect feedback, effectively lying to the robot. This decision
impacts prospective rewards for the participant, with truthful
answers resulting in a guaranteed reward and deceitful answers
can alternatively lead to a greater reward or a punishment, in
the same vein as the prisoner’s dilemma and other comparable
economic games (Haley and Fessler, 2005; Tulk andWiese, 2018).
When lying, there is a chance that the participant would be
“caught,” in which case they would receive a punishment. In
response to the participant’s decision, the robot would either
look up and straight ahead, effectively looking at the participant
who was seated in front of the screen, or look away to the side
(Figure 1). The direction of gaze in this experiment is randomly
determined, and does not have any bearing on whether or not the
participant is “caught” lying that trial. Robot looking behavior
is therefore a non-informative cue in the context of the task, as
it does not reveal any task-relevant information. Additionally,
the different types of looking behavior occur on both truthful
and deceitful trials. Looking behavior is therefore devoid of any
inherent meaning, and since the robot’s behavior is identical
on each trial, any meaning attributed to it would be purely
circumstantial on the part of the participant.
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FIGURE 1 | Experimental procedure. At the start of each block, a sequence of colored circles would light up in a randomized order, lighting up for one second each.

After the sequence presentation finished, the on-screen robot would attempt to reproduce this sequence by pointing at the appropriate circles in the correct order.

The robot would point at the correct color 50% of the time, and at a random incorrect answer 50% of the time. After each attempt, the participant would be asked to

provide feedback on the robot’s performance, pressing the “T” key to convey that it had picked the correct answer, and the “F” key to convey that it picked the wrong

answer. Participants were not required to remember the order of the sequence, as the correct answer was displayed to them on the screen’s interface.

State of the Art
Recent research has shown that people’s behavior when playing
trust-based games with humans shows considerable similarity to
that when the partner is a robot (Hsieh et al., 2020; Schniter et al.,
2020).

Knowledge concerning physiological responses to eye contact
in robots is still sparse, though recent research has shown
that direct eye contact with a robot has similar physiological
influences as that of eye contact with another human, though to
a lesser extent (Kiilavuori et al., 2021). Since eye contact over a
live video can also induce physiological effects, it is plausible to
find this in the current experiment, which makes use of a mock
live video connection (Hietanen et al., 2020). Surveys of all kinds,
including questionnaires, interviews and rating scales have long
been used in HRI research to overtly probe a user’s impression of
the interaction with an artificial agent (Nelles et al., 2018). Our
use of a questionnaire here has a similar goal.

METHODS

This research has been performed in accordance with the
principles laid out in the declaration of Helsinki, and has been
approved by the local ethical committee (Comitato Etico Regione
Liguria). All participants gave written informed consent before
participating in the experiment.

Experimental Sample and Materials
Thirty-three participants took part in the experiment in exchange
for a monetary reward of e7—from which three participants

were excluded from analysis. One based on their many no-
response trials (80%) and two for a lack of deceitful trials
(0 and 0.02%, respectively). The data from thirty participants
with normal or corrected-to-normal vision was used for
analysis (Rangeage: 19–58, Mage: 29.7 SDage: 10.1, 17 Female).
Participants were recruited by using a mailing list consisting
of volunteers.

The experiment was presented on a laptop (Dell Latitude
3380, with a 13.3 inch LCD monitor) and used OpenSesame
for stimulus presentation, while heart rate and skin conductance
measures were taken (Mathôt et al., 2012). Skin conductance
measures were taken with two 13mm diameter silver chloride
skin electrodes that were attached to themiddle phalanges, on the
palmar aspect of participants’ index and middle fingers, which
were in turn connected to a galvanic skin response module. A
heart rate sensor was attached to participants’ ring fingers. The
skin electrodes and heart rate sensor were connected to a Brain
Products V-Amp 8 channel amplifier, sampling at 500Hz. Event
triggers for each trial were sent from the laptop to the amplifier
via a Brain Products TriggerBox. Participants’ distance from the
screen was 80 cm.

Procedure
Participants were instructed, by means of a written document
(see Supplementary Material), that they would be participating
in a decision-making experiment, and that they would interact
with an iCub robot via videoconference software. They were
further told that their reward for participating would be
contingent on their performance in the experiment. They were
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informed about the amount of money they could win or lose each
trial, as described below.

The experiment started with five practice trials, which were
followed by 100 trials split between 10 blocks. At the start of
each block, a sequence of colored circles would light up in
a randomized order, lighting up for one second each. After
the sequence presentation finished, the on-screen robot would
attempt to reproduce this sequence by pointing at the appropriate
circles in the correct order (Figure 1). The robot would point
at the correct color 50% of the time, and at a random incorrect
answer 50% of the time. After each attempt, the participant would
be asked to provide feedback on the robot’s performance, pressing
the “T” key on the laptop’s keyboard to convey that it had picked
the correct answer, and the “F” key to convey that it picked the
wrong answer. Participants were not required to remember the
order of the sequence, as the correct answer was displayed to
them on the screen.

Trials were considered truthful when participants gave the
appropriate feedback (“T” when the robot picked the correct
answer, “F” when it picked the wrong answer) and deceitful when
participants gave inappropriate feedback. The response screen
would end instantly after a response was selected, or would end
after 28 s if no response was given. This relatively long timeout
period was intended to give participants enough time to come
to a decision. After responding, the robot would either look up
to face the participant, or look away to the left or right side.
Next, it would proceed with pointing at the next color in the
sequence, beginning a new trial (Figure 1). The robot would
look up 33.3% of the time in case of correct feedback by the
participant, and 66.6% of the time in case of incorrect feedback.
Each block ended with a feedback screen displaying the amount
of truthful and deceitful trials on the past block, the number
of times participants were caught lying, and their accumulated
reward. Each truthful response earned participants e.05, and
each deceitful response could earn participants e.15 if they were
not caught, or could lead to a loss of e.15 if they were caught.
In reality, whether a participant “got caught” was randomly
determined, and occurred on one third of the deceitful trials.
Both strategies (truthful and deceitful responding) therefore had
the same expected value over the course of a large number
of trials, albeit that the deceitful strategy was subject to more
variability in payoff. The expected reward per trial for truthful
responses was RewardThruthful = 1 ∗ 0.05 and the expected reward

for deceitful behavior was RewardDeceitful = ( 23
∗ 0.15) – ( 13

∗

0.15). Both strategies were designed to have the same outcome
so that participants would not pursue one strategy over another
for purely monetary gain. Feedback was intentionally given on
a block-by-block basis, as to increase the perceived ambiguity
of the robot’s gaze. After completing all trials, participants were
given a short questionnaire consisting of four questions, which
were meant to assess the success of the belief manipulation and
gauge general impressions of the experiment. The questions were:
“Do you think your reward is dependent on your performance on
this task?,” “Were you interacting with iCub through a live video
feed?,” “Why? do you think your heart rate and skin conductance
were recorded?” and “Why did iCub sometimes look at you?”

Following completion of the questionnaire, participants were
debriefed (see Supplementary Material).

RESULTS

Behavioral Results
The overall average proportion of truthful trials was 0.73
(SD = 0.15), and participant averages ranged from 0.47 to
0.96. Participants were more likely to give incorrect feedback
in response to a trial where iCub chose the wrong answer
[t(29) = 5.5, p < 0.005], i.e., informing the robot that it had
made the correct choice, when it reality it had made a mistake.
Because the assumption of normality was violated in one of
these conditions, a non-parametric alternative in the shape of
a Wilcoxon signed rank test with continuity correction was
applied, which confirmed the findings of the t-test (V = 434,
p < 0.005). Participants did not significantly change their
frequency of lying over the course of the experiment, as shown
by a Wilcoxon signed rank test with continuity correction was
applied, which confirmed the findings of the t-test (V = 234.5,
p= 0.27).

To assess the influence of being gazed at by a robot on
honesty, analyses on between-trial effects were performed. A
multiway frequency analysis (Goodman, 1971) was performed
on the data with as factors participant (P, with levels 1 through
30), participant response on previous trial (RP, with levels “Truth”
or “Lie”), robot looking behavior on the previous trial (LB with
levels “Look” or “Does not look”) and participant response on
the current trial (RC, with levels “Truth” or “Lie”), which were
based on a 4-dimensional (2 × 2 × 2 × 30) contingency table.
The method for testing hypotheses with this analysis is through
model comparisons (type II comparisons).

To test the effect of robot looking behavior on subsequent
participant lying behavior, the difference in explanatory power
added by including the 2-way effect RC LB to a loglinear model
including all other 2-way effects was calculated (1χ

2
RCLB = 5.1

df = 1 p = 0.024). The effect of participant response during the
previous trial on participant response during the current trials
was similarly tested and found to be significant (1χ

2
RCRP = 3.9

df = 1 p = 0.048). An interaction effect between robot looking
behavior and participant response during the previous trial was
also found (1χ

2
LBRPRC = 4.65 df = 1 p= 0.031).

To specifically test our hypothesis that the effect of being
looked at by a robot is contingent on the participant’s previous
behavior, a Wilcoxon signed rank test with continuity correction
was performed. This test showed a significant difference between
responses on trials preceded by the robot looking at the
participant, and trials in which the robot does not, given that the
participant lied on the preceding trial (V = 97.5, p= 0.025). This
effect did not hold on trials that were preceded by the participant
telling the truth (V = 221, p = 0.41) (see Figure 2). The same
violation of the normality assumption was found as in the earlier
test, and the non-parametric alternative test again confirmed
the findings of the t-test (V = 221, p = 0.41). Correcting for
multiple comparisons using the Bonferroni method, this finding
retains significance in both parametric and non-parametric tests
(Bonferroni p-value for 2 tests: α = 0.025).
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FIGURE 2 | Proportion of truthful trials per looking condition, after telling the

truth (top) or after telling a lie (bottom). Errors bars represent standard errors.

*p < 0.05.

Physiological Analysis
The physiological data of 3 participants had to be discarded
due to an overabundance of noise. Heart beats were identified
and marked on a semi-automatic basis using the cardioballistic
artifact correction algorithm in BrainVision Analyzer 2. Data was
exported to R and analyzed using the RHRV package (Martínez
et al., 2017). The data were filtered through rejection of values
that deviated more than 13BPM from a running mean calculated
over the nearest 50 beats to the current data point (Martínez et al.,
2017). The data were then linearly interpolated at a rate of 4Hz.
Data were segmented on the time of response, and each trial was
baseline adjusted using a one-second baseline from −3 to −2 s
relative to the response time. The segments were averaged and
overlaid (see Figure 3).

GSR data were subjected to a low pass filter of 2.5Hz
with a slope of −12 dB/octave to remove any high frequency
elements of non-physiological origin (Fahrenberg et al., 1983).
Data were divided into response-locked segments which were
baseline-corrected using the second prior to response as the
baseline period. Next, a DC-detrend procedure was applied
to the segments to correct for any direct current interference
in the signal. These processed segments were averaged per
participant, and consequently averaged again, creating a grand
average (see Figure 4).

Using a repeated-measures ANOVA, differences in the
change in heart rate between deceitful and truthful trials were

FIGURE 3 | Grand average change in phasic heartrate per trial. t = 0 is the

time of responding. The red line denotes deceitful trials, the green line

represents truthful trials.

analyzed. The window of interest was specified to be the 2 s
after participants responded, during which a more pronounced
increase of heart rate for deceitful trials can be observed based on
visual inspection. However, no significant difference was found
between changes in heart rate [F(1,26) = 0.267, p= 0.61].

Similar to the heart rate data, statistical analyses were
performed on selected time windows. Matched paired t-tests
were performed on the period around the positive peak that was
centered on the time of response, but no significant differences
were found between truthful and deceitful trials [t(26) = 1.01,
p = 0.32]. Likewise, the difference in skin conductance during
the period from 1,000 to 5,000ms post-response does not reach
statistical significance [t(26) = 0.99, p= 0.33].

Post-task Questionnaire
Out of the 33 participants, 17 believed they were actually
interacting with iCub through a live video connection, and
18 participants believed their reward for participation was
dependent on their performance in the task. No difference in
proportion of truthful trials was found between participants
based on whether they believed they were interacting with the
robot in real time [t(25.5) = 0.97, p = 0.34] or whether they
believed their reward was dependent on their performance [t(27.7)
= 0.39, p = 0.70]. Further analyses on inter trial effects within
these sub-sets of participants revealed no significant results,
though these tests suffer from a lack of statistical power given
their smaller sample size. In response to the question of why
they thought the robot would sometimes look up, 23 participants
responded that they assumed it was to convey doubt or suspicion.
Five reporting not knowing why the robot would look up,
and five others gave various different explanations. Only one
participant reported the (correct) suspicion that the behavior
may be random, but conceded not to know. Most participants
correctly linked the taking of psychophysiological measures with
our interest in measuring their bodily responses to lying to
the robot, and four participants reported not to understand the
purpose of these measures.
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FIGURE 4 | Grand average change in Galvanic skin response. t = 0 is the time of responding. The red line signifies deceitful trials, the green line signifies truthful trials.

DISCUSSION

The goal of this experiment was threefold. First, it examined
interpretation of social cues exhibited by robots, and was
meant to investigate whether an identical cue under different
circumstances could be given different interpretations. The
results showed that the robot looking up at a participant caused
a subsequent change in behavior only on trials after which
participants lied, but not on trials after which participants told
the truth. It therefore appears that direct gaze from a robot has
the capacity to influence behavior toward being more honest,
but only in a specific context; directly following dishonest
behavior. These findings mirror and expand on previous research
focusing on human-human interaction (Hietanen et al., 2018).
Most saliently, this experiment demonstrates that a humanoid
robot is also capable of inducing higher levels of honesty
through gaze, presumably due to being perceived as a social
agent. This experiment offers more insight into the impact of
gaze on honesty in behavior, because, whereas in Hietanen
et al. (2018) the authors found that a period of direct gaze
preceding a trial reduced the chance of lying on that trial,
our findings show that the effects of gaze are contingent on
the participant’s own previous behavior. We assume this effect
reflects social information processing rather than a task-related
strategy, because neither gaze behavior of the robot, nor honesty
behavior of the participant during previous trials had any bearing
on the reward outcome of any given trial.

Questionnaire results give us further insights into participants’
interpretation of the robot’s gaze. The majority of participants
(70%) ascribed an anthropomorphized purpose to underlie
the looking behavior, mostly related to the robot displaying
suspicion, doubt or surprise. These responses might reflect
participants’ beliefs that the robot was an intentional agent
(Marchesi et al., 2019), although this interpretation needs to be
further tested in future research, as it is possible that answers
referring to the robot’s mental state are shorthand for more
nuanced and less anthropomorphic explanations of behavior
(Thellman et al., 2017). Still, this prevalent tendency to provide
anthropomorphic explanations of robot behavior reinforces the

notion that changes in deceitful behavior were grounded in a
social mechanism.

Secondly, this experiment explored physiological markers of
deception.We hypothesized that increases in heart rate frequency
and galvanic skin response would accompany deceitful trials.
The data do not support this notion. Although trends in the
data can be identified, the apparent differences do not reach
statistical significance. Multiple factors may contribute to this.
Firstly, the fact that this experiment involved an on-screen robot
rather than an embodied variant may have lowered the impact of
lying to a robot on physiological responses. Future experiments
involving an embodied robot as an interaction partner are
therefore a promising next step. Additionally, the design of the
experiment allowed participants to consider their decision and
to respond when ready. This leads to differing response times
per trial, and hindered the averaging process. In other words,
at 2 s pre-response in trial X, the participant may have been
considering their response, 2 s on trial Y might still be the
end of stimulus presentation. Overlaying and averaging of these
segments thus creates increasingly noisy data. Further, the trials
are relatively short and do not have inter-trial intervals during
which heart rate and GSR can return to baseline values, which
contributes to the variability of the data. Future iterations of
this experiment involving psychophysiological measures should
therefore be designed to accommodate these measures better.
Finally, we cannot conclusively state that lying to a robot leads to
an increased physiological response. This question does bear to
be studied further, as deception is an inherently social behavior,
and rests of making inferences about another agent’s mind (or
database). Any support in favor of or against the notion that
participants do not experience heightened physiological arousal
when lying to a robot will be very valuable in further mapping
the dynamics of HRI.

Thirdly, the experiment served to validate this paradigm as
a novel tool to investigate deceptive behavior in HRI. Basic
exploratory analyses revealed that participants do indeed choose
to lie, when incentivized to do so within a game-like setting,
even though both lying and deceiving ultimately led to an equal
outcome in rewardmagnitude and neither behavior was therefore
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the objective best strategy. Participants exhibited both types of
behavior at comparable frequencies all throughout the course
of the experiment. Overall, participants tended to be honest
more often than they were deceitful (73% honest responses),
indicating that their responses were considered, and not random.
Another interesting effect concerns the nature of trials on which
participants lie. Participants showed deceptive behavior at much
higher frequencies when the robot made a mistake on its “task.”
Participants were more likely to falsely claim that the robot
was correct, than to falsely claim the robot was incorrect. This
effect seems to reflect a type of prosocial lying effect, where
it is more accepted to tell someone they did a good job even
though they did not, than vice versa (Erat and Gneezy, 2012;
Levine and Schweitzer, 2015). Any such effect would rely on the
implicit assumption on the part of the participant that it is in the
robot’s interest to perform well on its task, and it that is a social
intentional agent. This however needs further confirmation in
future studies.

CONCLUSION

In summary, this experiment presents a novel paradigm in which
lying in human-robot interaction is studied. Results show that
participants are less likely to lie after being looked at by a
robot. This effect only holds when the robot looks in response
to a lie, and robot gaze behavior following a truthful trial does
not affect participants’ behavior on the consequent trial. No
increase in physiological arousal was observed during deceitful
behavior. These findings show that a robot’s social cues have
comparable effect to those of humans, and that people might
ascribe intentions and emotions to robot behavior that seem
fitting to their context. This has direct implications for robot
design, as robots in commercial settings (i.e., retail or hospitality
sectors) will be faced with users who will attempt to cheat
the system.

FUTURE DIRECTIONS

The paradigm also offers some degree of customizability, as
minor adjustments can be made to answer related research
questions. One example of this would be to reverse the order
of gaze behavior and answer selecting, where the participant

would first be looked at before being asked to make a decision
on whether to lie or not. This would conceptually be very close to
the experiment of Hietanen et al.

Perhaps the most interesting next step would be to conduct
this experiment in a more immersive and/or realistic setting. This
could include the use of virtual reality, or more appropriately,
the use of a physical robot. One would expect the effects found
in this experiment to be magnified, which may also make
psychophysiological analyses more informative.
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