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Networks represent a useful tool to describe relationships among financial firms

and network analysis has been extensively used in recent years to study financial

connectedness. An aspect, which is often neglected, is that network observations come

with errors from different sources, such as estimation and measurement errors, thus

a proper statistical treatment of the data is needed before network analysis can be

performed. We show that node centrality measures can be heavily affected by random

errors and propose a flexible model based on the matrix-variate t distribution and a

Bayesian inference procedure to de-noise the data. We provide an application to a

network among European financial institutions.
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1. INTRODUCTION

A network can be defined as a set of nodes and edges, which represent a relationship among
the nodes (Newman et al., 2006; Newman, 2018). A wide spectrum of relational, spatial, and
multivariate data from many fields, such as sociology, biology, environmental, and neuroscience,
admits a natural representation as a network. In mathematical terms, a network can be represented
through the notion of a graph and its properties. For an introduction to graph theory and random
graphs, we refer the interested reader to Bollobás (1998) and Bollobás (2001). See Jackson (2008)
for an introduction to network theory in social sciences. In this paper, we will use the two terms
interchangeably. As an example, in financial networks, a node represents a firm and an edge has the
interpretation of a financial relationship between two firms.

In finance, the extraction of unobserved networks from time series data has attracted the
attention of many researchers since the recent financial crisis (e.g., Billio et al., 2012; Diebold and
Yılmaz, 2014). A large number of different methodologies have been proposed for the estimation
of financial networks from firm return series (e.g., Barigozzi and Brownlees, 2019; Bräuning and
Koopman, 2020), in particular in the Bayesian approach. For example, Billio et al. (2019) propose
a Bayesian non-parametric Lasso prior distribution for vector autoregressive (VAR) models, which
provides a sparse estimation of the VAR coefficients and classifies the non-zero coefficients into
different clusters. They extract causal networks among financial assets and find that the resulting
network topologies match the features of many real-world networks. Ahelegbey et al. (2016a,b)
exploit graphical models to specify both the contemporaneous and the lagged causal structures
in Bayesian VAR models. In a related contribution, Bianchi et al. (2019) investigate the temporal
evolution in systemic risk using a Markov-switching graphical SUR model.

The inferred network structure is intrinsically contaminated by a certain degree of estimation
error, which may cumulate with other sources of errors, such as model misspecification and
measurement error. Consequently, the direct use of estimated networks as inputs in network
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analyses (e.g., Casarin et al., 2020; Wang et al., 2021) may result
in misleading conclusions. This calls for the definition of suitable
tools for cleaning the data from random disturbances, thus
enabling to perform valid statistical analyses of the networks.

In this paper, we propose a new Bayesian model for network
data with matrix-variate t errors which accounts for heavy tails
(Tomarchio et al., 2020). The inferential procedure is based
on data augmentation and conjugate prior distributions that
allow for an efficient posterior sampling scheme. In addition
to the studies on financial network extraction, our paper also
contributes to the literature on matrix-variate models and
financial connectedness.

Motivated by the increasing availability of large and
multidimensional data, the use of matrix-variate distributions in
time series econometrics has flourished during the last decade.
The main domains where these models have been successfully
applied include the classification of longitudinal datasets (Viroli,
2011), network analysis (Durante and Dunson, 2014; Zhu et al.,
2017, 2019), factor analysis (Wang et al., 2019; Chen et al., 2020),
stochastic volatility modeling (Gouriéroux et al., 2009; Golosnoy
et al., 2012), and Gaussian dynamic linear modeling (Wang and
West, 2009).

Finally, we aim to contribute to the financial economics
literature by applying the proposed method for de-noising
network data extracted from European firms’ stock market
returns. Then, we analyze the connectedness of the network and
compare the results to those obtained from a direct analysis of
the network raw data. Our simulation results provide an estimate
of the bias in the network centrality measures induced by errors
in the edges and show that the proposed approach is effective
in correcting for the bias. Our empirical analysis confirms
the presence of variability in the network edges. Furthermore,
comparing network statistics between the raw network data and
the filtered one, we find substantial evidence of differences in the
most frequently used statistics, such as out-degree, eigenvector,
betweenness, and closeness centrality measures.

The remaining of the paper is structured as follows: section 2
introduces a new linear model for matrix-valued data, then
section 3 presents a Bayesian inference procedure. The results
of an empirical analysis on real network data are illustrated in
section 4. Finally, section 5 concludes.

2. A MATRIX-VARIATE t MODEL

Let Gt = (V ,Ht), t = 1, . . . ,T, be a sequence of networks
(Boccaletti et al., 2014), where Ht ⊂ V × V is the edge set and
V = {1, . . . , n} is the set of nodes. In our application, Gt is a
Granger network where the nodes represent institutions from
different sectors and directed edges represent financial linkages.
A directed edge from node j to node i represents a Granger-causal
relationship from firm j to firm i, and is associated to the element
Yij,t of the adjacency matrix Yt .

The connectivity structure of a n-dimensional network Gt can
be represented through a n-dimensional square matrix Yt , called
the adjacency matrix. Each element Yuv,t of the adjacency matrix
is non-zero if there is an edge from institution v to institution u
with u, v ∈ V , and 0 otherwise, where u 6= v, since self-loops are
not allowed.

Unfortunately, most frequently the connectivity structure
among financial institutions is not directly observable, thus
requiring suitable statistical tools to extract the latent network
topologies that are characterized by estimation errors. For
example, our data relies on a Granger causality approach to
extract network observations from financial price series, which,
in turn, may be contaminated by the presence of measurement
noise. Overall, these multiple sources of errors may yield an
imperfect observation of the true connectivity structure, calling
for the adoption of a proper de-noising procedure before
performing network analyses.

We propose a matrix-variate linear stochastic model to
deal with measurement and estimation errors in the adjacency
matrices. The noise process is assumed to follow a matrix-variate
t distribution, that accounts for potentially large deviations of the
observations from the mean. The proposed model is

Yt = B+ Et , Et
iid
∼ tn,n(ν, 0,61,62), t = 1, . . . ,T, (1)

where B ∈ R
n×n is a matrix of coefficients and Et ∈ R

n×n is
a random error term. A random matrix X ∈ R

p×m follows a
matrix-variate t distribution, X ∼ tp,m(ν,M,61,62), if it has
probability density function

P(X|ν,M,61,62) =
Ŵp

( ν+m+p−1
2

)
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where Ŵp(·) is the multivariate gamma function and | · | denotes
the matrix determinant. The matrix M ∈ R

p×m is the location
parameter, ν > 0 is the degrees of freedom parameter, and the
positive definite matrices 61 ∈ R

p×p and 62 ∈ R
m×m are scale

parameters driving the covariances between each of the p rows
and the m columns of X, respectively. For further details, see
Chapter 4 in Gupta and Nagar (1999). Thanks to the properties
of the matrix-variate t distribution, the unconditional mean and
variance of Yt are E(Yt) = B, if ν > 1, and Var(Yt) = 62 ⊗

61/(ν − 2), if ν > 2, where⊗ denotes the Kronecker product.

3. BAYESIAN INFERENCE

3.1. Prior Specification
In this section we describe the prior structure for the model
parameters. For the coefficient matrix B, we assume a matrix
normal distribution

B ∼ Nn,n(0,�1,�2), (3)

where �1 = ω1In and �2 = ω2In, with ω1 > 0 and ω2 > 0
fixed. A random matrix Z ∈ R

p×m follows a matrix normal
distribution (Gupta and Nagar, 1999, Chapter 2), denoted by
X ∼ Np,m(M,61,62), if its probability density function is

P(X|M,61,62) = (2π)−
mp
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The matrix normal distribution is equivalent to a multivariate
normal distribution with a product-separable covariance
structure, that is, X ∼ Np,m(M,61,62) is equivalent to
vec(X) ∼ Npq(vec(M),62 ⊗ 61), where vec(·) is a vectorization
operator that stacks all the columns of a matrix into a column
vector. Since 62⊗61 = (62/a)⊗ (a61) for any a 6= 0, the noise
covariance matrices of the matrix-variate t distribution, 61,62,
are not identifiable and prior restrictions can be used to achieve
identification. Nevertheless, in this paper we are interested in the
variability of the errors as measured by the product 62 ⊗ 61,
which is always identifiable. For the noise covariances, 61 and
62, we assume the following hierarchical prior distribution

γ ∼ Ga(aγ , bγ ), 61|γ ∼ Wn(γ
−19−1

1 , κ1),

62|γ ∼ IWn(γ92, κ2), (5)

where we use the shape-scale parametrization for the gamma
distribution and the scale parametrization for the Wishart and
inverse Wishart distributions, with densities

P(61|γ
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where κ1 and κ2 are the degrees of freedom parameters and
Ŵn(·) is the multivariate gamma function (see Gelman et al.,
2014, Appendix A, p. 577). The common scale γ allows for
various degrees of prior dependence in the unconditional joint
distribution of (61,62). Finally, since the object of interest is
the mean of Yt , which is defined only for ν > 1, we assume
the following gamma prior distribution truncated on the interval
(1,+∞)

ν ∼ T Ga(aν , bν; 1,+∞). (6)

The gamma prior distribution has been previously considered,
e.g., in Geweke (1993) and Wang et al. (2011). For the use of an
improper prior, see Fonseca et al. (2008). Since we are using a
proper prior distribution for B, its posterior distribution is well-
defined for ν > 0 (Geweke, 1993), whereas the constraint ν > 2
is required when using improper prior distributions.

3.2. Posterior Approximation
Denote the collection of parameters with θ = (B,61,62, ν), and
let Y = (Y1, . . . ,YT) be the collection of all observed networks.
The likelihood of the model in Equation (1) is

P(Y|θ) =
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Since the joint posterior distribution implied by the prior
assumptions in Equations (3)–(6) and the likelihood in Equation
(7) is not tractable, we follow a data augmentation approach. We
exploit the representation of the matrix t distribution as a scale
mixture of matrix normal distributions, with Wishart mixing
distribution (Thompson et al., 2020). From Theorem 4.3.1 in
Gupta and Nagar (1999), if S ∼ Wp(6

−1
1 , ν + p − 1) and

X|S ∼ Np,m(M, S−1,62), then X ∼ tp,m(ν,M,61,62). Following
Gelman et al. (2014) parametrization of the inverse Wishart, we
obtain the equivalent representation W = S−1 ∼ IWp(61, ν +

p − 1) and X|W ∼ Np,m(M,W,62). We apply this result to
Yt ∼ tn,n(ν,B,61,62) and obtain the complete data likelihood
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(8)

whereW = (W1, . . . ,WT) is the collection of auxiliary variables,
withWt ∼ IWn(61, ν + n− 1).

The data augmentation approach combined with our prior
assumptions allows us to derive analytically the full conditional
distributions of B,61,62, and W. Since the joint posterior
distribution is not tractable, we implement an MCMC approach
based on a Gibbs sampling algorithm that iterates over the
following steps:

1. Draw (ν,W) from the joint posterior distribution
P(ν,W|Y,B,61,62) with a collapsed-Gibbs step
that first samples ν ∼ P(ν|Y,B,61,62) and then
W∼P(W|Y,B,61,62, ν).

2. Draw vec(B) from the multivariate normal distribution
P(vec(B)|Y,W,61,62).

3. Draw 61 from the Wishart distribution P(61|W, ν, γ ).
4. Draw 62 from the inverse Wishart distribution

P(62|Y,B,W, γ ).
5. Draw γ from the gamma distribution P(γ |61,62).

See the Appendix for further details.

3.3. Simulation Experiments
We study the effects of the network estimation errors on the
network statistics. We set the size of the network to n = 70,
assume the degrees of freedom parameter takes values ν =

1, 2, . . . , 50, and consider two experimental settings with different
levels of variance in the error term Et : (i) low variance, with
61 = In · 3.0 and 62 = In · 1.2, and (ii) high variance, with
61 = In · 75.0 and 62 = In · 1.2. The choice of the parameter
settings reflects the results obtained in the empirical application.

The adjacencymatrixA of the network is obtained by applying
the probit transformation to the elements of B. Following
common practice in the analysis of financial connectedness [e.g.,
see Billio et al., 2012], we fix a threshold equal to 0.05, that is
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FIGURE 1 | Network centrality statistics. In each plot: true value (red, dashed line) and temporal averages of the statistics on the raw data Yt (blue, dotted line), and

statistics based on the estimated network B̂ (black, dashed line), for increasing values of the degrees of freedom, ν (horizontal axis).

aij = I(8(bij < 0.05)), where aij and bij are the (i, j)-th elements
of A and B, respectively, I(p) is the indicator function, taking
value 1 when p is true and 0 otherwise, and 8 denotes the cdf
of the standard normal distribution.

We focus on four measures of node centrality commonly
used in network analysis (Newman, 2018, Chapter 7): out-
degree, douti , eigenvector centrality, cei , closeness centrality, cci ,

and betweenness centrality, cbi . To define these measures, we first
introduce some notation. A path is a sequence of edges which
joins a sequence of distinct vertices, and a node s is said to be
reachable from node t if there exists a path which starts with t
and ends with s.

The out-degree on node i is the total number of outgoing
connections, that is

douti =

n
∑

j=1

Yji,t .

The eigenvector centrality describes the influence of a node in a
network by accounting for the centrality of all the other nodes in
its neighborhood. For each node i, it is defined as

cbi =
1

λ

∑

v∈Ni

aivc
b
v , (9)

where the score cbi is related to the score of its neighborhoodNi =

{v ∈ V; aiv = 1} and λ is an eigenvalue of the adjacency matrix
A. The closeness centrality accounts for connectivity patterns by
indicating how easily a node can reach other nodes. For each
node i, it is given by

cci =
n− 1

∑

v∈V ,v 6=i l(i, v)
(10)

where l(i, v) is the length of the shortest path between i and v.
A related measure is the betweenness centrality, which indicates
how relevant a node is in terms of connecting other nodes in the
graph. Let n(u, v) be the number of shortest paths P∗uv from u to v
and ni(u, v) be the cardinality of the set {P

∗
uv : i ∈ P∗uv}, that is the

number of shortest paths from u to v going through the node i.
Then the betweenness centrality for node i is

cbi =
∑

u 6=v,i/∈{u,v}

ni(u, v)/n(u, v)

(n− 1)(n− 2)
. (11)

Figure 1 shows the network statistics for the true network A,
the estimated network based on B̂, and the empirical averages
of the statistics based on the raw data Yt . The main findings are
summarized below:

• for heavier-tailed noise distribution (i.e., smaller ν), the bias of
the empirical network statistics increases;

• the bias increases with the scale of the noise, especially for the
eigenvector and betweenness centrality measures;

• as the degrees of freedom increase, the noise distribution
converges to a matrix normal and the empirical averages
approach the true value;

• the model proposed in Equation (1) yields correct estimates
of the metrics for all values of ν, even in presence of
heavy tails, with higher dispersion as the scale of the
noise increases.

Overall, these findings indicate that a direct implementation
of network analysis in presence of noisy measurements
may lead to misguiding conclusions. This issue can be
addressed by using the proposed methodology to de-noise the
network data.
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FIGURE 2 | Graphical representation of the de-noised network (left) and raw networks at t1 = 1 (middle) and t2 = 105 (right). Black dots represent financial firms and

gray arcs represent directed edges (clockwise orientation). The red dot stands for the most central institution according to degree centrality. In each plot, the size of a

node is proportional to its out-degree.

4. EMPIRICAL ANALYSIS

In this section, we provide a description of the raw time series
data and of the methodology used to extract the financial
networks. Then, we present the benefits of the proposed model
for computing the summary statistics most widely used in applied
network analysis.

4.1. Data Description
We consider the stock prices of the 70 European firms
with the largest market capitalization (source: Bloomberg
and Eikon/Datastream). The dataset includes 28 German, 37
French, and five Italian firms, belonging to 11 GICS sectors:
Communication Services (four firms), Consumer Discretionary
(15 firms), Consumer Staples (six firms), Energy (two firms),
Financials (11 firms), Health Care (six firms), Industrials (10
firms), Information Technology (five firms), Materials (two
firms), Real Estate (three firms), Utilities (five firms), and Food
and Beverages (one firm)1.

Data are sampled from the 4th of January 2016 to the 31st of
December 2019, at weekly frequency (Friday-Friday). The period
after the outbreak of the COVID-19 is excluded from the analysis
due to the break induced on the network structure.

We extract the network sequence using the pairwise Granger-
causality test (e.g., see Billio et al., 2012) on a rolling window
of 104 weekly logarithmic returns (i.e., 2 years). The auxiliary
regression used is

{

xi,t = β11xi,t−1 + β12xj,t−1 + εit
xj,t = β21xi,t−1 + β22xj,t−1 + εjt

(12)

where i, j = 1, . . . , n, for i 6= j. Each entry (i, j) of the matrix Yt ,
denoted by Yij,t , is the p-value of the Granger test statistic. The

1The list of the firms, the countries, and the information about their GICS sectors

and industries are available upon request to the Authors.

element Yij,t represents the probability that xj,t Granger-causes
xi,t . We estimate a total of 105 adjacency matrices, for the period
from the 29th of December 2017 to the 31st of December 20192.

4.2. Results
In this section, we apply the model and inference proposed in
sections 2, 3 to estimate the impact of the risk factors on the
European financial network. We run the Gibbs sampler for 5,000
iterations after discarding the first 2,000 as burn-in3.

Figure 2 shows the de-noised directed network B̂ and two
elements of the raw series. In each plot, a node represents a
firm and its size is proportional to its out-degree. The red dot
indicates the most central node in B̂, that is the node with the
highest out-degree in B̂, and directed edges are represented by
clockwise-oriented arcs. The node with the highest out-degree is
a financial firm, whereas the most central node according to the
other measures belongs to the energy sector. The largest black
dot in each plot of Figure 2 represents the most degree-central
institution, that is the one with highest out-degree. As shown by
the position of the largest dot in the middle and right plots, the
most central node varies over the sample. This supports the claim
that observation contaminated by noise, if not properly filtered,
may alter network analyses.

The posterior density of the degrees of freedom in the left plot
of Figure 3 suggests that the noise distribution is close to the
Gaussian. Nonetheless, as shown in the simulation experiments,
our approach is able to provide more accurate estimates of the
network measures as compared to the empirical averages. This

2The estimation algorithm has been parallelized and implemented in MATLAB on

the High Performance Computing (HPC) cluster at Ca’ Foscari University. Each

node has two CPUs Intel Xeon with 20 cores 2.4 GHz and 768 GB of RAM.
3The total computing time for the empirical application is about 22 h with code

written in MATLAB and run on an Intel Xeon with 20 cores 2.4 GHz and 768 GB

of RAM.
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FIGURE 3 | Posterior distribution (gray) and mean (black, dashed line) of the

degrees of freedom (left) and of the average of diag(62 ⊗ 61) (right).

is particularly evident for the eigenvector centrality, where the
empirical averages are sensitive to errors compatible with a t
distribution with large degrees of freedom (see Figure 1). The
right plot shows the posterior distribution of the average of the
elements on themain diagonal of62⊗61. The estimated average
variance is 84.5, thus providing evidence of high variability in the
network observations.

As described in section 1, the presence of noise in the data
can invalidate network analyses, such as the identification of
the most central institution. Motivated by this fact, we assess
the importance of de-noising the network data by computing
the network centrality measures on the raw data and on the
de-noised network obtained using the method in section 2.
The results are shown in Figure 4, which reports the posterior
distribution of the centrality measures computed on the de-
noised network (gray, with the black line representing the
posterior mean) and the temporal average of the statistics
computed on the raw data (red line). We find that all centrality
measures of the de-noised data differ from the temporal average
of the raw data; in particular, the eigenvector and betweenness
centrality based on the raw data are underestimated, while
the closeness centrality is overestimated. Overall, these findings
provide evidence that the presence of noise in network data
may jeopardize the validity of the ensuing analyses of the
network structure.

5. CONCLUSIONS

A common, though often neglected, aspect of network analysis
is that observations for networks might come with errors from
different sources, such as estimation and measurement errors.
We show that noise may invalidate the study of the network
topology, such as the measurement of node centrality.

We have introduced a new matrix-variate regression
framework that allows for heavy-tailed matrix-variate t errors
to address this issue. The model is applied to filter out the noise
from network data as a preliminary step before investigating
the connectedness structure. In the presence of heavy-tailed
error distributions or big scales of the variance of the noise,
the proposed approach has superior performance compared to
the temporal averages of the network statistics. Finally, we have

FIGURE 4 | Network centrality statistics. In each plot: posterior distribution

(gray) and mean (black, dashed line) of the statistics, and temporal averages of

the statistics on the raw data Yt (red, dashed line).

applied the model to a sequence of estimated networks among
European firms and find evidence of large error variance that
affects the centrality measures.

More generally, our approach can be implemented to obtain
robust network inference or fit benchmark random network
models, such as those proposed by Erdőrigos-Rény and Albert-
Barabási, thus representing a valuable tool for researchers
investigating networks.

In this paper, we focus on the case where all the noisy
observations contain the same set of nodes, meaning that there
is no uncertainty on the network nodes. An interesting extension
would be to consider observed networks having different sizes.
We leave this for future research.
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