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Failure to adequately characterize cell lines, and understand the differences between
in vitro and in vivo biology, can have serious consequences on the translatability of in vitro
scientific studies to human clinical trials. This project focuses on the Michigan Cancer
Foundation-7 (MCF-7) cells, a human breast adenocarcinoma cell line that is commonly
used for in vitro cancer research, with over 42,000 publications in PubMed. In this study,
we explore the key similarities and differences in gene expression networks of MCF-7 cell
lines compared to human breast cancer tissues. We used two MCF-7 data sets, one data
set collected by ARCHS4 including 1032 samples and one data set from Gene Expression
Omnibus GSE50705with 88 estradiol-treatedMCF-7 samples. The human breast invasive
ductal carcinoma (BRCA) data set came from The Cancer Genome Atlas, including 1212
breast tissue samples. Weighted Gene Correlation Network Analysis (WGCNA) and
functional annotations of the data showed that MCF-7 cells and human breast tissues
have only minimal similarity in biological processes, although some fundamental functions,
such as cell cycle, are conserved. Scaled connectivity—a network topology metric—also
showed drastic differences in the behavior of genes between MCF-7 and BRCA data sets.
Finally, we used canSAR to compute ligand-based druggability scores of genes in the data
sets, and our results suggested that using MCF-7 to study breast cancer may lead to
missing important gene targets. Our comparison of the networks of MCF-7 and human
breast cancer highlights the nuances of using MCF-7 to study human breast cancer and
can contribute to better experimental design and result interpretation of study involving this
cell line.
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INTRODUCTION

Cell lines have been extensively used as models for human biology
and have contributed to many insights: from the development of
vaccines and toxicology screening, to the study of disease
mechanisms and treatments. Despite these achievements, there
have been growing concerns about the quality of cell lines
(Hartung 2007), ranging from cell-line misidentification,
unreproducible studies, to failed clinical trials (Schweppe et al.,
2008; Gillet et al., 2013; Hartung, 2013). In 2012, Amgen
researchers attempted to replicate 53 landmark cancer papers and
found that 47 studies were not reproducible (Begley and Ellis, 2012);
the result is in keeping with a broader estimate that most research
studies are likely to be not reproducible (Ioannidis, 2005). This leads
to wasteful use of financial resources and labor, with an estimation of
28 billion dollars a year spent on irreproducible research (Freedman
et al., 2015). While various reasons contribute to the irreproducibility
of research, including study power, technical and biological
variability, cell line reproducibility has been considered as one of
the major factors contributing to the failure to reproduce preclinical
studies. For instance, cell line misidentification has been a long
standing problem in cell culture, with controversies for HeLa cells
dating back to the 1970s (Nelson-Rees et al., 1974). In addition, the
usefulness of cell lines as models for human biology has been
questioned. Not all cancer cell lines have the same value as
models to study cancer in humans (Gillet et al., 2013).

Michigan Cancer Foundation-7 cells (MCF-7) have been used
widely in labs as a model for human breast cancer for over
40 years. It is estrogen receptor (ER)-postive, progesterone
receptor (PR)-positive, poorly aggresive, and non-invasive,
with low metastatic capacity (Comsa et al., 2015). Since its
creation in 1973, MCF-7 has resulted in the highest number of
scientific papers compared to other breast cancer cell lines
(Sweeney et al., 2012), with over 42,000 publications on
PubMed related to this cell line. MCF-7 has played an
important role in studying estrogen receptor (ER) in tumor
growth, characterization of cancer drug candidates, and
endocrine disruption screening (Comsa et al., 2015). Since
cancer cell lines greatly contribute to our understanding of
cancer molecular mechanisms, investigating their relevance of
cancer cell lines to human cancer is critical. Noticeably, even
MCF-7 cells from a single cell bank batch can exhibit
heterogeneity: previous work in our lab at the Center for
Alternatives to Animal Testing showed that MCF-7 cells
coming from the same ATCC lot still displayed marked
differences in cellular and phenotypic characteristics, such as
proliferation, and expression of estrogen-related genes that
escaped routine cell line authentication techniques (Kleensang
et al., 2016). A more recent study onMCF-7 also shows variations
in expression of reference genes among sub-clones of this cell line
(Jain et al., 2020).

In this study, we used large-scale data analysis to examine the
similarities and differences betweenMCF-7—a cell line belonging
to the luminal A molecular subtype (Dai et al., 2017)—and
invasive breast cancer tissues including four subtypes—luminal
A, luminal B, HER2-enriched, and basal-like (Cancer Genome
Atlas Network, 2012). To our knowledge, this is one of only a few

studies that use network analysis to compare an immortalized
cancer cell line to human cancer tissues. The bioinformatics
pipeline established in this study was made available and can
potentially be applied to similar analysis between cell lines and
their corresponding tissues in humans.

MATERIALS AND METHODS

Data
MCF-7 ARCHS4 data set. Gene expression level RNA-seq data of
the human adenocarcinoma cell line MCF-7 was obtained from
the ARCHS4 database (All RNA-seq and ChIP-seq Sample and
Signature Search). For detailed description of data processing
workflow, readers are invited to read the ARCHS4 article
(Lachmann et al., 2018). Briefly, raw RNA-seq data was
collected from Gene Expression Omnibus (GEO) by the
authors of ARCHS4, aligned to the reference genome, mapped
to the gene level, and uploaded to the ARCHS4 database. The
MCF-7 data set contained 1032 samples from 107 GEO series.
Gene expression data was downloaded as an expression matrix
using the R script provided by ARCHS4 and was log2-
transformed. Since the data set came from multiple
experimental series, data sets were checked for batch effects
using Combat (Johnson et al., 2007) before downstream analysis.

MCF-7 GSE50705 data set. RNA microarray data were
downloaded from Gene Expression Omnibus (GEO) (Shioda
et al., 2013). In the original study, MCF-7 cells were treated
with various concentrations of natural and xenobiotic estrogens.
We extracted samples treated for 48 h with the steroid hormone
17β-estradiol (n � 88), converted probes to gene symbols, and
removed probes that were matched to multiple gene names.

BRCA data set. Pre-processed, RSEM-normalized Level
3 RNA-seq data of breast invasive ductal carcinoma tissues
from The Cancer Genome Atlas was downloaded from
FireBrowse. The data set included 1,212 human tissue samples.

For all three MCF-7 and BRCA data sets, samples were
checked for outliers using hierarchical clustering, as well as
missing values using the goodSamplesGenes function in the
Weighted Correlation Network Analysis (WGCNA) package.
No obvious outliers and missing values were found. Before
constructing the co-expression networks for the MCF-7 and
BRCA data sets, genes were filtered for the top 10,000 mostly
highly variant genes using median absolute deviation (MAD) to
exclude the large fraction of genes that are expressed at low level,
as two genes with low variance would result in high correlation
that would not be biologically meaningful. The resulting gene
expression matrices were then analyzed with the WGCNA
approach, a popular network analysis algorithm. The analysis
workflow for this study can be viewed in Figure 1.

Weighted Gene Co-expression Network
Analysis
WGCNA is a systems biology approach that describes the
correlation among genes (Langfelder and Horvath, 2008). It
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uses network language to describe the pairwise correlation
between genes in a data set, based on the assumption that
genes with similar expression levels tend to belong to similar
pathways. Rather than using a hard threshold for the co-
expression similarity sij, which does not reflect the continuous
property of gene expression levels and may lead to loss of
information, WGCNA uses a soft threshold approach. It raises
the co-expression similarity sij to a power β (β ≥ 1) to obtain the
adjacency matrix aij, allowing the adjacency to having continuous
values between 0 and 1:

aij � sβij

We set β � 5 for ARCHS4, β � 7 for GSE50705, and β � 6 for
BRCA based on the scale-free topology criterion (Supplementary
Figure S1). After network construction, modules in each data set
were detected using hierarchical clustering implemented through
the function blockwiseModules, with the parameter
minModuleSize set to 100, 80, and 100 for ARCHS4,
GSE50705 and BRCA respectively.

Functional Annotation
Modules detected by WGCNA can have true biological
meaning or can be results of noises in the data, such as
sample contamination, technical artifacts, or experimental
design. Therefore, we performed functional enrichment of
biological processes for genes in each module to identify
modules with biological meaning. We used the package
STRINGdb which provides an R interface to the STRING
protein-protein interactions database. The annotation was
adjusted for Homo sapiens background. Enrichment
p-values were calculated based on over-representation
analysis using hypergeometric tests and were adjusted for
multiple hypothesis testing with Benjamini-Hochberg
procedure (Szklarczyk et al., 2019).

Data Visualization
The modules of interest were visualized with the network
visualization software Cytoscape version 3.7.0 (Shannon et al.,
2003). For Figures 2 and 3, networks were plotted with Group
Attributes Layout in Cytoscape to highlight gene module
membership. For Figure 4, the network was plotted with
Prefuse Force Directed Layout. Node color was correlated with
the number of gene PubMed publications, obtained by querying
the Entrez IDs to obtain a raw count of PMIDs on the PubMed
database, as described in our previous publication (Maertens
et al., 2020).

Scaled Connectivity
The scaled connectivity for each gene in the MCF-7 and BRCA
networks were calculated from the adjacency matrices using the
function fundamentalNetworkConcepts from the WGCNA
package. Scaled connectivity is calculated as K � Connectivity/
max(Connectivity). Full tables of scaled connectivity of 10,000
most variant genes in GSE50705 and BRCA are available in
Supplementary Table 1A,B.

Ligand-Based Druggability
The ligand druggability scores for the 10,000 most variant genes
in the MCF-7 and BRCA data sets were queried using the Protein
Annotation Tool from the canSAR knowledgebase. The canSAR
database integrates genomic information, structural biology, and
properties of compounds to estimate likely “druggability” of
chemicals (Tym et al., 2016; Coker et al., 2019). Ligand-based
druggability is calculated by looking at the small molecule
compounds that have been tested against the protein or its
homologues. The ligand-based druggability score for each
protein was calculated based on ligand efficiency, med-chem
friendliness, and molecular weight of these compounds. Top
30 genes with highest positive ligand druggability scores were
selected for each data set for Figure 5. Full tables of ligand

FIGURE 1 | Analysis workflow for the MCF-7 ARCHS4, MCF-7 GSE50705 and BRCA data sets.
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druggability for the 10,000 genes in GSE50705 and BRCA are
available in Supplementary Table S2A,B.

RESULTS
Minimal Overlapping Genes Between
Michigan Cancer Foundation-7 and Human
Breast Tissues
We selected three data sets based on human breast cancer tissues:
1) the TCGA data set of invasive breast cancer biopsies

(henceforth BRCA), which has the advantage of reflecting
human in vivo samples, although biopsies by their nature
include a mix of different tissues 2) the ARCHS4 collection of
MCF-7 samples, which is an attempt to massively mine publicly
available RNA-seq experiments, and consists of 1032 samples
combined from GEO, and 3) a smaller study of MCF-7 cells
exposed to estrogen in a dose response curve. As the data sets
involve a range of different technologies, preprocessing strategies,
and in the case of ARCHS4, potentially many different biological
conditions, we began with the basic initial step of reducing the
gene expression set to the top 10,000 most variant genes, to
eliminate genes that were minimally or inconsistently expressed
and would therefore confound the use of a correlation-based
approach. Surprisingly, even this initial step indicated minimal
conservation of gene expression signatures - only 681 genes were
conserved amongst the three datasets, and of the top 10,0000
genes from the ARCHS4 data set, fully 6,440 were unique to that
data set (Figure 6).

In the case of the genes found in all three data sets, annotation
analysis revealed that they were enriched for genes annotated to
mitotic cell cycle (adjusted-p value � 1.08E-21), regulation of cell
migration (adjusted p � 1.89E-18), and response to endogenous
stimulus (adjusted-p value � 2.33E-18) (Supplementary Table
S3), suggesting that of the highly expressed genes, the common
genes are likely annotated to fundamental cell processes.

In order to understand how and why the data sets diverged
even at this fundamental level, we explored the genes that were
unique to each data set. For the BRCA data set, we suspected that
one cause of the difference was likely the fact that cancer biopsies
always reflect a mixture of cell-types and typically have a
significant component of immune infiltration. Our data
support this to a limited extent: genes unique to BRCA were
enriched for immune-related GO annotations, such as regulation
of immune response (adjusted-p value � 0.002023) and regulation
of innate immune response (adjusted-p value � 0.007635)

FIGURE 2 | Venn diagram of shared and unique genes between MCF-7
ARCHS4, GSE50705, and BRCA data sets.

FIGURE 3 | Histogram of absolute difference in scaled connectivity ranking between GSE50705 and BRCA. The scaled connectivity scores obtained with the
fundamentalNetworkConcepts function from WGCNA was ranked, and the absolute difference between GSE50705 and BRCA were calculated.
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(Supplementary Table S3). In addition, within genesmapped to cell
types via the Human Gene Atlas, there was a modest level of
enrichment for immune-cell related genes (Supplementary Table S3).

More striking, however, was a marked presence of ribosomal
subunit genes unique to the BRCA data set, annotated via STRING
as ribosome biogenesis (adjusted p-value � 1.81E-08)
(Supplementary Table S3), and Bioplanet as Cytoplasmic
ribosomal proteins (adjusted-p value � 1.61E-10). While these
ribosomal subunit genes are ubiquitously expressed in most breast
cancer cell lines as well as most tissues (Ebright et al., 2020), they
were in neither the MCF7-derived GSE50705 data set nor the
ARCHS4 data set, likely owing to some extent to the chip design for
the GSE50705, and the high noise level in ARCSH4. Within the
BRCA data set, several ribosomal proteins showed a high level of
patient-to-patient variation (Supplementary Figure S2A). Of the
topmost variant ribosomal proteins within the BRCAdata set, only
RPS3 was also in the GSE50705 data, and a much narrower
dynamic range (Supplementary Figure S2B). Strong ribosomal
signatures in a subset of circulating tumor cells have been
associated with poor clinical outcomes in breast cancer patients
(Ebright et al., 2020), and it seems likely that MCF-7 cells may not

capture the effects of the variation in ribosomal protein expression
patterns.

The genes unique to the MCF-7 GSE50705 estrogen dose-
response curve were enriched for genes related to non-coding
RNA processing (adjusted-p value � 6.64E-09) and
mitochondrial respiratory chain complex IV biogenesis
(adjusted-p value � 1.77E-07). Meanwhile, the large set of
genes unique to the ARCHS4 dataset are most significantly
enriched for cell-cell signaling (adjusted-p value � 2.23E-59),
synaptic transmission (adjusted-p value � 8.52E-56), and ion
transport (adjusted-p value � 9.11E-41) (Supplementary
Table S3).

As breast cancer cell lines, it is surprising that genes unique to
ARCHS4 MCF-7 cells are enriched for generation of neurons
(adjusted p-value 5.98E-21)— a process unique to neuronal cells.
In addition, there were some genes annotated to the meiotic
chromosome segregation in this data set and even a few Y
chromosome genes (Supplementary Table S3). This can be

FIGURE 4 | Gene network of BRCA data set, plotted with Group
Attributes Layout in Cytoscape. Module membership was determined using
WGCNA. All modules except the grey module containing unassigned genes
were exported to Cytoscape using the exportNetworkToCytoscape
function, with a threshold of 0.05. Node color = module color. Genes
associated with chromosome enrichment with an adjust-p value ≪ 0.05 from
Enrichr are highlighted in dark grey. Purple edges indicate interactions
between genes enriched for chromosomes.

FIGURE 5 | Gene network of MCF-7 GSE50705 estrogen-treated data
set, plotted with Group Attributes Layout in Cytoscape. Module membership
was determined using WGCNA. All modules except the grey module were
exported to Cytoscape using the exportNetworkToCytoscape function,
with a threshold of 0.2. Node color = module color. There was no gene
significantly enriched for chromosomes in Enrichr.
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caused by artifacts of annotations data or possibly contamination
of other cell lines during experimental design of GEO studies or
inclusion of non-MCF7 samples during data mining for
ARCHS4. Overall, we observed a higher degree of similarity
between GSE50705 and BRCA (5252 overlapping genes) than
between ARCHS4 and BRCA (2203 overlapping genes).

Network Signatures Indicate Substantial
Differences Between Data sets
In order to investigate similarities and differences between the
data sets at a more intricate level, we usedWGCNA for the 10,000
most variant genes in each data set to assign the genes to
functional modules and see if, broadly speaking, interactions
amongst genes were conserved. WGCNA uses correlations
amongst gene expressions and groups genes in an
unsupervised way to determine potential interactions. In
keeping with our previous studies (Maertens et al., 2018;
Maertens et al., 2020), the modules produced by WGCNA
were input into STRING for biological annotations to verify
whether WGCNA had produced modules of genes that were
known to interact and were enriched for annotations.

For both the BRCA and the GSE50705 data sets, the modules
were enriched for known protein interactions in STRING as well
as highly significant adjusted p-values for GO Biological
Processes, indicating that for most of the genes, WGCNA
indeed clustered genes with similar biological functions and on
the same pathways. However, the modules of the ARCHS4
dataset were unsatisfactory: most genes could not be classified
into modules and ended up in the grey module for unassigned
genes (Supplementary Figure S3A). These modules were also
small and lacked distinguishing enrichments in STRING
(Supplementary Table S4A). Due to the lack of meaningful
biological signals in ARCHS4, we decided to focus subsequent
analyses on the GSE50705 and BRCA data sets.

Annotations by modules in the GSE50705 and BRCA data sets
indicated that the BRCA data set had a red module
(Supplementary Table S4B) that was enriched for genes
annotated as immune-related or cytokine-response biological
processes. As expected, the immune component was not
present in the GSE50705 data (Supplementary Table S4C).
Our finding is supported by another study showing consistent
upregulation of immune processes in primary tumors, possibly a
result of immune infiltration in tumor tissues that is not present
in cell lines (Yu et al., 2019).

Interestingly, even modules annotated for the same pathways
in the two data sets varied substantially in their gene constituents:
the largest module annotated for cell cycle processes in the BRCA
data set (brown module, 1013 genes) only has 354 genes
overlapping with its counterpart in the MCF-7 GS550705 data
set (turquoize module, 2244 genes).

To determine whether the MCF-7 and BRCA data sets differ
regarding network topology, we calculated the scaled
connectivity, a metric for gene significance in a network,
which asks if the gene is acting as a hub, or highly
connected gene. We observed substantial difference between
the two data sets: the average mean absolute difference
between scaled connectivity was 3,223 and a small cluster of
genes had a difference in scaled connectivity greater than
9,000, in each case ranking significantly higher in the MCF-
7 dataset than the TCGA (Figure 5). The genes with the
highest scaled connectivity in MCF-7 vs. TCGA showed
relatively rare over- or under-expression within the BRCA
data set, in each case with transcriptional perturbations less
than 10 percent (Table 1, Supplementary Figure S4). The
relatively high connectivity in MCF-7 may reflect a
combination of the lineage of MCF-7 (perhaps a cancer
type that over-expressed one or more of these genes), or the
result of cellular instability and the evolution of MCF-7
over time.

FIGURE 6 | Genes with top ligand druggability scores for (A) GSE50705 and (B) BRCA (C) Among the top 30 genes, 17 genes are overlapping.
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Breast Invasive Ductal Carcinoma Data
Modules Contain Substantially More
Cis-Regulated Genes Compared to
GSE50705
In our previous study using WGCNA to analyze genes for
functional assignment (Maertens et al., 2020), we reported that
some modules were significantly enriched for genes on a single
chromosome and that these modules tended to have no
statistically significant enrichments for protein-protein
interactions (PPI) or functional enrichments. Others have
similarly reported significant clustering of genes based on
intra-chromosomal distance and this feature has been
demonstrated to be specific for different phenotypes (Garcia-
Cortes et al., 2020). We found that the BRCA data had several
modules that, although enriched for both PPI interactions and
functional enrichments, had a statistically significant enrichment
for genes on a single chromosome (Figure 2), likely reflecting
increased co-expression from neighboring genes that results from
a disruption in the regulatory elements that control gene
transcription. Interestingly, this is not true of the MCF-7
sample - no module was significantly enriched for any one
chromosome - despite the fact that it originates from a cancer
cell line (Figure 3). However, it should be noted that the
difference may simply be due to the greater dynamic range of
RNA-sequencing compared to microarray.

Potential Drug Targets Missed by Using
Michigan Cancer Foundation-7
AsMCF-7 is often used for drug discovery research, we wanted to
explore whether any potentially druggable candidates would be
missed. To identify potential drug targets, we used the CanSAR
database, which is a protein structure-based model that predicts
ligand-based druggability scores based on the predicted cavities of
over 144,000 proteins (Coker et al., 2019). While there was some
overlap between the top-ranked druggable genes, there were
several genes that would likely have been missed if MCF-7
were exclusively used for protein targets. However, it should
be kept in mind that this approach is merely looking for potential
candidates based on protein accessibility, not cancer biology, and
there was no available information about classes of drugs.

Therefore, our results merely suggest that it might be useful to
look outside the MCF-7 model when screening for cancer drug
targets.

As an example, of the genes that ranked highly for ligand-
based druggability, CCNT1 has the 23rd highest score in the
BRCA data set and was ranked in 277th in scaled connectivity
in this data set yet ranked 5,824th in the GSE50705 data set.
Altered CCNT1 expression (defined as z-score > +/−1.5) is not
significantly associated with any mutations or copy number
variations. Interestingly, altered expression is significantly
associated with race, being more common in African
Americans compared to Whites or Asian Americans
(Supplementary Figure S5) - while the reason for this may
range from SNP polymorphisms to different environmental
exposures amongst populations, it does indicate one intrinsic
short-coming of MCF-7 cells: they were isolated from a White
female (Comsa et al., 2015), and therefore a model of breast
cancer based on this tissue type alone will miss much of the
molecular diversity of breast cancer in a population with
mixed genetic backgrounds, diverse environmental
exposures and clinical histories (Makki, 2015; Koual et al.,
2020).

In the BRCA data set, CCNT1 was located in the yellow
module enriched for several biological processes (intracellular
transport - adjusted p value 4.63E-12, protein modification by
small protein conjugation or removal - adjusted p value 4.63E-12,
and protein transport - adjusted p value 2.11E-09) as well as
Chromosome 4 (adjusted p value 0.0009227) and Chromosome 5
(adjusted p value 7.435E-20) enrichments (Supplementary Table
S5). In order to predict the most likely trans-activated co-
expressed genes, we looked at the top 50 genes correlated with
CCNT1 expression by Spearman rank correlation (coefficient of
correlation > 0.789; q-value < p � 6.27e-235). While these genes
were enriched for known protein-protein interactions via
STRING (p-value 0.000268), many of the genes were
unconnected, and the only significant GO annotations were
each based on a maximum of three genes - likely because
many of these genes have minimal literature (Figure 7), and
31 of the genes were “unclassified” in GO SLIM Biological Process
and therefore invisible in any annotation-based approach.

Using the FANTOM EdgeExressDB (Lizio et al., 2015; Lizio
et al., 2019) to explore potential connections suggested that the

TABLE 1 | Top 10 genes with highest difference in scaled connectivity ranking between GSE50705 and BRCA.

GeneSymbol Scaled connectivity
in MCF7

Rank in
MCF7

Scaled connectivity
in BRCA

Rank in
BRCA

Absolute ranking
difference

SUSD2 0.787126168 68 6.48E-05 9995 9927
CLU 0.878769987 16 0.000544507 9933 9917
BCAR3 0.78900237 67 0.001091298 9861 9794
TMPRSS3 0.767847573 82 0.000989588 9875 9793
OLFM1 0.70620407 181 0.000370951 9960 9779
SLC24A3 0.748824023 108 0.000982308 9877 9769
DEGS1 0.72618254 148 0.00099857 9874 9726
NPY1R 0.752667373 103 0.001839083 9775 9672
PLK2 0.722418194 156 0.001623592 9802 9646
CYP2J2 0.674845098 238 0.000986705 9876 9638
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coordinated co-expression of many of the genes was possible due
to the transcription factor CLOCK, which had a very high
correlation with CCNT1 - indeed, the two genes are
significantly correlated in every cancer within TCGA, both
before and after adjusting for tumor purity. So, while the
mechanism of the correlated co-expression is unknown, it is a
fairly robust finding within cancer tissues. The Spearman
correlation between CCNT1 and CLOCK in the GSE50705
dataset was 0.130 with a p-value of 0.2285, and the top 50
candidates based on Spearman rank were shown in
Supplementary Table S6.

While CCNT1 is not associated with survival in breast cancer
as a whole, low expression is associatedwith longer survival in luminal
A cancer (HR 1.98, p � 0.0155); similarly, low CLOCK expression was
associated with increased survival in all breast cancer subtypes as well
as the luminal A subtype. Like CCNT1, altered CLOCK expression is
more common in African Americans.

The ultimate molecular function of CCNT1 and its
interactions with CLOCK and the other predicted genes
remains elusive, and any potential role in breast cancer is
largely unremarked, as only 3 papers within PubMed mention
CCNT1 and breast cancer, and in fact only 39 papers mention
CCNT1 and cancer. The significance of CLOCK in cancer is
better understood as it is thought to be a molecular link between
disrupted circadian rhythm and cancer (Trujillo and Muotri,
2018), including breast cancer (Cadenas et al., 2014; Xiao et al.,
2014).

DISCUSSION

Cell lines are often used as models for cancer research, but recent
studies have drawn attention to the ways in which cell-lines can
introduce artifacts. MCF-7 is not the only cell line that expresses
heterogeneity. Other commonly used breast cancer cell lines such as
T47D, BT474, and SKBR3 have also been shown to develop
chromosomal alterations through cluster analysis (Rondon-Lagos
et al., 2014). A recent study on the reproducibility of a perturbational
assay in anti-cancer drugs using the human mammary epithelial cell
line MCF10A shows variability of findings among five research
centers, although it should be noted that the observed variability
can be due to multiple biological, experimental and computational
factors (Niepel et al., 2019).

One interesting result of this study is the lack of concordance
between the ARCHS4 and TCGA data sets. Above and beyond
the obvious reasons for differences between in vivo cancer tissue
and a larger collection of in vitro studies with varying
experimental conditions, there are likely differences introduced
from the data analysis pipelines. Nonetheless, it remains
surprising that even at the basic level of sorting by variant
genes, there was very little in common with other MCF7-
based studies. Correlation based approaches are often used on
large data sets to find commonly expressed genes - and this
function is built into ARCHS4 - but in this application, the size of
the data set did not appear to compensate for the increased noise
when it came to teasing out possible interactions.

FIGURE 7 | Subnetwork of CCNT1 in the BRCA data set plotted with Prefuse Force Directed Layout in Cytoscape. From the module yellow in BRCA, the first
neighbors of CCNT1 were selected. The color of the node corresponds to the number of PubMed publications associated with the genes.

Frontiers in Artificial Intelligence | www.frontiersin.org May 2021 | Volume 4 | Article 6743708

Tran et al. MCF-7 and Breast Tissue Networks

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Our examination of the smaller data set based on MCF-7 cells
treated with estradiol and breast cancer tissues shows that
although there are some conserved genes between the two
networks, the majority of genes were non-overlapping. This
issue has been raised in other studies: for instance, the
Wellcome Sanger Institute used the CRISPR-cas9 screens on
324 human cell lines to priority gene targets for 30 cancer
types, and found 628 priority targets (Behan et al., 2019);
however, the vast difference between these cell lines and in
vivo patient data meant that at least some of the targets
predicted by CRISPR-cas9 screens were irrelevant to human
cancer biology (Lyu et al., 2020). In our study, the substantial
differences in co-expression networks between the MCF-7 cell
line and human breast cancer tissues could have many
explanations - cell line evolution of the MCF7 cells after
multiple generations, as well as the increase in cis-regulated
expression in in vivo cancer, and technical differences between
the transcriptomic approaches. Nonetheless, the heterogeneity
among BCRA patients likely contributes to a great deal to the
difference. Our study did, like many studies of in vitro tumors,
underscore that tumors contain multiple cell-types, as evidenced
by the presence of a module of immune-related genes.

Similarly, our finding of marked correlations amongst genes
based on chromosome distance within the TCGA data set, but not
in the GSE data set, suggests that correlation based approaches
used on cancer-derived tissues requires caution, as cis-activation
(or uncontrolled transcription) will cause markedly strong
associations not driven by a common transcription factor
binding sites or pathways (Garcia-Cortes et al., 2020), and this
complicates any interpretation of the scaled connectivity score or
assuming any correlation reflects a specific interaction. The
observation of cis-activated genes in the TCGA data set and
not in the GSE data set could be due to the difference in dynamic
range between RNA-seq and microarray. However, these
correlations could also be biologically meaningful, potentially
caused by pervasive copy number variations within the 19p13
chromosome region in breast cancer tissues, and the increased
transcription almost certainly has biological consequences.

There are several limitations in our study: althoughWGCNA
is a powerful bioinformatics method, it can result in false
positives and spurious correlations. We addressed this issue
by examining the gene modules resulting from the WGCNA
algorithm for biologically meaningful annotations. Another
limitation is the shortcoming of annotation databases, as
mentioned in our previous publication (Maertens et al.,
2020). Finally, the difference between MCF-7 and BRCA we
observed could also be accounted for by the difference in mRNA
sequencing technologies. The MCF-7 GSE50705 data set was
measured with the microarray platform Affymetrix Human
Genome U133 Plus 2.0 Array, and the BRCA TCGA data set
was measured with the RNA seq technology Illumina HiSeq
2000 RNA Sequencing Version 2. RNA-seq is more sensitive
than microarray to low-abundance transcripts (Wang et al.,

2014), and the concordance between RNA-seq and microarray
technologies can vary from low to high (Zhao et al., 2014; Trost
et al., 2015).

Nevertheless, our study indicates that both models have
limitations: MCF-7 cells lack genetic diversity and are known
to have a significant lack of reproducibility; at the same time in
vivo tumors will have greater cellular heterogeneity and artifacts
intrinsic to cancers, such as greater cis-regulation. This is
perhaps a useful reminder of the truism that all models are
wrong, but some models are useful - and that the models are
more useful when we know in what ways they are likely to
mislead us.
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