
An Empirical Investigation Into Deep
and Shallow Rule Learning
Florian Beck* and Johannes Fürnkranz

Institute for Application-oriented Knowledge Processing (FAW), Johannes Kepler University, Linz, Austria

Inductive rule learning is arguably among the most traditional paradigms in machine
learning. Although we have seen considerable progress over the years in learning rule-
based theories, all state-of-the-art learners still learn descriptions that directly relate the
input features to the target concept. In the simplest case, concept learning, this is a
disjunctive normal form (DNF) description of the positive class. While it is clear that this is
sufficient from a logical point of view because every logical expression can be reduced to
an equivalent DNF expression, it could nevertheless be the case that more structured
representations, which form deep theories by forming intermediate concepts, could be
easier to learn, in very much the same way as deep neural networks are able to outperform
shallow networks, even though the latter are also universal function approximators.
However, there are several non-trivial obstacles that need to be overcome before a
sufficiently powerful deep rule learning algorithm could be developed and be compared to
the state-of-the-art in inductive rule learning. In this paper, we therefore take a different
approach: we empirically compare deep and shallow rule sets that have been optimized
with a uniform general mini-batch based optimization algorithm. In our experiments on
both artificial and real-world benchmark data, deep rule networks outperformed their
shallow counterparts, which we take as an indication that it is worth-while to devote more
efforts to learning deep rule structures from data.

Keywords: inductive rule learning, deep learning, learning in logic, mini-batch learning, stochastic optimization

1 INTRODUCTION

Dating back to the AQ algorithm (Michalski, 1969), inductive rule learning is one of the most
traditional fields in machine learning. However, when reflecting upon its long history (Fürnkranz
et al., 2012), it can be argued that while modern methods are somewhat more scalable than
traditional rule learning algorithms (see, e.g., Wang et al., 2017; Lakkaraju et al., 2016), no major
break-through has been made. In fact, the RIPPER rule learning algorithm (Cohen, 1995) is still very
hard to beat in terms of both accuracy and simplicity of the learned rule sets. All these algorithms,
traditional or modern, typically provide flat lists or sets of rules, which directly relate the input
variables to the desired output. In concept learning, where the goal is to learn a set of rules that
collectively describe the target concept, the learned set of rules can be considered as a logical
expression in disjunctive normal form (DNF), in which each conjunction forms a rule that predicts
the positive class.

In this paper, we argue that one of the key factors for the strength of deep learning algorithms is
that latent variables are formed during the learning process. However, while neural networks excel in
implementing this ability in their hidden layers, which can be effectively trained via backpropagation,
there is essentially no counter-part to this ability in inductive rule learning. We therefore set out

Edited by:
Sophie Burkhardt,

Johannes Gutenberg University
Mainz, Germany

Reviewed by:
Fabio Aiolli,

University of Padua, Italy
Joao Gama,

University of Porto, Portugal

*Correspondence:
Florian Beck

fbeck@faw.jku.at

Specialty section:
This article was submitted to

Machine Learning and Artificial
Intelligence, a section of the journal

Frontiers in Artificial Intelligence

Received: 31 March 2021
Accepted: 10 September 2021

Published: 22 October 2021

Citation:
Beck F and Fürnkranz J (2021) An

Empirical Investigation Into Deep and
Shallow Rule Learning.

Front. Artif. Intell. 4:689398.
doi: 10.3389/frai.2021.689398

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893981

ORIGINAL RESEARCH
published: 22 October 2021

doi: 10.3389/frai.2021.689398

http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2021.689398&domain=pdf&date_stamp=2021-10-22
https://www.frontiersin.org/articles/10.3389/frai.2021.689398/full
https://www.frontiersin.org/articles/10.3389/frai.2021.689398/full
http://creativecommons.org/licenses/by/4.0/
mailto:fbeck@faw.jku.at
https://doi.org/10.3389/frai.2021.689398
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2021.689398

to verify the hypothesis that deep rule structures might be
easier to learn than flat rule sets, in very much the same way as
deep neural networks have a better performance than single-
layer networks (Mhaskar et al., 2017). Note that this is not
obvious, because, in principle, every logical formula can be
represented with a DNF expression, which corresponds to a
flat rule set, in the same way as, in principle, one (sufficiently
large) hidden layer is sufficient to approximate any function
with a neural network (Hornik, 1991). As no direct
comparison is possible because of the lack of a powerful
algorithm for learning deep rule sets, our tool of choice is a
simple stochastic optimization algorithm to optimize a rule
network of a given size. While this does not quite reach state-
of-the-art performance (in either setting, shallow or deep), it
nevertheless allows us to gain some insights into these settings.
In particular, we aim to see whether deep structures can be
better learned than shallow structure in an identical setting
using the same general optimization algorithm. To that end,
we test deep and shallow rule networks on both, real-world
UCI benchmark datasets, as well as artificial datasets for which
we know the underlying target concept representations.
Moreover, we also briefly look at the interpretability of the
learned concepts in both their learned structure as well as their
equivalent DNF formulation, but find that the presentation of
logical formulas in a human interpretable way is still largely an
open question.

The remainder of the paper is organized as follows: Deep Rule
Learning elaborates why deep rule learning is of particular
interest and refers to related work. We propose a new network
approach in Deep Rule Networks and test it in Experiments. The
results are concluded in Conclusion, followed by possible future
extensions and improvements in Future Work.

2 DEEP RULE LEARNING

In this section, we will briefly discuss the state-of-the-art in
learning deep, structured rule bases. We start with a brief
motivation, and continue to review related work in several

relevant areas, including constructive induction, multi-label
rule learning, or binary and ternary networks.

2.1 Motivation
Rule learning algorithms typically provide flat lists that directly
relate the input to the output. Consider, e.g., the following
example: the parity concept, which is known to be hard to
learn for heuristic, greedy learning algorithms, checks whether
an odd or an even number of R relevant attributes (out of a
possibly higher total number of attributes) are set to true.
Figure 1A shows a flat rule-based representation1 of the target
concept for R � 5, which requires 2R−1 � 16 rules. On the other
hand, a structured representation, which introduces three
auxiliary predicates (parity2345, parity345 and
parity45 as shown in Figure 1B), is much more concise
using only 2 · (R − 1) � 8 rules. We argue that the
parsimonious structure of the latter could be easier to learn
because it uses only a linear number of rules, and slowly
builds up the complex target concept parity from the smaller
subconcepts parity2345, parity345 and parity45.

To motivate this, we draw an analogy to neural network
learning, and view rule sets as networks. Conventional rule
learning algorithms learn a flat rule set of the type shown in
Figure 1A, which may be viewed as a concept description in
disjunctive normal form (DNF): Each rule body corresponds to a
single conjunct, and these conjuncts are connected via a
disjunction (each positive example must be covered by one or
more of these rule bodies). This situation is illustrated in
Figure 2A, where the five input nodes are connected to 16
hidden nodes - one for each of the 16 rules that define the
concept - and these are then connected to a single output node.
Analogously, the deep parity rule set of Figure 1Bmay be encoded
into a deeper network structure as shown in Figure 2B. Clearly, the

FIGURE 1 |Unstructured and structured rule sets for the parity concept. (A) A flat unstructured rule set for the parity concept. (B) A deep unstructured rule base for
parity using three auxiliary predicates.

1We use a Prolog-like notation for rules, where the consequent (the head of the
rule) is written on the left and the antecedent (the body) is written on the right. For
example, the first rule reads as: If x1, x2, x3 and x4 are all true and x5 is false then
parity holds

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893982

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

deep network is more compact and considerably sparser in the
number of edges. Of course, we need to take into consideration
that the optimal structure is not known beforehand and
presumably needs to emerge from a fixed network structure
that offers the possibility for some redundancy, but nevertheless
we expect that such structured representations offer similar
advantages as deep neural networks offer over single-layer
networks.

It is important to note that deep structures do not increase
the expressiveness of the learned concepts. Any formula in
propositional logic (and we limit ourselves to propositional
logic in this project) can be converted to a DNF formula. In
the worst case (a so-called full DNF), each of the input
variables appears exactly once in all of the inputs, which
essentially corresponds to enumerating all the positive
examples. Thus, the size of the number of conjuncts in a
DNF encoding of the inputs may grow exponentially with the
number of input features. This is in many ways analogous to
the universal approximation theorem (Hornik, 1991), which
essentially states that any continuous function can be
approximated arbitrarily closely with a shallow neural
network with a single hidden layer, provided that the size
of this layer is not bounded. So, in principle, deep neural
networks are not necessary, and indeed, much of the neural
network research in the 90s has concentrated on learning
such two-layer networks. Nevertheless, we have now seen
that deep neural networks are easier to train and often yield
better performance, presumably because they require
exponentially less parameters than shallow networks
(Mhaskar et al., 2017). In the same way, we expect that
deep logical structures will yield more efficient
representations of the captured knowledge and might be
easier to learn than flat DNF rule sets.

2.2 State-Of-The-Art in Deep Rule Learning
As mentioned above, the problem of deep rule learning has only
rarely been explicitly addressed in the literature. Modern rule
learning algorithms rely on ensemble-based sequential loss
minimization. Friedman and Popescu (2008), e.g., learn a
sparse linear model from features that have been obtained
from the rules corresponding to the leaves of a decision tree
ensemble such as a random forest (Breiman, 2001). Algorithms
like ENDER (Dembczyński et al., 2010) or BOOMER (Rapp et al.,
2020) integrate the rule induction into the boosting procedure by
aiming at the minimization of an overall regularized loss function
during the learning of individual rules. The learning algorithm for
finding interpretable decision sets (Lakkaraju et al., 2016)
explicitly includes several biases for interpretability into the
objective function and proposes smooth stochastic search, a
method for efficiently finding an approximative solution.
Angelino et al. (2017) demonstrate an algorithm that is able to
find exact loss minimizing rules.

All these algorithms are single-concept learners, i.e., they learn
rules for a single target concept. However, as has been argued by
Fürnkranz et al. (2020), works in several related areas are quite
relevant to the problem. In the following, we briefly review
approaches that are able to convert deep models into rules
(Rule Extraction From Deep Models), to autonomously
discover hidden, auxiliary concepts (Learning Intermediate
Concepts), or to learn multiple dependent target concepts
(Learning Multiple Dependent Concepts), and even review a
few algorithms that learn logical networks (Discrete Deep
Networks).

2.2.1 Rule Extraction From Deep Models
The strength of many recent learning algorithms, most notably
deep learning (Lecun et al., 2015; Schmidhuber, 2015), but also

FIGURE 2 | Network representations of the parity rule sets of Figure 1. Red connections are logical ANDs, green edges correspond to logical ORs. (A) Shallow
representation. (B) Deep representation.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893983

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

kernel-based methods (Cristianini and Shawe-Taylor, 2000) is
that the input variables are combined to form latent concepts
during the learning process. Understanding the meaning of these
hidden variables is crucial for transparent and justifiable
decisions. Consequently, some research has been devoted to
trying to convert arcane models such as neural networks
(Andrews et al., 1995; Craven and Shavlik, 1997; Schmitz
et al., 1999) or support-vector machines (Barakat and Bradley,
2010; Guerreiro and Trigueiros, 2010) to more interpretable rule-
based or tree-based models. Nevertheless, these models typically
treat the input models as black-boxes, and do not try to uncover
the structure in the hidden layers. One exception is, e.g., DEEPRED
(Zilke et al., 2016 ; González et al., 2017), which tries to learn a
decision tree model for each node in a neural network, but
eventually compiles them into a single flat rule set. In a
particularly interesting recent work, Polato and Aiolli (2019)
defined kernels based on propositional logic, which allowed
them to demonstrate several examples of the hardness of
explicitly formulating some of the learned concepts (such as
“three cards of a kind” in poker) in pure Boolean logic.

Instead of making the entire model interpretable, methods like
LIME (Ribeiro et al., 2016) are able to provide local explanations for
inscrutable models, allowing to trade off fidelity to the original
model with interpretability and complexity of the local model.
For example, LORE (Guidotti et al., 2018) explicitly targets rule-
based explanations of black-box models. An interesting aspect of
rule-based theories is that they can be considered as hybrids
between local and global explanations (Fürnkranz, 2005): A rule
set may be viewed as a global model, whereas the individual rule
that fires for a particular example may be viewed as a local
explanation. A recent method, GLOCALX (Setzu et al., 2021),
conversely, aims to combine local explanations into a global
rule model. However, again, these approaches are not able to
capture the subconcepts detected by the black-box classifiers.

2.2.2 Learning Intermediate Concepts
For learning structured rule sets, a key challenge is how to define
and train the intermediate, hidden concepts hiwhich may be used
for improving the final prediction. Note that in a conventional,
flat structure as in Figure 2A, all hi always had a fairly clear
semantic in that they capture some aspect of the target variable y.
The rule that predicts hi essentially defines a local pattern for y
(Fürnkranz, 2005).

However, when learning deeper structures, other hidden
concepts need to be defined which do not directly correspond
to the target variable, as can be seen from the structured parity
concept of Figure 1B. This line of work has been known as
constructive induction (Matheus, 1989) or predicate invention
(Stahl, 1996), but surprisingly, it has not received much attention
since the classical works in inductive logic programming in the
1980s and 1990s. One approach is to use a wrapper to scan for
regularly co-occurring patterns in rules, and use them to define
new intermediate concepts which allow to compress the original
theory (Pfahringer, 1994; Wnek and Michalski, 1994).
Alternatively, one can directly invoke so-called predicate
invention operators during the learning process, as, e.g., in
Duce (Muggleton, 1987), which operates in propositional logic,

and its successor systems in first-order logic (Muggleton and
Buntine, 1988; Kijsirikul et al., 1992; Kok and Domingos, 2007).
Similar to Duce, systems like MOBAL (Morik et al., 1993) not
only try to learn theories from data, but also provide
functionalities for reformulating and restructuring the
knowledge base (Sommer, 1996). More recently, Muggleton
et al. (2015) introduce a technique that employs user-provided
meta rules for proposing new predicates, which allow it to invent
useful predicates from only very training examples. Kramer
(2020) provides an excellent recent summary of work in this area.

2.2.3 Learning Multiple Dependent Concepts
Much of the work in machine learning is devoted to single
prediction tasks, i.e., to tasks where an input vector is mapped
to a single output value. When aiming to learn a deep rule base,
however, one has to tackle the problem of learning a network of
multiple, possibly mutually dependent concepts. A pioneering
work in this area is Malerba et al. (1997), which gives a broad
discussion of the problem of learning multiple dependent
concepts in the form of a dependency graph. Back then, the
problem has primarily been studied in inductive logic
programming and relational learning (see, e.g., De Raedt et al.,
1993), but it has recently reappeared in multilabel classification
(Tsoumakas and Katakis, 2007; Tsoumakas et al., 2010; Zhang
and Zhou, 2014) and, more generally, in multi-target prediction
(Waegeman et al., 2019).

In fact, most of the research in multi-label classification aims
for the development of methods that are capable of modeling
label dependencies (Dembczyński et al., 2012). One of the best-
known approaches are so-called classifier chains (CC) (Read
et al., 2011, 2021), which learn the labels in some (arbitrary)
order where the predictions for previous labels are included as
features for subsequent models. Several extensions of this
framework have been studied, such as Burkhardt and Kramer
(2015), who propose to cluster labels into sequential blocks of sets
of labels. A general framework proposed by Read and Hollmén
(2014, 2015) formulates multi-label classification problems as
deep networks where label nodes are a special type of hidden
nodes which can appear in multiple layers of the networks.

However, while these algorithms all aim at learning multiple
interconnected models, they are not capable of explicitly defining
intermediate, auxiliary concepts. Some works that aim at finding
so-called label embeddings (e.g., Nam et al., 2016) may be viewed
in this context, but they do not learn rule-based descriptions.
Rules are particularly interesting for solving this kind of problems
because they allow to explicitly formalize and model
dependencies between labels and between data and labels in
an explicit and seamless way (Hüllermeier et al., 2020). Rapp
et al. (2020) propose an efficient boosting-based rule learner for
multi-label classification.

2.2.4 Discrete Deep Networks
Finally, in the wake of the success of deep neural networks, a few
approaches have been developed that explicitly aim at learning
networks with a logical structure. Sum-product networks (SPNs;
Poon and Domingos, 2011) have an analogous structure to our
AND/OR networks, but aim at modeling probability distributions

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893984

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

instead of logical expressions. Of particular interest to our study is the
work of Delalleau and Bengio (2011), who compare deep and shallow
SPNs, and find that deep structures can result in more compact
representations, which is in line with the motivation of our work.

Somewhat closer to logic are frameworks such as TensorLog
(Cohen et al., 2020) that aim at making probabilistic logical
reasoning differentiable and therefore amenable to
implementation and optimization in a deep learning
environment. For example, the approach of Evans and
Grefenstette (2018) is able to learn logical theories from data
in a matter that is considerably more robust than traditional
techniques from inductive logic programming. However, it only
learns to weight rules that can be generated from a set of
predefined templates. In particular, no auxiliary, hidden
predicates can emerge from the learner. Fuzzy pattern trees
(Senge and Hüllermeier, 2011) may be viewed in this way in
that they build up a hierarchical structure of generalized logical
functions, so that their internal nodes may be viewed as
intermediate fuzzy logical concepts.

Most relevant to our work are binary networks (Courbariaux
et al., 2015; Qin et al., 2020), which restrict the weights to values
{−1, 1}. However, their semantics does typically not correspond to
conventional logic rules, in that they enforce every feature to
contribute to the function to be learned, either in its positive or
negated form. Ternary networks (Li et al., 2016; Zhu et al., 2017),
with weights {−1, 0, 1}, where 0 corresponds to ignoring the
corresponding feature in the rule, could provide a solution to this,
and are, indeed, quite similar in spirit to the networks we train in
the remainder of this paper. Typically, they train a full deep
neural network, and subsequently quantize the resulting weights
to the desired two or three values, in order to allow a more
compact representation and faster inference. Nevertheless, we
have not made use of them in our work, because we wanted to
focus on a simple optimization algorithm that is invariant for
deep and shallow structures. For essentially the same reason, we
have also not used state-of-the-art flat rule learning algorithms, so
that observed differences in performance can be clearly attributed
to differences in the network structure, and not in the
optimization algorithms.

3 DEEP RULE NETWORKS

For our studies of deep and shallow rule learning, we define rule-
based theories in a networked structure, which we describe in the
following. We build upon the shallow two-level networks which
we have previously used for experimenting with mini-batch rule
learning (Beck and Fürnkranz, 2020), but generalize them from a
shallow DNF-structure to deeper networks.

3.1 Network Structure
A conventional rule set consisting of multiple conjunctive rules
that define a single target concept, corresponds to a logical
expression in disjunctive normal form (DNF). An equivalent
network consists of three layers, the input layer, one hidden layer
(� AND layer) and the output layer (� OR layer), as, e.g.,
illustrated in Figure 2A. The input layer receives one-hot-

encoded nominal attribute-value pairs as binary features (�
literals), the hidden layer conjuncts these literals to rules and
the output layer disjuncts the rules to a rule set. The network is
designed for binary classification problems and produces a single
prediction output that is true if and only if an input sample is
covered by any of the rules in the rule set.

For generalizing this structure to deeper networks, we need to
define multiple layers. While the input layer and the output layer
remain the same, the number and the size of the hidden layers can
be chosen arbitrarily. In the more general case, the hidden layers
are treated alternately as conjunctive and disjunctive layers. We
focus on networks with an odd number of hidden layers, starting
with a conjunctive hidden layer and ending with a disjunctive
output layer. In this way, the output will be easier to compare with
rule sets in DNF. Furthermore, the closer we are to the output
layer, the more extensive are the rules and rule sets, and the
smaller is the chance to form new combinations from them that
are neither tautological nor contradictory. As a consequence, the
number of nodes per hidden layer should be lower the closer it is
to the output layer. This makes the network shaped like a funnel.

3.2 Network Weights and Initialization
In the following, we assume the network to have n + 2 layers, with
each layer i containing si nodes. Layer 0 corresponds to the input
layer with s0 � |x| and layer n + 1 to the output layer with sn+1 � 1.
Furthermore, a weightw(i)

jk is identified by the layer i it belongs to,
the node j from which it receives the output, and the node k in the
successive layer i + 1 to which it passes the activation. Thus, the
weights of each layer can be represented by an si × si−1-
dimensional matrix W(i) � [w(i)

jk]. In total, there are ∑n
i�0sisi+1

Boolean weights which have to be learned, i.e., have to be set to
true (resp. 1) or false (resp. 0). If weight w(i)

jk is set to true, this
means that the output of node j is used in the conjunction (if i
mod 2 � 0) or disjunction (if imod 2 � 1) that defines node k. If it
is set to false, this output is ignored by node k.

In the beginning, these weights need to be initialized. This
initialization process is influenced by two hyperparameters:
average rule length (�l) and initialization probability (p), where �l
only affects the number of weights that are set to one in the first layer.
Here we use the additional information which literals belong to the
same attribute to avoid immediate contradictions within the first
conjunction. Let |A| be the number of attributes, then each attribute
is selected with the probability�l/|A| so that on average for�l literals of
different attributes the corresponding weight will be set to true. In
the remaining layers, the weights are set to true with the probability
p. Additionally, at least one outgoing weight from each node will be
set to true to ensure connectivity. This implies that, regardless of
the choice of p, all the weights in the last layer will always be
initialized with true because there is only one output node. Note
that, as a consequence, shallowDNF-structured networks will not be
influenced by the choice of p, since they only consist of the first layer
influenced by �l and the last layer initialized with true.

3.3 Prediction
The prediction of the network can be efficiently computed using
binary matrix multiplications (0). In each layer i, the input
features A(i) are multiplied with the corresponding weights

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893985

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

W(i) and aggregated at the receiving node in layer i + 1. If the
aggregation is disjunctive, this directly corresponds to a binary
matrix multiplication. Each product of an input feature a(i) and
its corresponding weight w(i) is either true or false, and the
summation of these products is set to true for any sum larger
than zero, i.e., if any rule fires. Furthermore, according to De
Morgan’s law, a ∧ b � ¬(¬a ∨¬b) holds. This means that binary
matrix multiplication can be used also in the conjunctive case,
provided that the inputs and outputs are negated before and after
the multiplication. Because of the alternating sequence of
conjunctive and disjunctive layers, binary matrix multiplications
and negations are also always alternated when passing data through
the network, so that a binary matrix multiplication followed by a
negation can be considered as a NOR-node. Thus, the activations
A(i+1) can be computed from the activations in the previous layers as

A(i+1) ← ~A
(i)
0W(i) (1)

where ~X � J −X denotes the element-wise negation of a matrix X
(J denotes a matrix of all ones). Hence, internally, we do not
distinguish between conjunctive and disjunctive layers within the
network, but have a uniform network structure consisting only of
NOR-nodes. However, for the sake of the ease of interpretation, we
chose to represent the networks as alternating AND and OR layers.

In the first layer, we have the choice whether to start with a
disjunctive layer or a conjunctive one, which can be controlled by
simply using the original input vector (A(0) � x) or its negation
(A(0) � ~x) as the first layer. Also, if the last layer is conjunctive, an
additional negation must be performed at the end of the network
so that the output has the same “polarity” as the target values. In
our experiments, we always start with a conjunctive and end with
a disjunctive layer. In this way, the rule networks can be directly
converted into conjunctive rule sets.

Figure 3 illustrates an example prediction for the parity concept
with two variables, a and b, and two rules y � a ∧ b and y � ¬a ∧¬b.
Negations are marked by ¬ and orange arrows, Boolean matrix
multiplications by @ and green arrows. In Figure 3A, the computed
negations and activations for an input x � {a, b} are stated within the
nodes. The corresponding weight matrices and the complete
prediction formula are shown in Figure 3B.

3.4 Training
Following Beck and Fürnkranz (2020), we implement a
straight-forward mini-batch based greedy optimization
scheme. While the number, the arrangement and the
aggregation types of the nodes remain unchanged, the
training process will flip the weights of the network to
optimize its outcome. Flipping a weight from 0 to 1 (or
vice versa) can be understood to be a single addition (or
removal) of a literal to the conjunction or disjunction
encoded by the following node.

Algorithm 1. Deep Rule Network Training, fit()-method

FIGURE 3 | Example network and binary matrix multiplications for the parity concept with two variables, y � (a ∧ b) ∨ (¬a ∧¬b). Orange connections are logical
negations (¬), green edges correspond to binary matrix multiplications (@). (A) Activations processed through the network. (B) matrix multiplication.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893986

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Algorithm 2. Deep Rule Network Training, optimize_coefs()-
method

A detailed pseudo-code of the training process is shown in
Algorithms 1 and 2. Given a deep rule network classifier drnc,
training samples x, their correct targets y and an appropriate batch
size for the training set,Algorithm1 shows a naïve greedy approach to
fit the network to the training data. After the initialization, the base
accuracy on the complete training set and the initial weights are stored
and subsequently updated every time when the predicted accuracy on
the training set exceeds the previous maximum after processing a
mini-batch of training examples.However, the predictive performance
does not necessarily increase monotonically, since the accuracy is
optimized not on the whole training set, but on a mini-batch. For all
layers and nodes, possible flips are tried and evaluated, and the flip
with the biggest improvement of the accuracy on the current mini-
batch is selected. These greedy adjustments are repeated until either no
flip improves the accuracy on the mini-batch or a maximum number
of flips is reached, which ensures that the network does not overfit the
mini-batch data.

When all mini-batches are processed, the procedure is
repeated for a fixed number of epochs. Only the composition
of the mini-batches is changed in each epoch by shuffling the
training data before proceeding. After all epochs, the weights of
the networks are reset to the optimum found so far, and a final
optimization on the complete training set is conducted to
eliminate any overfitting on mini-batches. The returned
network can then be used to predict outcomes of any further
test instances.

4 EXPERIMENTS

In this section we present the results of differently structured rule
networks on both artificial and real-world UCI datasets, with the
goal of investigating the effect of differences in the depth of the
networks. We first describe the artificial datasets (Artificial
Datasets), then some preliminary experiments that helped us

FIGURE 4 | Example networks of Eq. 2, 3. For a better overview, the input nodes not influencing the final concept are removed. Red connections are logical ANDs,
green edges correspond to logical ORs. (A) Shallow example. (B) Deep example.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893987

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

to focus on suitable network structures and hyperparameters
(Hyperparameter Tuning), and finally discuss the main results on
the artificial and real datasets. The code and the datasets are
available in a public repository2.

4.1 Artificial Datasets
Asmany standard UCI databases can be solved with very simple rules
(Holte, 1993), we generated artificial datasets with a deep structure that
we know can be represented by our network. An artificial dataset
suitable for our greedy optimization algorithm should not only include
intermediate concepts which are meaningful but also a strictly
monotonically decreasing entropy between these concepts, so that
they can be learned in a stepwise fashion in successive layers. One way
to generate artificial datasets that satisfy these requirements is to take
the output of a randomly generated deep rule network. Subsequently,
this training information can be used to see whether the function
encoded in the original network can be recovered. Note that such a
recovery is also possible for networks with different layer structures. In
particular, each of the logical functions encoded in such a deep
network can, of course, also be encoded as a DNF expression, so
that shallow networks are not in an a priori disadvantage (provided
that their hidden layer is large enough, whichwe ensure in preliminary
experiments reported in Hyperparameter Tuning).

We use a dataset of ten Boolean inputs named a to j and
generate all possible 210 combinations as training or test samples.
These samples are extended by the ten negations ¬a to ¬j via one-
hot-encoding and finally passed to a funnel-shaped deep rule
network with n � 5 and s � [32, 16, 8, 4, 2]. The weights of the
network are set by randomly initializing the network and then
training it on two randomly selected examples, one assigned to
the positive and one to the negative class, to ensure both a positive
and negative output is possible. If the resulting ratio of positively
predicted samples is still less than 20% or more than 80%, the
network is reinitialized with a new random seed to avoid
extremely imbalanced datasets.

An example concept for a generated dataset is shown in
Figure 4. Thinking of a rule network, circles represent nodes
and are connected by an arrow if and only if the corresponding
weight is true. Note that many nodes and weights are irrelevant,
and are not shown, e.g., neither a nor ¬a have an influence on the
generated output. The flat representation shown in Figure 4A
corresponds to the following DNF expression3:

(b∧¬d∧i)∨(b∧h∧i)∨(b∧d∧f∧h)∨(¬b∧c∧i)∨(¬b∧i∧j)∨

(c∧h)∨(c∧¬d)∨(¬d∧j)∨(h∧j) (2)

It can be clearly seen that the rules in this simplified formula
share some common features, indicating intermediate concepts in
subsequent layers which are combined in the end. A more
compact representation of the same concept using a
hierarchical structure is:

(((b∧i)∨c∨j)∧((¬b∧i)∨¬d∨h))∨(b∧d∧f∧h) (3)

The second representation only needs 11 aggregations (6
AND, 5 OR) in comparison to 23 aggregations (15 AND, 8
OR) in the first one. This is also reflected in the number of weights
set to true, i.e. the number of arrows in Figure 4 (33 in
Figure 4A vs. 26 in Figure 4B). In contrast, when training the
deep rule network, we must learn at least 180 + 27 + 6 + 2 � 215
binary weights correctly, while for the shallow one already 180 +
9 � 189 would be sufficient. Note that we included here the eleven
nodes in the input layer which are absent in the formulas, but
whose weights nevertheless have to be learned by both networks.
Looking at the figures, it is also noticeable that even though both
networks have sparse weight matrices, the ones of the hierarchical
network are evenmore sparse whichmakes it almost shaped like a
tree. In the following experiments, we evaluate which of these two
representations is easier to learn approximately.

4.2 Hyperparameter Tuning
Before the main experiments, we conducted a few preliminary
experiments on three of the artificial datasets to set suitable default
values for the hyperparameters of the networks. One of these
hyperparameters also known from neural networks is the number
of epochs (n_epochs). By definition (Algorithm 1), the accuracy
monotonically increases with a higher number of epochs while at
the same time the training time rises as well. After five epochs, the
performance no longer rises remarkably, so this value seems as a
good trade-off between performance and training time.

The second hyperparameter batch_size affects these two
measures as well. After tests using the number of instances as
batch_size and others skipping the final optimization in
Algorithm 1 on the full batch, we notice that using a
combination of mini-batches and full batches performs better
than either of the two individual batch variants. For the artificial
datasets, a batch_size of 50 is suitable. Finally, the limitation of
iterations per mini-batch by max_flips also influences both the
accuracy and training time. However, in case of noise-free
artificial data, we can leave max_flips unbounded to achieve
the optimal performance.

The experiments also showed no clear advantages or
disadvantages between a conjunctive or disjunctive first layer,
so in the following experiments we focus on networks starting
with a conjunctive layer which offer the biggest similarity and best
comparability to models learned from classic rule learners.
Furthermore, we dispense with a separate optimization of the
last layer like in (Beck and Fürnkranz, 2020), as this did not result
in any improvement in performance.

TABLE 1 | Hyperparameters for deep and shallow networks.

Deep shallow

5: (72, 36, 12, 6, 2), (32, 16, 8, 4, 2)
n, si 4: (36, 12, 6, 2), (16, 8, 4, 2) 1: 10, 20, 50, 100, 200, 500

3: (12, 6, 2), (8, 4, 2)

l 1, 2, 3 1, 2, 3, 4, 5, 6, 7

P 0.025, 0.075, 0.125 -

2https://github.com/f-beck/scikit-learn-rule-network
3We used the python library SYMPY (https://www.sympy.org/en/index.html) to
compute the corresponding DNF representation

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893988

Beck and Fürnkranz Deep and Shallow Rule Learning

%20https://github.com/f-beck/scikit-learn-rule-network
https://www.sympy.org/en/index.html
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

For the remaining hyperparameters, we tried to find
appropriate settings by performing a grid search on 20
artificial datasets. The hyperparameters to be optimized
are the average rule length �l, the initialization probability
p, the number n and the sizes si of hidden layers. The other
hyperparameters are set to the default values stated above,
except that only a single epoch is used in order to speed up the

grid search. This will have a negative effect on the
performance in general, but should not significantly
change the ranking of the different networks.

Table 1 shows the hyperparameters that we compared in a
grid search. For the deep networks, we set n to values from 3 to 5.
On the one hand, this guarantees that they contain at least two
conjunctive and two disjunctive layers to map a wide variety of

FIGURE 5 | Grid search on the hyperparameters average rule length �l, initialization probability p, number n and sizes si of hidden layers. The first three plots show
accuracies for deep rule networks with different combinations of (A) p and�l, (B) n|si and�l and (C) n|si and p. The last two show accuracies for shallow rule networks with
different (D) �l and (E) s1.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 6893989

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

hierarchical concepts effectively. On the other hand, it still
permits that the values of si can be set to values bigger than 10
while maintaining a reasonable training time with the naïve
greedy algorithm. We create two different networks for each of
the three values of n and set the values si so that si ≥ 2si+1,
resulting in a smaller network and a bigger one containing 1.5
to 3.5 times as many weights that can be adapted. For shallow
networks, n is by definition set to 1. To ensure that these
networks have approximately the same expressive power as the
corresponding deep networks, we set s1 so that the total
number of weights in both network types is roughly the
same. Additionally, we try a very high number of s1 � 500
rules to estimate if a very big single layer can improve the
accuracy remarkably. For the average initialized rule length �l
we will use the integer values from one to three for deep
networks and from one to seven for shallow ones. We assume
that in shallow networks a higher value of �l is required, while in
deep networks the intermediate concepts can be combined in
successive layers. The numerical deficit of deep network test
cases caused by �l is compensated by the additional
hyperparameter p, where we use three values between
O.O25 and O.125. Therefore, in total, the accuracy of the
deep network will be mapped to three dimensions n|si, �l and p
and the accuracy of the shallow network to only two
dimensions s1 and �l.

The results of the grid search are shown in Figure 5. The
optimal hyperparameter setting for deep networks with an
accuracy of 0.9073 is s � (72, 36, 12, 6, 2), �l � 2 and p � 0.025.
However, we notice in Figure 5A that the red curve of the
largest structure s � (72, 36, 12, 6, 2) not only contains
the maximum, but also the minimum accuracy with �l � 1
and p � 0.125. While in general the combination of a lower
�l and a higher p decreases the accuracy, this effect seems to be
stronger the bigger the network structure is. Despite the
higher sensitivity, the larger layer structures provide better
maximum accuracies than the smaller ones, as can be seen in
the upper left corner of the graph. When comparing the
graphs for different values of �l in Figure 5B, it is
noticeable that, with only few exceptions, the red curve for
�l � 1 lies below the other two curves. The same can be
observed in Figure 5C, here for the green curve for p �
0.125. Combinations of other values of �l and p provide
good accuracies regardless of the layer structure.

For shallow networks, we can see a high correlation between s1
and �l in Figure 5D. The graphs (except of the red one) resemble a
downward-opening parabola, so that the accuracy becomes lower
and lower the greater the deviation from this optimal value.
Thereby applies that the smaller the layer size, the larger is the
optimal value of �l, e.g., 5 for 20 and 2 for 200. Finally, Figure 5E
shows that, contrary to the deep networks, the sensitivity to �l
decreases with the size of the shallow network. The optimal
accuracy of 0.8984 is reached when the shallow network
hyperparameters are set to s1 � 20 and �l � 5.

Based on the above results, we will only use three network
versions for the main experiments reported in the following
sections. As a candidate for shallow networks, we take the
best combination of s1 � 20 and �l � 5. For the deep networks,

however, we will choose the second-best network s � (32, 16,
8, 4, 2) combined with �l � 2 and an averaged p � 0.05, since it
is almost ten times faster than the best deep network while
still reaching an accuracy over 0.895. The third network is
chosen as an intermediate stage between the first two: s � (32,
8, 2) combined with �l � 3 and p � 0.05. While still being a deep
network, the learned rules can be passed to the output layer a
little faster. In the following, we will refer to these (deep) rule
network classifiers based on their number of layers, i.e.
DRNC(5) for s � (32, 16, 8, 4, 2), DRNC(3) for s � (32, 8,
2) and RNC for s1 � 20. For computational reasons, all of the
reported results were estimated with a 2-fold cross
validation. While this may not yield the most reliable
estimate on each individual dataset, we nevertheless get a
coherent picture over all 20 datasets, as we will see in the
following.

4.3 Results on Artificial Datasets
In the main experiments, we use a combination of 15 artificial
datasets with seeds we already used in a prior hyperparameter
grid search and five artificial datasets with new seeds to detect
potential overfitting on the first datasets. All datasets are tested
using five epochs, a batch size of 50 and an unlimited number of
flips per batch. We also ensured for all of the generated datasets
that the DNF concept does not contain more than 20 rules, so that
it can theoretically also be learned by the tested shallow network
with s1 � 20 (and therefore also for the two deep networks, since
their first layer is already bigger).

Figure 6 shows the development of the accuracies on the
training set averaged on all 20 datasets over the number of
processed mini-batches, whereby after every ten mini-batches
a new epoch starts. The base accuracy before processing the first
mini-batch and after the full batch optimization are omitted. We
can see that the deep networks not only deliver higher accuracies
but they also converge slightly faster than the shallow one. The
orange curve of DRNC(3) runs a little higher than the blue one of
DRNC(5), whereas the green curve of RNC has some distance to
them, especially during the first two epochs.

Table 2 shows the accuracies of the three networks. For each
dataset, the best accuracy of the three network classifiers is
highlighted in bold, the best accuracy including RIPPER and
CART in italic. When comparing the rule network approaches,
we can see a clear advantage for the two deep networks both when
considering the average accuracy and the amount of highest
accuracies. The results clearly show that the best performing
deep networks outperform the best performing shallow network
in all but four of the 20 generated datasets. Both the average rank
and the average accuracy of the deep networks is considerably
better than the corresponding values for RNC. This also holds for
pairwise comparisons of the columns (DRNC(5) vs RNC 15:5,
DRNC(3) vs RNC 15:5).

The Friedman test for the ranks yields a significance of more
than 95%. A subsequent Nemenyi Test delivers a critical distance
of 0.741 (95%) or 0.649 (90%), which shows that DRNC(3) and
RNC are significantly different on a level of more than and
DRNC(5) and RNC on a level of more than 90%. The
corresponding critical distance diagram (CD � 0.741) is shown

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 68939810

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

in Figure 7. We thus find it safe to conclude that deep networks
outperform shallow networks on these datasets.

In the two right-most columns of Table 2 we also show a
comparison to the state-of-the-art rule learner RIPPER (Cohen,
1995) and the decision tree learner CART (Breiman et al., 1984)

in Python implementations using default parameters.4 We see
that all network approaches are outperformed by the RIPPER and
CART classifiers with default setting. The difference between
RIPPER and DRNC(3) is approximately the same as the difference
between DRNC(3) and RNC. However, considering that we only
use a naïve greedy algorithm, it could not be expected (and was
also not our objective) to be able to beat state-of-the-art rule
learner. In particular, the runtime is far from state-of-the-art,
since already for the shallow network 30 seconds are needed per
dataset and up to 3 minutes for the deep networks (in comparison
to less than a second for RIPPER and CART). Furthermore, the
results also confirm that shallow rule learners (of which both
RIPPER and CART are representatives) had no disadvantage by the
way we generated the datasets.

4.4 Results on UCI Datasets
For an estimation how the rule networks perform on real-world
datasets, we select nine classification datasets (car-evaluation,
connect-4, kr-vs-kp, monk one to three, mushroom, tic-tac-toe
and vote) from the UCI Repository (Dua and Graff, 2017). They
differ in the number of attributes and instances, but have in
common that they consist only of nominal attributes. Car-
evaluation and connect-4 are actually multi-class datasets and
are therefore converted into the binary classification problem
whether a sample belongs to the most frequent class or not. Of
all binary classification problems, the networks to be tested treat

FIGURE 6 | Average accuracy of rule network with 1/3/5 layers on training dataset.

TABLE 2 | Accuracies on artificial datasets. Rule network with 1/3/5 layers vs
RIPPER vs CART. The best accuracy of the rule networks is marked in bold, the
overall best accuracy per dataset is marked in italic.

seed % (+) DRNC(5) DRNC(3) RNC RIPPER CART

5 0.4453 0.958 0.9863 0.9531 0.9805 0.9844
16 0.7959 0.9639 0.9707 0.9629 0.9766 0.9551
19 0.6562 1 0.9902 0.9746 1 1
24 0.584 0.9053 0.9043 0.916 0.9463 0.9404
36 0.6943 0.8828 0.9209 0.9043 0.8867 0.9111
44 0.7939 0.9629 0.9551 0.9326 0.9482 0.9697
53 0.6055 0.9805 0.9805 0.9775 0.9746 0.9824
57 0.7705 0.9824 0.9736 0.9639 0.9951 0.9902
60 0.7715 0.9443 0.9453 0.9209 0.958 0.9883
65 0.5312 0.9854 0.9688 0.9414 0.9961 0.9922
68 0.5654 0.9248 0.9443 0.9619 0.9688 0.9355
69 0.6924 0.9551 0.9658 0.9199 0.9795 0.9717
70 0.6338 0.9014 0.9062 0.9229 0.9111 0.8984
81 0.5684 0.9004 0.9131 0.8857 0.9248 0.9756
82 0.7188 0.9941 0.998 0.9717 1 1
85 0.5312 1 0.998 0.9736 1 1
89 0.6084 0.8926 0.9434 0.9629 0.9502 0.9395
107 0.6172 0.8965 0.873 0.8643 0.9043 0.9277
112 0.7549 0.9346 0.9248 0.9189 0.9082 0.9561
118 0.5957 0.9688 0.9414 0.9434 0.9736 0.9688

Ø Accuracy 0.9467 0.9502 0.9386 0.9591 0.9644
Ø Rank 1.775 1.725 2.5 – –

4We used the implementations available from https://pypi.org/project/
wittgenstein/and https://scikit-learn.org/stable/modules/generated/sklearn.tree.
DecisionTreeClassifier.html.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 68939811

Beck and Fürnkranz Deep and Shallow Rule Learning

https://pypi.org/project/wittgenstein/
https://pypi.org/project/wittgenstein/
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

again the more common class as the positive class and the less
common as the negative class, except for the monk datasets
whereby the positive class is set to 1. As with the artificial
datasets, we additionally compare the performance of the
networks to RIPPER and CART, and again all accuracies are
obtained via 2-fold cross validation. In case a random
initialization did not yield any result (i.e., the resulting
network classified all examples into a single class), we re-
initialized with a different seed (this happened once for both
deep network versions).

The results are shown in Table 3. We can again observe that
both deep networks outperform the shallow network RNC. Of all
rule networks, DRNC(5) provides the highest accuracy on the
connect-4,monk-1,monk-3,mushroom and vote datasets, whereas
DRNC(3) performs best on car-evaluation and monk-2 and
RNC on kr-vs-kp and tic-tac-toe. The comparison to RIPPER

and CART is again clearly in favor of these state-of-the-art
algorithms. We will analyze some of the rule networks in the
following subsection.

4.5 Interpretation of Learned Models
While the results in the previous two subsections indicate that
deep rule networks perform better than shallow ones on both
artificial and UCI datasets, we now try to find the reason for this
by analyzing the learned models of all three rule network
candidates. We investigate into the models for the artificial
dataset generated by seed 44 and the first and third monk

dataset since for those datasets the deep rule networks did not
only outperform their shallow counterpart but also RIPPER.

For the artificial dataset, we convert the ground truth and the
learned networks into equivalent DNF formulas, i.e., flat rules,
which allows us to more easily compared the learned concepts
with the ground truth. Table 4 shows the results, where each line
corresponds to one rule, with similar rules being grouped
together. We notice that all three learned models are smaller
than the original one (8–10 rules instead of 16), which is mainly
due to the rules in the last five rows, that are combined to a
simpler and only marginally worse rule f ∧¬i→ true by all rule
networks. For DRNC(3) and RNC, this is also the case for some
other rules, with RNC having the biggest generalization with the
simple rule ¬g→ true. In contrast, DRNC(5) learns more specific
rules, and five out of ten are also part of the DNF of the ground
truth (highlighted in bold in Table 4).

We further investigate into the models learned by the rule
networks in terms of interpretability. The shallow network
consists of some redundant rules that, however, can easily be
converted to the DNF presented in Table 4. When looking at the
full model of the two deep networks, it is hard to see which
concepts of the first layer contribute to the final prediction
because of hidden branches and redundancies. After manually
simplifying the model of DRNC(3), we notice that the two last
layers are not used anymore and we therefore obtain a model
similar to the one of the shallow network. While the deep
structure seems to promote the finding of a suitable model by
offering multiple paths to generate a correct prediction, the
resulting model is nevertheless limited to one of these paths
and effectively delivers a shallow model that is, however, hard to
detect and less interpretable.

TABLE 4 |DNFmodels of deep and shallow rule networks for artificial dataset with
seed 44. Each row shows a rule (body), which are disjuncted for the final
model. Rules that are also contained in the ground truth are marked in bold.

Ground Truth DRNC(5) DRNC(3) RNC

– – – ¬a ∧¬b ∧¬e ∧¬i ∧¬j
¬b ∧ c ∧¬i – – –

a ∧¬e ∧¬g a ∧¬e ∧¬g – ¬g
¬b ∧¬g ∧ i ¬b ∧¬g ¬b ∧¬g –

¬b ∧¬d ∧¬g – – –

f ∧¬g f ∧¬g f ∧¬g –

¬g ∧¬h ∧¬j – –

c ∧¬f ∧ g c ∧¬f ∧ g c ∧¬f c ∧¬f
c ∧¬f ∧¬j – – –

¬a ∧ c ∧ h c ∧ h ¬a ∧ c, c ∧ h
c ∧ h ∧ i c ∧ h ∧ i – –

¬c ∧¬e ∧ h ¬e ∧ h ¬e ∧ h ¬e ∧ h

¬c ∧¬g ∧¬h ¬c ∧¬g ∧¬h ¬g ∧¬h –

d ∧¬e ∧¬i ∧¬j – d ∧¬e ∧¬i ∧¬j d ∧¬e ∧¬i ∧¬j
¬a ∧ f ∧¬i f ∧¬i f ∧¬i f ∧¬i
b ∧ f ∧¬i – – –

¬d ∧ f ∧¬i – – –

f ∧¬h ∧¬i – – –

f ∧¬i ∧¬j – – –

FIGURE 7 |Critical distance diagram for the rule networks on the artificial
datasets with a significance level of 95%. Learners that are not statistically
different from one another are connected.

TABLE 3 | Accuracies on real-world datasets. Rule network with 1/3/5 layers vs
RIPPER vs CART. The best accuracy of the rule networks is marked in bold, the
overall best accuracy per dataset is marked in italic.

Dataset % (+) DRNC(5) DRNC(3) RNC RIPPER CART

car-evaluation 0.7002 0.8999 0.9022 0.8565 0.9838 0.9821
connect-4 0.6565 0.7728 0.7712 0.7597 0.7475 0.8195
kr-vs-kp 0.5222 0.9671 0.9643 0.9725 0.9837 0.989
monk-1 0.5000 1 0.9982 0.9910 0.9478 0.8939
monk-2 0.3428 0.7321 0.7421 0.7139 0.6872 0.7869
monk-3 0.5199 0.9693 0.9603 0.9567 0.9386 0.9729
mushroom 0.784 1 0.978 0.993 0.9992 1
tic-tac-toe 0.6534 0.8956 0.9196 0.9541 1 0.9217
Vote 0.6138 0.9655 0.9288 0.9264 0.9011 0.9287

Ø Rank 1.556 2 2.444 – –

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 68939812

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

For the model learned by DRNC(5), the simplified structure is
still deep. Figure 8 illustrates this by replacing the first AND-layer
with the resulting logical terms, and showing how they are further
combined in subsequent layers. In contrast to the model of
DRNC(3), even after the removal of redundant concepts and
subtrees the structure remains hard to interpret. While some of
the underlying concepts in the left-most layer are passed
unchanged through the network (e.g. node 4: c ∧¬f ∧ g),
others make actually use of the deep structure and are further
combined in subsequent layers (e.g. node 1 and 12 are merged to
f ∧¬g). Some of the aggregations are unnecessarily cumbersome:
The concept ¬e ∧ h in node 10 is first conjuncted with nodes 2
and 11, but subsequently disjuncting with nodes 2, 3 and 12
results again in the original concept ¬e ∧ h. To conclude, the
learned model is reasonable, but not nearly as compact as it could
be which requires a deeper analysis to understand the network.

A similar behavior can be recognized for the first monk
dataset. Its target concept is a1 � a2 ∨ a5 � 1, which requires
four concepts a1 � 1 ∧ a2 � 1, a1 � 2 ∧ a2 � 2, a1 � 3 ∧ a2 � 3 and
a5 � 1 to be identified by the tested rule learners. All three rule
networks are able to detect these concepts but with minor
differences. The shallow rule network RNC learns three of the
four concepts directly and uses a combination of two rules for the
remaining one. Moreover, the learned model consists of three
more rules that are not redundant, but cover additional examples
in the test set (but not in the training set). DRNC(3) learns three
of the four concepts directly as well. The remaining concept is
split into two subconcepts a1 � 1 and a2 � 1, that are combined in
the additional conjunctive layer in the deep structure. As for the
RNC model, some additional rules are left that cover a few
spurious cases and cause the small error rate during testing.
Last, the DRNC(5) model achieves a perfect accuracy by detecting
three of the four concepts directly and constructing the remaining
one like the DRNC(3) network in the second conjunctive layer.

The results are similar for the third monk dataset with the
target concept a5 � 3 ∧ a4 � 1 ∨ a5 ≠ 4 ∧ a2 ≠ 3. The inequations
have to be learned again by multiple rules, but this time the
accuracies are worse for all networks because of the noise that
had been added to the data. Both the model of RNC and the
simplified model of DRNC(3) are in DNF form, whereas the
simplified model of DRNC(5) still makes use of the deep
structure. We assume that resulting from this, the DRNC(5)
model generalizes better, since in the DRNC(3) and in particular
in the RNC model there are additional rules left which overfit
the training data. A deep structure seems to provide more and
better options to prune the model, since flips in layers close to
the output have effects on possibly multiple inputs (this would
of course have to be checked in more detail in separate
experiments). However, we also note that this accuracy gain
comes at the cost of interpretability.

So, in summary, we can observe that useful structures emerge
in the deep networks, which are, however, not easily interpretable.
We are currently working on employing methods for logic
minimization to reduce the size of a learned deep network in
order to increase their interpretability.

5 CONCLUSION

The main objective of this work was to study the question
whether deep rule networks have the potential of
outperforming shallow DNF rule sets, even though, in
principle, every concept can be represented as DNF formula.
As there is no sufficiently competitive deep rule learning
algorithm, we proposed a technique how deep and shallow
rule networks can be learned and thus effectively compared in
a uniform framework, using a network approach with a greedy,
mini-batch based optimization algorithm. For both types of
networks, we find good hyperparameter settings that allow the
networks to reach reasonable accuracies on both artificial and
real-world datasets, even though the approach is still
outperformed by state-of-the-art learning algorithms such as
RIPPER and CART.

Our experiments on both artificial and real-world benchmark
data indicate that deep rule networks outperform shallow
networks. The deep networks obtain not only a higher
accuracy, but also need less mini-batch iterations to achieve it.
Moreover, in preliminary experiments in the hyperparameter
grid search, we have seen indications that the deep networks are
generally more robust to the choice of the hyperparameters than
shallow networks. On the other hand, we also had some cases on
real-world data sets where deep networks failed because a poor
initialization resulted in indiscriminate predictions. The current
approach is also limited to binary classification problems with
nominal attributes.

Overall, we interpret these results as evidence that an
investigation of deep rule structures is a promising research
goal, which we hope could yield a similar boost in
performance in inductive rule learning as could be observed
by moving from shallow to deep neural networks. However,
this goal is still far ahead.

FIGURE 8 | Simplified model of DRNC(5) for artificial dataset with seed
44. For a better overview, the first layer is hidden and instead the resulting rules
are listed directly. Red connections are logical ANDs, green edges correspond
to logical ORs.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 68939813

Beck and Fürnkranz Deep and Shallow Rule Learning

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

6 FUTURE WORK

In this work, it was not our goal to reach a state-of-the-art
predictive performance, but instead we wanted to evaluate a
very simple greedy optimization algorithm on both shallow
and deep networks, in order to get an indication on the
potential of deep rule networks. Nevertheless, several avenues
for improving our networks have surfaced, which we intend to
explore in the near future.

One of themain drawbacks of the presented deep rule networks is
the extremely high runtime due to the primitive flipping algorithm.
A single flip needs a recalculation of all activations in the network,
even if only a few them will be affected by this flip whereby the
matrix multiplication could be minimized considerably. Conversely,
this knowledge can be used to find a small subset of flips that affects a
certain activation. On the other hand, the majority of possible flips
does not have any effect on this activation or the accuracy at all. This
effect will typically remain unchanged after a fewmore flips are done.
Therefore, an exhaustive search of all flips is only needed in the first
iteration, while afterwards just a subset of possible flips should be
considered which can be built either in a deterministic or
probabilistic way.

Due to this lack of backpropagation, the flips are evaluated by
their influence on the prediction when executed. However, when
looking at a false positive, we can only correct this error by
making the overall hypothesis of the network more specific. In
order to achieve a generalization of the hypothesis, only flips from
false to true in conjunctive layers or flips from true to false in
disjunctive layers have to be taken into account. In this way, all
flips are split into “generalization-flips” and “specialization-flips”
of which only one group has to be considered at the same time.
This improvement as well as the above-mentioned selection of a
subset of flips might also allow us to perform two or more flips at
the same time so that a better result than with the greedy
approach can be achieved.

An even more promising approach starts one step earlier
in the initialization phase of the network. Instead of
specifying the structure of the network and finding
optimal initialization parameters �l and p for it, a small
part of the data could be used to create a rough draft
version of the network. The Quine-McCluskey algorithm
(McCluskey, 1956), RIPPER and the ESPRESSO-algorithm
(Brayton et al., 1984) are suitable methods to generate
shallow networks, whereas decision trees and decision

graphs can be used to generate deep networks since the
contained rules already share some conditions and,
moreover, similar subtrees can be merged.

All these approaches share some significant advantages
over the network approach we developed so far. First of all,
the decision which class value will be treated as positive or
negative does not have to be made manually any longer.
Second, they automatically deliver a suitable initialization
of the network, which otherwise would have to be
improved by similar approaches like used in neural
networks (e.g., Ramos et al., 2017) to achieve a robust
performance. Third, the general structure of the network is
not limited to a fixed size and depth where each node is strictly
assigned to a specific layer. Instead of generating nodes that
become useless after a few flips have been processed and that
should be removed, we can thereby start with a small structure
which can be adapted purposefully by copying and mutating
good nodes and pruning bad ones. However, it remains
unclear whether these changes still lead to improvements
in performance or if the network in the given structure is
already optimal.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in this online
repository: https://github.com/f-beck/scikit-learn-rule-network.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct, and intellectual
contribution to the work and approved it for publication.

ACKNOWLEDGMENTS

Supported by Johannes Kepler Open Access Publishing Fund.We
are grateful to Eneldo Loza Mencía, Michael Rapp, Eyke
Hüllermeier, and Van Quoc Phuong Huynh for inspiring
discussions, fruitful pointers to related work, and for
suggesting the evaluation with artificial datasets. Thanks are
also due to the reviewers for their encouraging comments and
concrete suggestions for improving this paper.

REFERENCES

Andrews, R., Diederich, J., and Tickle, A. B. (1995). Survey and Critique of
Techniques for Extracting Rules from Trained Artificial Neural
Networks. Knowledge-Based Syst. 8, 373–389. doi:10.1016/0950-
7051(96)81920-4

Angelino, E., Larus-Stone, N., Alabi, D., Seltzer, M. I., and Rudin, C. (2017).
Learning Certifiably Optimal Rule Lists for Categorical Data. J. Machine Learn.
Res. 18, 234:1–234:78. https://jmlr.org/papers/v18/17-716.html.

Barakat, N., and Bradley, A. P. (2010). Rule Extraction from Support Vector
Machines: A Review. Neurocomputing 74, 178–190. doi:10.1016/
j.neucom.2010.02.016

Beck, F., and Fürnkranz, J. (2020). An Investigation into Mini-Batch Rule Learning
in Proceedings of the 2nd Workshop on Deep Continuous-Discrete Machine
Learning (DeCoDeML), Ghent, Belgium Editors K. Kersting, S. Kramer, and
Z. Ahmadi

Brayton, R. K., Hachtel, G. D., McMullen, C. T., and Sangiovanni-Vincentelli, A. L.
(1984). “Logic Minimization Algorithms for VLSI Synthesis,” in Logic
Minimization Algorithms for VLSI Synthesis, vol. 2 of The Kluwer
International Series in Engineering and Computer Science (Springer).
doi:10.1007/978-1-4613-2821-6

Breiman, L., Friedman, J. H., Olshen, R., and Stone, C. (1984). Classification and
Regression Trees. Pacific Grove, CA: Wadsworth & Brooks).

Breiman, L. (2001). Random Forests. Machine Learn. 45, 5–32. doi:10.1023/a:
1010933404324

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 68939814

Beck and Fürnkranz Deep and Shallow Rule Learning

https://github.com/f-beck/scikit-learn-rule-network
https://doi.org/10.1016/0950-7051(96)81920-4
https://doi.org/10.1016/0950-7051(96)81920-4
https://jmlr.org/papers/v18/17-716.html
https://doi.org/10.1016/j.neucom.2010.02.016
https://doi.org/10.1016/j.neucom.2010.02.016
https://doi.org/10.1007/978-1-4613-2821-6
https://doi.org/10.1023/a:1010933404324
https://doi.org/10.1023/a:1010933404324
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Burkhardt, S., and Kramer, S. (2015). “On the Spectrum between Binary Relevance
and Classifier Chains in MUlti-Label Classification,” in Proceedings of the 30th
Annual ACM Symposium on Applied Computing (SAC), Editors
R. L. Wainwright, J. M. Corchado, A. Bechini, and J. Hong (Salamanca,
Spain: ACM), 885–892. doi:10.1145/2695664.2695854

Cohen, W. W. (1995). “Fast Effective Rule Induction,” in Proceedings of the 12th
International Conference on Machine Learning (ML-95). Editors A. Prieditis
and S. Russell (Lake Tahoe, CA: Morgan Kaufmann), 115–123. doi:10.1016/
b978-1-55860-377-6.50023-2

Cohen, W., Yang, F., and Rivard Mazaitis, K. (2020). TensorLog: A Probabilistic
Database Implemented Using Deep-Learning Infrastructure. jair 67, 285–325.
doi:10.1613/jair.1.11944

Courbariaux, M., Bengio, Y., and David, J. (2015). “Binaryconnect: Training Deep
Neural Networks with BinaryWeights during Propagations,” inAdvances inNeural
Information Processing Systems 28 (NIPS). Editors C. Cortes, N. D. Lawrence,
D. D. Lee, M. Sugiyama, and R. Garnett (Montreal, Quebec: Canada), 3123–3131.

Craven, M. W., and Shavlik, J. W. (1997). Using Neural Networks for Data Mining.
Future Generation Comput. Syst. 13, 211–229. doi:10.1016/S0167-739X(97)
00022-8

Cristianini, N., and Shawe-Taylor, J (2000). An Introduction to Support Vector
Machines and Other Kernel-based Learning Methods. Cambridge University
Press. 1st Edition, 211

De Raedt, L., Lavrač, N., and Džeroski, S. (1993). “Multiple Predicate
Learning,” in Proceedings of the 13th International Joint Conference
on Artificial Intelligence (IJCAI-93), Chambéry, France. Editor R. Bajcsy
(Chambéry, France: Morgan Kaufmann), 1037–1043.

Delalleau, O., and Bengio, Y. (2011). “Shallow vs. Deep Sum-Product
Networks,” in Advances in Neural Information Processing Systems 24
(NIPS). Editors J. Shawe-Taylor, R. S. Zemel, P. L. Bartlett,
F. C. N. Pereira, and K. Q. Weinberger (Granada, Spain),
666–674.https://proceedings.neurips.cc/paper/2011.

Dembczyński, K., Kotłowski, W., and Słowiński, R. (2010). ENDER: a Statistical
Framework for Boosting Decision Rules. Data Min Knowl Disc 21, 52–90.
doi:10.1007/s10618-010-0177-7

Dembczyński, K., Waegeman, W., Cheng, W., and Hüllermeier, E. (2012). On
Label Dependence and Loss Minimization in Multi-Label Classification.
Machine Learn. 88, 5–45.

[Dataset] Dua, D., and Graff, C. (2017). UCI Machine Learning Repository. https://
archive.ics.uci.edu.

Evans, R., and Grefenstette, E. (2018). Learning Explanatory Rules from Noisy
Data. jair 61, 1–64. doi:10.1613/jair.5714

Friedman, J. H., and Popescu, B. E. (2008). Predictive Learning via Rule Ensembles.
Ann. Appl. Stat. 2, 916—–954. doi:10.1214/07-AOAS148

Fürnkranz, J. (2005). “From Local to Global Patterns: Evaluation Issues in Rule
Learning Algorithms,” in Local Pattern Detection. Editors K. Morik,
J.-F. Boulicaut, and A. Siebes (Springer-Verlag), 20–38. doi:10.1007/11504245_2

Fürnkranz, J., Gamberger, D., and Lavrač, N. (2012). Foundations of Rule Learning.
Springer-Verlag.

Fürnkranz, J., Hüllermeier, E., Loza Mencía, E., and Rapp, M. (2020).
“Learning Structured Declarative Rule Sets – a challenge for Deep
Discrete Learning,” in Proceedings of the 2nd Workshop on Deep
Continuous-Discrete Machine Learning (DeCoDeML), Ghent, Belgium.
Editors K. Kersting, S. Kramer, and Z. Ahmadi.

González, C., Loza Mencía, E., and Fürnkranz, J. (2017). “Re-training Deep Neural
Networks to Facilitate Boolean Concept Extraction,” in Proceedings of the 20th
International Conference on Discovery Science (DS-17), Kyoto, Japan
(Springer-Verlag), 127–143. vol. 10558 of Lecture Notes in Computer
Science. doi:10.1007/978-3-319-67786-6/TNQDotTNQ/1010.1007/978-3-319-
67786-6_10

Guerreiro, J., and Trigueiros, D. (2010). “A Unified Approach to the Extraction of
Rules from Artificial Neural Networks and Support Vector Machines,” in
Proceedings of the 6th International Conference on Advanced Data Mining
and Applications (ADMA), Part II, Chongqing, China. Editors L. Cao, J. Zhong,
and Y. Feng (Chongqing, China: Springer), 34–42. doi:10.1007/978-3-642-
17313-4_4

Guidotti, R., Monreale, A., Ruggieri, S., Pedreschi, D., Turini, F., and Giannotti, F.
(2018). Local Rule-Based Explanations of Black Box Decision Systems. arXiv
Preprint 1805.10820. https://arxiv.org/abs/1805.10820.

Holte, R. C. (1993). Very Simple Classification Rules Perform Well on Most
Commonly Used Datasets. Machine Learn. 11, 63–9010. doi:10.1023/a:
1022631118932

Hornik, K. (1991). Approximation Capabilities of Multilayer Feedforward
Networks. Neural Networks 4, 251–257. doi:10.1016/0893-6080(91)90009-T

Hüllermeier, E., Fürnkranz, J., Loza Mencia, E., Nguyen, V.-L., and Rapp, M.
(2020). “Rule-based Multi-Label Classification: Challenges and Opportunities,”
in Proceedings of the 4th International Joint Conference on Rules and
Reasoning (RuleML+RR). Editors V. Gutiérrez-Basulto, T. Kliegr, A. Soylu,
M. Giese, and D. Roman (Oslo, Norway: Springer), 3–19. vol. 12173 of Lecture
Notes in Computer Science. doi:10.1007/978-3-030-57977-7_1

Kijsirikul, B., Numao, M., and Shimura, M. (1992). “Discrimination-based Constructive
Induction of Logic Programs,” in Proceedings of the 10th National Conference on
Artificial Intelligence (AAAI-92), San Jose, CA, USA, 44–49.

Kok, S., and Domingos, P. M. (2007). “Statistical Predicate Invention,” in
Proceedings of the 24th International Conference on Machine Learning
(ICML-07), Corvallis, Oregon, USA. Editor Z. Ghahramani (Corvallis,
Oregon, USA: ACM), 433–440. vol. 227 of ACM International Conference
Proceeding Series. doi:10.1145/1273496.1273551

Kramer, S. (2020). “A Brief History of Learning Symbolic Higher-Level
Representations from Data (And a Curious Look Forward),” in Proceedings
of the 29th International Joint Conference on Artificial Intelligence (IJCAI),
Survey Track, Yokohama, Japan, 4868–4876. doi:10.24963/ijcai.2020/678

Lakkaraju, H., Bach, S. H., and Leskovec, J. (2016). “Interpretable Decision Sets,” in
Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD-16). Editors B. Krishnapuram, M. Shah,
A. J. Smola, C. C. Aggarwal, D. Shen, and R. Rastogi (San Francisco, CA:
ACM)), 1675–1684. doi:10.1145/2939672.2939874

Lecun, Y., Bengio, Y., and Hinton, G. (2015). Deep Learning. Nature 521, 436–444.
doi:10.1038/nature14539

Li, F., Zhang, B., and Liu, B. (2016). Ternary Weight Networks. arxiv abs/
1605.04711. https://arxiv.org/abs/1605.04711.

Malerba, D., Semeraro, G., and Esposito, F. (1997). “A Multistrategy Approach to
Learning Multiple Dependent Concepts,” in Machine Learning and Statistics:
The Interface. Editors G. Nakhaeizadeh and C. C. Taylor (London, England:
Wiley), 4, 87–106.

Matheus, C. J. (1989). “A Constructive Induction Framework,” in Proceedings of
the 6th International Workshop on Machine Learning, Ithaca, NY, USA,
474–475. doi:10.1016/b978-1-55860-036-2.50121-1

McCluskey, E. J. (1956). Minimization of Boolean Functions*. Bell Syst. Tech. J. 35,
1417–1444. doi:10.1002/j.1538-7305.1956.tb03835.x

Mhaskar, H., Liao, Q., and Poggio, T. A. (2017). “When andWhyAreDeepNetworks
Better Than Shallow Ones?,” in Proceedings of the 31st AAAI Conference on
Artificial Intelligence, San Francisco, California, USA. Editors S. P. Singh and
S. Markovitch (San Francisco, California, USA: AAAI Press), 2343–2349.

Michalski, R. S. (1969). “On the Quasi-Minimal Solution of the Covering Problem,”
in Proceedings of the 5th International Symposium on Information Processing
(FCIP-69), Yugoslavia (Yugoslavia: Bled: Switching Circuits), A3, 125–128.

Morik, K., Wrobel, S., Kietz, J.-U., and Emde, W. (1993). Knowledge Acquisition and
Machine Learning – Theory, Methods, and Applications. London: Academic Press.

Muggleton, S., and Buntine, W. (1988). “Machine Invention of First-Order
Predicates by Inverting Resolution,” in Proceedings of the 5th International
Conference on Machine Learning (ML-88), Ann Arbor, MI, USA, 339–352.
doi:10.1016/b978-0-934613-64-4.50040-2

Muggleton, S. H., Lin, D., and Tamaddoni-Nezhad, A. (2015). Meta-interpretive
Learning of Higher-Order Dyadic Datalog: Predicate Invention Revisited.Mach
Learn. 100, 49–73. doi:10.1007/s10994-014-5471-y

Muggleton, S. H. (1987). “Structuring Knowledge by Asking Questions,” in
Progress in Machine Learning. Editors I. Bratko and N. Lavrač (Wilmslow,
England: Sigma Press), 218–229.

Nam, J., Loza Mencía, E., and Fürnkranz, J. (2016). “All-in Text: Learning
Document, Label, and Word Representations Jointly,” in Proceedings of the
30th AAAI Conference on Artificial Intelligence, Phoenix, Arizona, USA.
Editors D. Schuurmans and M. P. Wellman (AAAI Press), 1948–1954.
https://aaai.org/Library/AAAI/aaai16contents.php.

Pfahringer, B. (1994). “Controlling Constructive Induction in CiPF: an MDL
Approach,” in Proceedings of the 7th European Conference on Machine
Learning (ECML-94), Catania, Sicily. Editor P. B. Brazdil (Catania, Sicily:

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 68939815

Beck and Fürnkranz Deep and Shallow Rule Learning

https://doi.org/10.1145/2695664.2695854
https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1016/b978-1-55860-377-6.50023-2
https://doi.org/10.1613/jair.1.11944
https://doi.org/10.1016/S0167-739X(97)00022-8
https://doi.org/10.1016/S0167-739X(97)00022-8
https://proceedings.neurips.cc/paper/2011
https://doi.org/10.1007/s10618-010-0177-7
https://archive.ics.uci.edu
https://archive.ics.uci.edu
https://doi.org/10.1613/jair.5714
https://doi.org/10.1214/07-AOAS148
https://doi.org/10.1007/11504245_2
https://doi.org/10.1007/978-3-319-67786-6/TNQDotTNQ/1010.1007/978-3-319-67786-6_10
https://doi.org/10.1007/978-3-319-67786-6/TNQDotTNQ/1010.1007/978-3-319-67786-6_10
https://doi.org/10.1007/978-3-642-17313-4_4
https://doi.org/10.1007/978-3-642-17313-4_4
https://arxiv.org/abs/1805.10820
https://doi.org/10.1023/a:1022631118932
https://doi.org/10.1023/a:1022631118932
https://doi.org/10.1016/0893-6080(91)90009-T
https://doi.org/10.1007/978-3-030-57977-7_1
https://doi.org/10.1145/1273496.1273551
https://doi.org/10.24963/ijcai.2020/678
https://doi.org/10.1145/2939672.2939874
https://doi.org/10.1038/nature14539
https://arxiv.org/abs/1605.04711
https://doi.org/10.1016/b978-1-55860-036-2.50121-1
https://doi.org/10.1002/j.1538-7305.1956.tb03835.x
https://doi.org/10.1016/b978-0-934613-64-4.50040-2
https://doi.org/10.1007/s10994-014-5471-y
https://aaai.org/Library/AAAI/aaai16contents.php
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

Springer-Verlag), 242–256. Lecture Notes in Artificial Intelligence. doi:10.1007/
3-540-57868-4_62

Polato, M., and Aiolli, F. (2019). Boolean Kernels for Rule Based Interpretation of
Support Vector Machines. Neurocomputing 342, 113–124. doi:10.1016/
j.neucom.2018.11.094

Poon, H., and Domingos, P. M. (2011). “Sum-product Networks: A New Deep
Architecture,” in Proceedings of the 27th Conference on Uncertainty in
Artificial Intelligence (UAI), Barcelona, Spain. Editors F. G. Cozman and
A. Pfeffer (Barcelona, Spain: AUAI Press), 337–346. doi:10.1109/
iccvw.2011.6130310

Qin, H., Gong, R., Liu, X., Bai, X., Song, J., and Sebe, N. (2020). “Binary Neural
Networks: A Survey,” in Pattern Recognitition. Elsevier, 105, 107281.
doi:10.1016/j.patcog.2020.107281

Ramos, E. Z., Nakakuni,M., and Yfantis, E. (2017). “QuantitativeMeasures to Evaluate
Neural Network Weight Initialization Strategies,” in IEEE 7th Annual Computing
and Communication Workshop and Conference, CCWC 2017, Las Vegas, NV,
USA, January 9-11, 2017 (IEEE), 1–7. doi:10.1109/CCWC.2017.7868389

Rapp, M., Loza Mencía, E., Fürnkranz, J., Nguyen, V.-L., and Hüllermeier, E.
(2020). “Learning Gradient Boosted Multi-Label Classification Rules,” in
Proceedings of the European Conference on Machine Learning and
Knowledge Discovery in Databases (ECML/PKDD), Part III. Editors
F. Hutter, K. Kersting, J. Lijffijt, and I. Valera (Springer-Verlag), 124–140.
vol. 12459 of Lecture Notes in Computer Science.

Read, J., and Hollmén, J. (2014). “A Deep Interpretation of Classifier Chains,” in
Advances in Intelligent Data Analysis 13 (IDA). Editors H. Blockeel,
M. van Leeuwen, and V. Vinciotti (Leuven, Belgium: Springer), 251–262. vol.
8819 of Lecture Notes in Computer Science. doi:10.1007/978-3-319-12571-8_22

Read, J., and Hollmén, J. (2015). Multi-label Classification Using Labels as Hidden
Nodes. Available at: https://arxiv.org/abs/1503.09022. CoRR abs/1503.09022.

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2011). Classifier Chains for
Multi-Label Classification. Mach Learn. 85, 333–359. doi:10.1007/s10994-011-
5256-5

Read, J., Pfahringer, B., Holmes, G., and Frank, E. (2021). Classifier Chains: A
Review and Perspectives. jair 70, 683–718. doi:10.1613/jair.1.12376

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “"Why Should I Trust You?",” in
Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD), San Francisco, CA, USA.
Editors B. Krishnapuram, M. Shah, A. J. Smola, C. C. Aggarwal, D. Shen, and
R. Rastogi (San Francisco, CA, USA: ACM), 1135–1144. doi:10.1145/
2939672.2939778

Schmidhuber, J. (2015). Deep Learning in Neural Networks: An Overview. Neural
Networks 61, 85–117. doi:10.1016/j.neunet.2014.09.003

Schmitz, G. P. J., Aldrich, C., and Gouws, F. S. (1999). ANN-DT: an Algorithm for
Extraction of Decision Trees from Artificial Neural Networks. IEEE Trans.
Neural Netw. 10, 1392–1401. doi:10.1109/72.809084

Senge, R., and Hüllermeier, E. (2011). Top-down Induction of Fuzzy Pattern Trees.
IEEE Trans. Fuzzy Syst. 19, 241–252. doi:10.1109/TFUZZ.2010.2093532

Setzu, M., Guidotti, R., Monreale, A., Turini, F., Pedreschi, D., and Giannotti, F.
(2021). Glocalx-From Local to Global Explanations of Black Box AI Models.
Artif. Intell. 294, 103457. doi:10.1016/j.artint.2021.103457

Sommer, E. (1996). Theory Restructuring – A Perspective on Design and
Maintenance of Knowlege Based Systems, Vol. 171 of DISKI (Infix), St.
Augustin, Germany: Infix-Verlag.

Stahl, I. (1996). “Predicate Invention in Inductive Logic Programming,” in
Advances in Inductive Logic Programming. Editor L. De Raedt (IOS Press),
34–47. vol. 32 of Frontiers in Artificial Intelligence and Applications. https://
www.iospress.com/catalog/books/advances-in-inductive-logic-programming.

Tsoumakas, G., and Katakis, I. (2007). Multi-Label Classification. Int. J. Data
Warehousing Mining 3, 1–1310. doi:10.4018/jdwm.2007070101

Tsoumakas, G., Katakis, I., and Vlahavas, I. (2010). “Mining Multi-Label Data,” in
Data Mining and Knowledge Discovery Handbook. Editors O. Maimon and
L. Rokach. 2nd edn. (Springer), 667–685. doi:10.1007/978-0-387-09823-4_34

Waegeman, W., Dembczyński, K., and Hüllermeier, E. (2019). Multi-target
Prediction: a Unifying View on Problems and Methods. Data Min Knowl
Disc 33, 293–324. doi:10.1007/s10618-018-0595-5

Wang, T., Rudin, C., Doshi-Velez, F., Liu, Y., Klampfl, E., and MacNeille, P. (2017).
A Bayesian Framework for Learning Rule Sets for Interpretable Classification.
J. Machine Learn. Res. 18, 70:1–70:37.

Wnek, J., and Michalski, R. S. (1994). Hypothesis-driven Constructive Induction in
AQ17-HCI: AMethod and Experiments.Machine Learn. 14, 139–168. Special Issue
on Evaluating and Changing Representation. doi:10.1023/a:1022622132310

Zhang, M.-L., and Zhou, Z.-H. (2014). A Review on Multi-Label Learning
Algorithms. IEEE Trans. Knowl. Data Eng. 26, 1819–1837. doi:10.1109/
tkde.2013.39

Zhu, C., Han, S., Mao, H., and Dally, W. J. (2017). “Trained Ternary
Quantization,” in Proceedings of the 5th International Conference on
Learning Representations (ICLR), Toulon, France (Toulon, France:
OpenReview.net).

Zilke, J. R., Loza Mencia, E., and Janssen, F. (2016). “DEEPRED-Rule Extraction
From Deep Neural Networks,” in Proceedings of the 19th International
Conference on Discovery Science (DS-16). Editors T. Calders, M. Ceci, and
D. Malerba (Bari, Italy: Springer International Publishing), 457–473.
doi:10.1007/978-3-319-46307-029

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2021 Beck and Fürnkranz. This is an open-access article distributed
under the terms of the Creative Commons Attribution License (CC BY). The use,
distribution or reproduction in other forums is permitted, provided the original
author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordance with accepted academic practice. No use,
distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org October 2021 | Volume 4 | Article 68939816

Beck and Fürnkranz Deep and Shallow Rule Learning

https://doi.org/10.1007/3-540-57868-4_62
https://doi.org/10.1007/3-540-57868-4_62
https://doi.org/10.1016/j.neucom.2018.11.094
https://doi.org/10.1016/j.neucom.2018.11.094
https://doi.org/10.1109/iccvw.2011.6130310
https://doi.org/10.1109/iccvw.2011.6130310
https://doi.org/10.1016/j.patcog.2020.107281
https://doi.org/10.1109/CCWC.2017.7868389
https://doi.org/10.1007/978-3-319-12571-8_22
https://arxiv.org/abs/1503.09022
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1007/s10994-011-5256-5
https://doi.org/10.1613/jair.1.12376
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1145/2939672.2939778
https://doi.org/10.1016/j.neunet.2014.09.003
https://doi.org/10.1109/72.809084
https://doi.org/10.1109/TFUZZ.2010.2093532
https://doi.org/10.1016/j.artint.2021.103457
https://www.iospress.com/catalog/books/advances-in-inductive-logic-programming
https://www.iospress.com/catalog/books/advances-in-inductive-logic-programming
https://doi.org/10.4018/jdwm.2007070101
https://doi.org/10.1007/978-0-387-09823-4_34
https://doi.org/10.1007/s10618-018-0595-5
https://doi.org/10.1023/a:1022622132310
https://doi.org/10.1109/tkde.2013.39
https://doi.org/10.1109/tkde.2013.39
https://doi.org/10.1007/978-3-319-46307-029
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	An Empirical Investigation Into Deep and Shallow Rule Learning
	1 Introduction
	2 Deep Rule Learning
	2.1 Motivation
	2.2 State-Of-The-Art in Deep Rule Learning
	2.2.1 Rule Extraction From Deep Models
	2.2.2 Learning Intermediate Concepts
	2.2.3 Learning Multiple Dependent Concepts
	2.2.4 Discrete Deep Networks

	3 Deep Rule Networks
	3.1 Network Structure
	3.2 Network Weights and Initialization
	3.3 Prediction
	3.4 Training

	4 Experiments
	4.1 Artificial Datasets
	4.2 Hyperparameter Tuning
	4.3 Results on Artificial Datasets
	4.4 Results on UCI Datasets
	4.5 Interpretation of Learned Models

	5 Conclusion
	6 Future Work
	Data Availability Statement
	Author Contributions
	Acknowledgments
	References

