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In the recent years, data science methods have been developed considerably and have
consequently found their way into many business processes in banking and finance. One
example is the review and approval process of credit applications where they are
employed with the aim to reduce rare but costly credit defaults in portfolios of loans.
But there are challenges. Since defaults are rare events, it is—even with machine learning
(ML) techniques—difficult to improve prediction accuracy and improvements are often
marginal. Furthermore, while from an event prediction point of view, a non-default is the
same as a default, from an economic point of view much more relevant to the end user it is
not due to the high asymmetry in cost. Last, there are regulatory constraints when it comes
to the adoption of advanced ML, hence the call for explainable artificial intelligence (XAI)
issued by regulatory bodies like FINMA and BaFin. In our study, we will address these
challenges. In particular, based on an exemplary use case, we show howMLmethods can
be adapted to the specific needs of credit assessment and how, in the case of strongly
asymmetric costs of wrong forecasts, it makes sense to optimize not for accuracy but for
an economic target function. We showcase this for two simple and ad hoc explainable ML
algorithms, finding that in the case of credit approval, surprisingly high rejection rates
contribute to maximizing profit.
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1 INTRODUCTION

One of the most fundamental properties of risk in finance is its measurability and the fact that one
can price it accurately. In the particular case of credit risk, the correct pricing is—for several
reasons—quite a challenge: credit and risks as such are asymmetric and skewed toward large losses
with low probability and small gains with high probability, resulting in a loss distribution exhibiting
the so-called fat tails. Even in traditional banking, these fat tails are quite difficult to assess, and for
modeling them correctly, high-quality data and very robust models are needed. This is even truer for
the fast-growing peer-to-peer (P2P) lending space where data are quite often sparse, of low quality,
and ambiguous (see, e.g., Suryono et al., 2019; Ziegler and Shneor, 2020). At the same time, P2P
lenders have a completely different risk profile compared to traditional lenders, namely, although
both banks and P2P platforms rely on scoring models for the purpose of estimating the probability of
default of a loan, the incentive for model accuracy may differ significantly as in the context of the P2P
lending platforms, in most cases, the credit risk is not born by the platform but rather solely by the
investors. This, in turn, makes it imperative for the P2P lending platforms to correctly assess their
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risks, manage them accordingly, and make them transparent to
the investors (Ahelegbey et al., 2019b). To overcome the
challenges of low-quality, sparse credit data, P2P lenders seek
more to employ ML techniques, hoping to achieve by that a
higher prediction accuracy of potential defaulters, that is, reduce
the already low number of defaults even further (Giudici et al.,
2019). As we will detail, this poses a threefold problem: First,
optimization in the tail of the loss distribution as such is
difficult—because of data issues, error propagation, and
accuracy restrictions. Second, just optimizing for the lowest
number of defaults conditional to some lower accuracy bound
will often result in a suboptimal economic situation, the cost/
benefit ratio of defaulters and non-defaulters being highly
asymmetrical. Third, the soaring use of advanced ML
techniques in finance with the desired goal of higher
prediction accuracy renders the decision process increasingly
opaque. This, in turn, conflicts with the demands for
transparency and explainability issued by regulatory bodies
and supervisory authorities in finance (Bafin, 2020).
Examining the definition of the “fair” risk premium as the
economic payoff function, we immediately understand why:

Pfair
default risk � % − cost of defaults

� (1 − recovery rate) × probability of default. (1)

Here, the cost of comparatively few defaults is balanced by the
premium paid by many non-defaulters. This, in turn, implies that
omitting a default is very “valuable” and might be done, from an
economic point of view, at the cost of forgoing quite a lot of
premium-paying business, that is, accepting a high false positive
rate (FPR). To better understand this rationale, we only have to
look at the most naive estimator for conducting credit business:
accept all loans. In this case, the false positive rate will be zero—as
will be, unfortunately, the true positive rate (TPR). Since defaults
are (relatively) rare events, the accuracy of this naive estimator
will be already quite high, although we accepted all of the
defaulters. To bring down the number of accepted defaulters,
thus increasing the TPR, we have to reject business, but this will
go hand-in-hand with an increase of the FPR: since
discrimination on a high level of accuracy is increasingly
difficult, we will increasingly forgo non-defaulting business
and thus income. Consequently, a substantial further gain in
prediction accuracy is often simply not achievable, even when
employing highly sophisticated ML techniques (compare, e.g.,
Giudici et al., 2019; Sariev and Germano, 2019; Sariev and
Germano, 2020). Already here we can see the fundamental
issue: since accepted defaults are much more costly than
forgone non-defaulting business, the optimum with regard to
the accuracy of predicting the number of defaults never can be the
same as the optimumwith regard to predicting the highest payoff.
While the latter is what matters to any financial institution, the
former is what usually gets optimized employing ML algorithms.
In this study, we will show that the correct definition of the target
function is quite crucial for any credit business and that
optimizing along such an economic target function can
drastically improve the profitability of the business at hand.
Furthermore, we will demonstrate that this concept is quite

agnostic with regard to the actual ML technique chosen for
optimization and we will discuss this finding in the particular
context of explainability and regulatory requirements.
Particularly, we will show that the choice of easy-to-
understand and intuitively explainable ML algorithms does not
substantially compromise prediction accuracy, thus fulfilling both
demands: high discriminating and prediction effectiveness as well
as explainability. The article will be structured as follows. In
Section 2, we will introduce and discuss the dataset we use for our
analysis. Section 3 will elaborate on explainable artificial
intelligence (XAI), highlight its most prominent characteristics,
and comment on its increasing importance. In Section 4, we will
employ different MLmodels to perform the actual prediction and
the subsequent optimization, first with regard to number of
defaults and second with regard to profit. Here, we will show
in detail how different target functions affect the profit and loss
(PnL) of the loan portfolio, and we will outline how the different
target functions can be formulated for different ML techniques.
Last but not least, we will show that this can be done using simple,
explainable ML models, without relevant loss of accuracy or
fidelity. Section 5 provides a summary and conclusion. Here,
we will also outline possible business opportunities for FinTech
companies with a clear focus on alternative data.

2 DATA

The data under consideration is the dataset smaller_dataset.csv
sourced from the FinTech-ho2020 project (www.fintech-ho2020.
eu, Fintech-ho2020 (2019-2021)) from the External Credit
Assessment Institution (ECAI) (see also Ahelegbey et al.,
2019b; Ahelegbey et al., 2019a; Giudici et al., 2019). FinTech-
ho2020 is a 2-year project (January 2019–December 2020) that
developed a European knowledge-exchange platform aimed at
introducing and testing common risk management solutions that
automatize compliance of FinTech companies (RegTech) and
increase the efficiency of supervisory activities (SupTech). The
knowledge exchange platform under the FinTech-ho2020 project
consists of SubTech, RegTech, and research workshops. The
dataset consists of a total of 4,514 loans, 4,016 or 88.97% of
which are not defaulted (indicated by the value 0 of the variable
status in the dataset), and 498 or 11.03% are defaulted (indicated
by the value 1 of the variable status). Since the dataset does not
contain detailed information about the size of the individual
loans, we assume, for simplicity, that all loans are of equal size. If
actual individual loan sizes are given, they certainly should be
used in the training process of the machine learning algorithm as
well as in the calculation of the resulting profit. However, as long
as the distribution of loan sizes in the groups of defaulting and
non-defaulting loans are roughly identical, replacing the actual
loan sizes by their ensemble average seems justifiable. We split the
total of 4,514 loans into an (in-sample) training set of 70% (3,159
loans) and an (out-of-sample) test set of 30% (1, 355 loans). Each
loan is characterized by 24 features of which we use the 19
numerical ones to implicitly infer the creditworthiness of the
loans. By this choice, we achieve comparability with and
consistency to Giudici et al. (2019). The borrowing
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information is not raw balance sheet data but ratios of some of
those statements. Table 1 lists the 24 loan features of which we
use only the 19 highlighted with an asterisk in our further
analysis. A first examination of the loan data at hand with
respect to the discriminating effectiveness of the 19 features
under consideration yields first insights: In Table 2, we have
listed the 19 features we will use as discriminating information for
the loan decision, sorted ascending by the p-values of equal means
in the defaulting and non-defaulting subsamples calculated using

Welch’s t test. As we can see, for example, ratio005 and ratio011
do a pretty good job in differentiating defaults and non-default,
while ratio001 and ratio002 do not. This is further corroborated
by the density and scatter plots in Figure 1. However, hereinafter,
we will always make use of all 19 features and, in the purest sense
of the concept of ML, let the algorithm “decide” which feature to
use to what extent in its decision “default/non-default.”
Nevertheless, we do expect that our machine learning
algorithms applied later, especially the highly transparent
decision trees, will “learn” to base their predictions mainly on
some of the most discriminating features identified here. Utilizing
the naive estimator on the loan universe at hand, we immediately
can observe the problem inherent in almost all loan data: since
defaults are rare events, accepting all loans yields a predictive
accuracy of almost 90%; thus, trumping this result using ML
techniques will be a challenge from the outset. At the same time,
examining the naive case, “accept all loans/all business,” defines
our economic base case: Assuming a recovery rate of R � 20%
and a uniform notional of $1 for all loans for the purpose of our
analysis, the cost of defaults in this business case is given by the
number of defaulting contracts times the notional times (1 − R),
that is, $498 × (1 − 20%) � $398.40. Thus, the risk premium
necessary to provision for the cost of default can be calculated
as follows: $389.40/$4,016 � 9.92%; here, we assume that the
defaulting contracts will also default on their premium payments
and hence, the cost of default needs to be entirely paid by the non-
defaulting contracts. Assuming further a spread of 500 basis
points (bps) is charged on top of the necessary risk premium,
an additional income of $4,016 × 500 bps � $200.80 is achieved.
In this naive case, the profit is defined as income generated by
payments of the risk premium plus spread minus the cost for
defaults. Since here the (expected) loss of default is paid by the

TABLE 1 | List of the 24 loan features, with their respective descriptions. Only features marked with * are used as discriminators.

No ID Formula

1 ratio001* (Total assets − shareholder’s funds)/shareholder’s funds
2 ratio002* (Long term debt + loans)/shareholder’s funds
3 ratio003* Total assets/total liabilities
4 ratio004* Current assets/current liabilities
5 ratio005* (Current assets −current assets: stocks)/current liabilities
6 ratio006* (Shareholder’s funds + noncurrent liabilities)/fixed assets
7 ratio008* EBIT/interest paid
8 ratio011* (Profit (loss) before tax + interest paid)/total assets
9 ratio012* P/L after tax/shareholder’s funds
10 ratio017* Operating revenues/total assets
11 ratio018* Sales/total assets
12 ratio019* Interest paid/(profit before taxes + interest paid)
13 ratio027* EBITDA/interest paid
14 ratio029* EBITDA/operating revenues
15 ratio030* EBITDA/sales
16 ratio036 Constraint EBIT
17 ratio037 Constraint PL before tax
18 ratio039 Constraint financial PL
19 ratio040 Constraint P/L for period EUR
20 DPO* Trade payables/operating revenues
21 DSO* Trade receivables/operating revenues
22 DIO* Inventories/operating revenues
23 NACE Rev. 2 core code Industry classification on NACE code, 4 digits precision
24 Turnover* Revenues

TABLE 2 | List of the 19 features/ratios used for loan default analysis, sorted
ascending by the p-values calculated using Welch’s t test.

No ID Non-default Default t-value p-value

1 ratio005 1.243633 0.757088 13.798067 4.900817e-39
2 ratio011 0.047816 −0.133996 14.139802 1.431940e-38
3 ratio012 0.008752 −0.694699 13.210514 9.767516e-35
4 ratio004 1.597079 1.041546 12.834535 2.662133e-34
5 ratio029 0.084345 −0.118976 13.017858 9.449645e-34
6 ratio030 0.091696 −0.119036 12.802153 7.326660e-33
7 ratio003 1.487742 1.086767 11.702571 8.294173e-29
8 ratio008 26.217702 −2.334116 9.623006 1.271021e-20
9 ratio027 40.178063 6.955663 9.116989 7.749628e-19
10 DPO 67.347361 145.180723 −8.947930 6.163742e-18
11 Turnover 3,542.273904 1,749.405622 8.260879 4.223880e-16
12 DSO 91.071215 133.317269 −5.269663 1.955716e-07
13 ratio019 0.211768 6 0.050361 5.145753 3.699050e-07
14 DIO 100.609313 142.471888 −2.003893 4.555395e-02
15 ratio006 7.929163 6.089699 1.423779 1.550459e-01
16 ratio017 1.380640 1.301807 1.412098 1.584418e-01
17 ratio018 1.341287 1.287108 0.948039 3.434978e-01
18 ratio002 1.248618 1.389016 −0.616914 5.375488e-01
19 ratio001 8.852383 9.148855 −0.243575 8.076496e-01
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risk premium, the profit solely stems from the spread income.
This view of the economics of the loan portfolio is akin to the
classic credit business of banks.

3 DISCUSSION ON XAI AND
ECONOMETRICS

As widely acknowledged, machine learning (ML) is increasingly
used in finance and with very good results at that
(Andriosopoulos et al., 2019). One of the prime examples is,
of course, the process of credit decisions on sparse datasets of low
quality (Lessmann et al., 2015). But there is a fundamental
disconnect at the core between machine learning models and
statistical or econometric models usually applied when analyzing
data (Athey and Imbens, 2019): econometrics is centered around
explainability. The very concept starts with an econometric model
derived from theoretical reasoning and uses empirical data to
“prove” and quantitatively find causal relations between
explanatory variables xi and explained variable y (Theil, 1971;
Greene, 2008). A very simple and hence good example is the
linear regression: in a linear regression, the significance, the sign,
and the size of the parameters matter. The value of the parameters
should represent true partial effects of single inputs. In a model
that explains defaults of loans given the features of the loan like
notional, loan-to-value (LTV), and delay-in-payment, an increase
in the delay-in-payment should lead, ceteris paribus, to a higher
probability of default. For a model to be able to achieve this
explanatory power, a lot of model assumptions have to be fulfilled
and thoroughly tested. Especially, a theoretical, economic model
is needed that is rigorously analyzed with regard to its model
diagnostics like variable selection, functional form, analysis of
residuals, and many more. In machine learning, on the other
hand, accuracy in prediction is the primary goal (Athey, 2018).
Here, explanations, partial effects, and causal relations are usually
not of central interest. In the case of image recognition, for

example, there is no theoretical model (and no need for such)
that would come up with the causal relation and functional
dependence of individual pixels colors (the xi) to the output
variable (the y) determining if there is a cat in the picture or not.
Instead, ML tries to fit sufficiently flexible and complex models,
often with thousands or tens or hundreds of thousands of
parameters called the hypothesis space, to the data in a way to
optimize predictive accuracy. As long as the result is sufficiently
accurate, the user is usually only too happy to accept the ML
technique as a “black box.” Indeed, it can be argued that the big
advantage ofML is exactly its capability to infer correct and useful
but non-explainable results from a not-ordered profusion of
input data, to “see something,” some relation in the data that
is not necessarily accessible by theory and hence, not obviously
apparent to the human mind. Furthermore, demanding some
level of explainability from the ML techniques employed might
compromise their proficiency and result in a suboptimal
outcome. The challenge here then is to retain the effectiveness
of ML while at the same time providing some insights into its
inner workings. The level of abstraction at which the ML
techniques operate and produce results heavily depends on the
context—as does the need for explainability. It does not originate
within the concept of machine learning per se. In many
circumstances, and especially in finance, users of ML models
would not or could not simply accept the output of a black box
model, but would require at least some level of interpretability or
explainability of the model before it could be used (Ribeiro et al.,
2016; Carvalho et al., 2019). A good example here, again, is the
credit or loan business where decisions have to be
comprehensible and explainable to customers, regulators, and,
last but not least, to the banks’ ownmanagement alike (Bussmann
et al., 2020). The customer might want to know why his
application for a loan was rejected and might even have a
legal right to demand this information, the regulator needs to
make sure that this information is made available by the loan
originator, and the loan originator might want to better

FIGURE 1 | Scatter plots and densities for the two ratios with the best p-values and for the two ratios with worst p-values, from left to right, respectively.
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understand their underwriting process or simply make sure that
they comply with regulations. From the regulators’ and the banks’
point of view also, risk management considerations play an
important role: ML models have been known in the past to
learn their decision-making based on “wrong” information which
led to the “correct” result purely because of coincidence or
because having been applied to a biased dataset (see, e.g., the
“husky” vs. “wolf” example in Ribeiro et al., 2016). In this case, the
opaqueness of the ML model implies a model error of unknown
severity – an operational risk which no bank or loan originator
should feel comfortable with. The regulator, on the other hand,
will be concerned with the systemic component of this risk and
force the risk takers not only to provide transparency but also to
understand their own risks to the maximum extent possible.
Finally, it has been proven that purely ML-based decision
processes—by automatic evaluation of the data at
hand—sometimes “learn” to discriminate by characteristic that
simply are not considered socially tolerable, like, for example, by
race or gender. To overcome and/or prevent the abovementioned
problems, some degree of transparency and explainability of the
ML algorithm is required. This is where explainable artificial
intelligence (XAI) comes into play: It either highlights the
inherent transparency of a ML model or supplies a tool-set of
methods that, applied to a (complex) fully trained ML model,
adds some level of explanation to the outputs of the model (e.g.,
by providing an input–output sensitivity analysis) (see Carvalho
et al., 2019; Arrieta et al., 2020). In XAI, it is distinguished
between different levels of exlainability (Arrieta et al., 2020):
the most basic level is to understand the functional relationship
between inputs and outputs. This, in principle, is possible because
for every trained ML model, there is a fixed, deterministic
mathematical or functional relation between inputs and
outputs. However, in very complex models like neural nets or
random forests, this relation may be way too complicated to be
directly understood by the human mind. In this case, one is
reduced to conduct an implicit analysis, that is, one is not able to
understand the ML algorithm’s decision process in detail, but can
only examine how outputs change with regard to specific,
predefined changes of the input set. Such a sensitivity analysis
then may at least provide some insights into the dynamics of the
model and validate high-level rationales (see, e.g., Arrieta et al.,
2020; Ribeiro et al., 2016; Lundberg and Lee, 2017). For
“mathematically simple” models (like a linear or logistic
regression), on the other hand, the functional dependence is
sufficiently simple to be directly understood by humans. In the
same way, the prediction process of a single, not too deeply
branched decision tree is still directly comprehensible. Here, we
can understand each detail, each step of the decision process of
the MLmodel and validate it accordingly. Furthermore, should in
such a model the need arise, we can restrict it to such
characteristics that are not socially discriminatory. In this
study, we illustrate how ML can be used to optimize a bank’s
economic target function while accepting or rejecting credit
business, and still be explainable. For simplicity, we use two
ML models that are ad hoc explainable: a logistic regression
model and a single decision tree model. Thus, both objectives are
met: full and straightforward explainability from the outset as

well as optimization of an economic target function
employing ML.

4 OPTIMIZING WITH MACHINE LEARNING

In this section, we will use twomachine learningmodels, a logistic
regression and a decision tree, to identify defaulting and non-
defaulting loan contracts. We keep both models as simple as
possible: first, because this guarantees a certain level of ad hoc
explainability as discussed in the previous section, and second,
because more elaborate models often fail to significantly improve
the models’ performance while quickly compromising its
transparency. For the same reason, we do not try to optimize
the models by hyperparameter tuning. We use a standard logistic
regression model without regularization1 and a simple decision
tree of depth 3 grown without any further constraints.2 For both
models, we use all of the ratios included in the dataset as features
(c.f. Section 2) and the variable status as the label to be predicted.
We use 70% of the data to train the models and 30% as a test set to
evaluate the models’ out-of-sample performance.3

4.1 Logistic Regression
We use the following logistic regression model to predict a
contract’s probability of default given its features x1, . . . , xn:

FIGURE 2 | Shown is the distribution of the predicted default
probabilities separately for contracts that actually do not default (blue
histogram) and for contracts that actually do default (red histogram).

1Optimal L2 regularization using cross-validation did not significantly change the
performance of the model (measured in terms of AUC), nor would it change any of
our discussions and conclusions made below.
2Using cross-validation, we found the optimal depth to be in a range between two
and four splits. Larger trees tend to overfit the training data while smaller trees
significantly underperform.
3We use a stratified split to keep the ratio of defaulting contracts in the training set
and test set identical.
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p(x1, . . . , xn) � 1
1 − exp(β0 +∑n

i�1βixi). (2)

The parameters β0, β1, . . . , βn are learned by fitting the
model to the training set, that is, by minimizing the
standard cross-entropy cost-function of the logistic
regression. Figure 2 shows the distribution of the predicted
default probabilities in the training set for contracts that
actually did default (red histogram) and did not default
(blue histogram). We immediately observe the small
number of actually defaulting contracts compared to the
many non-defaulting ones. For most of the non-defaulting
contracts, the model reasonably predicts small default
probabilities below 20%. However, rather small default
probabilities are also (wrongly) predicted for quite some of
the contracts that actually did default.4 To finally arrive at a
classification, that is, to be able to decide which contracts
should be accepted as business and which should be rejected,
we have to introduce a threshold pthr on the predicted default
probability. Contracts with predicted default probabilities
below the threshold are accepted and those above the
threshold are rejected. A threshold pthr � 0 would reject all
the contracts. That would be the correct decision for all the
actually defaulting contracts but the wrong decision for all the
non-defaulting ones, thus leading to a prediction accuracy
identical to the (low) ratio of defaulting contracts in the sample
(approximately 0.11). On the other hand, a threshold pthr � 1.0
would accept all contracts, that is, would be identical to the
naive model discussed in Section 2, leading to a prediction
accuracy identical to the (high) ratio of non-defaulting
contracts in the sample (approximately 0.89).

4.1.1 Accuracy Maximizing Threshold
We now proceed to find the threshold that leads to the highest
possible prediction accuracy. Mathematically speaking, this
simply means to maximize the target function “prediction
accuracy” as a function of the chosen threshold pthr. The
accuracy is Accuracy � 1/N∑N

i�1Accuracyi with the indicator
function.

Accuracyi � { 1 if ŷi � yi
0 if ŷi ≠ yi

, (3)

where ŷi is the threshold dependent predicted class of loan i and
yi is its true status. We graphically illustrate this process using
Figures 2, 3: As we increase the threshold above 0, we start to
correctly accept more and more non-defaulting contracts
(corresponding to the area under the blue histogram curve
in the range along the x-axis from 0 to the selected threshold in
Figure 2). This increases the prediction accuracy. On the other
hand, we also start to wrongly accept more and more of the
defaulting contracts (corresponding to the area below the red
histogram), which reduces the accuracy. The optimal,
accuracy-maximizing threshold corresponds exactly to the
point, where the area below the red histogram starts to
increase faster than the area below the blue histogram, that
is, when a further increase of the threshold would accept more
defaulting than non-defaulting contracts. In our sample, this
point is reached at a threshold of pthr � 0.4. Figure 3 shows in
more detail how the model’s accuracy changes as the threshold
is varied from 0 to 1: It shows the number of accepted contracts
and the resulting effect on the prediction accuracy as a
function of the chosen threshold. The steep rise in the blue
curve shows the many non-defaulting contracts that are
correctly accepted when the threshold is increased above 0.
The red curve shows the number of wrongly accepted
defaulting contracts. The green curve finally shows the net
effect, the difference of correct (blue) and wrong (red)
decisions, thus representing the behavior of the model’s
prediction accuracy. It reaches its maximum, that is,
achieves maximum accuracy, at a threshold of 0.4.
However, as seen in this figure, the maximum is not very
pronounced. In fact, any threshold in a range between maybe
0.15 and 0.6, and, in particular, also the often chosen default
threshold of 0.5, would lead to a very similar accuracy. Table 3
provides a summary of the performance of the logistic
regression model at different thresholds. The first column
shows the in- and out-of-sample performance of the naive
model accepting all contracts (corresponding to a logistic
regression model with a threshold pthr � 1.0). The second
column shows the performance of a model using the
accuracy maximizing threshold pthr � 0.4, while the naive
model accepts all contracts; the accuracy maximizing model
can identify and reject roughly one third of the defaulting
contracts (111 true positives). Unfortunately, it also wrongly
rejects nearly 2% of the good, non-defaulting contracts (51
false positives). In the prediction accuracy, these two effects
nearly cancel out each other (relative to the naive case only 60
more contracts, that is, 1.9% of all contracts, are correctly

FIGURE 3 | As a function of the chosen threshold are shown the number
of correctly accepted non-defaulting contracts (blue line), the number of
incorrectly accepted defaulting contracts (red line) and the net effect, that is,
the difference of correct and incorrect decisions reflecting the models
accuracy (green line).

4In fact, 93% of the non-defaulting contracts had predicted default probabilities
below 20%, while this was the case for only 47% of the defaulting contracts.
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classified) so that the accuracy of the accuracy maximizing
model is only increased by 1.9 percentage points relative to the
naive model. Therefore, taking only into consideration the
slightly improved accuracy, it would appear pretty
questionable to the bank’s management if employing a
(potentially costly to implement and maintain) machine
learning model in the credit approval process would make
sense. However, since the economic (dollar) costs of wrong
decision are very different for wrongly accepted defaulting and
wrongly rejected non-defaulting contracts, we see a significant
increase in the profit of the accuracy maximizing model vs. the
naive model. Identifying and rejecting at least some of the
defaulting contracts has an enormous positive impact on the
bank’s profitability that, by far, outweighs the loss incurred by
rejecting some of the non-defaulting contracts. Even though
rejecting good business does not seem attractive, the
significant increase in the dollar amount of the bank’s profit
is a strong argument for employing a machine learning model.
An important observation is that all of the above observations,
including the significant increase in profit, are not only seen in
the training set (in-sample) but also in the test set (out-of-
sample)—which has not been used, neither in the training of
the model nor in optimizing the threshold.

4.1.2 Weighting of Contracts and Profit Maximization
We have seen above that using an accuracy maximizing threshold
improves the model’s accuracy only slightly but did increase the
resulting profit considerably. This was mainly due to the fact that
the model was able to greatly reduce the bank’s loss by correctly
identifying and rejecting defaulting contracts. This gives rise to
the idea to try to choose the threshold not in a way to maximize
accuracy, but in a way to directly maximize profit.

Mathematically speaking, this means maximizing the profit
target function Profit � ∑N

i�1Profiti, where

Profiti �
⎧⎪⎨⎪⎩

0.1492 if ŷi � 0 and yi � 0
−0.8 if ŷi � 0 and yi � 1
0 if ŷi � 1

. (4)

Again, we illustrate this maximization process graphically. The
starting point to find the accuracy maximizing threshold was

TABLE 3 | Overview of the in- and out-of-sample performance figures of logistic regression models with different thresholds pthr.

naive Accuracy maximizing Profit maximizing

pthr = 1.0 pthr = 0.40 pthr = 0.17

In-sample # Contracts 3,159 3,159 3,159
# Accepted contracts 3,159 2,997 2,713
Acceptance rate 1 0.9487 0.8588
# True positives 0 111 202
True-positive rate (TPR) 0 0.3181 0.5788
# False positives 0 51 244
False-positive rate (FPR) 0 0.0181 0.0868
Accuracy 0.8895 0.9085 0.8762
Profit 140.06 221.25 265.26
Δ profit relative to naive 58.0% 89.4%

Out-of-sample # Contracts 1,355 1,355 1,355
# Accepted contracts 1,355 1,278 1,153
Acceptance rate 1 0.9432 0.8509
# True positives 0 52 84
True-positive rate (TPR) 0 0.3490 0.5638
# False positives 0 25 118
False-positive rate (FPR) 0 0.0207 0.0978
Accuracy 0.8900 0.9100 0.8649
Profit 60.74 98.61 110.33
Δ profit relative to naive 62.3% 81.6%

FIGURE 4 | Shown is the distribution of the predicted default
probabilities, where the distribution for the actually non-defaulting contracts
(blue histogram) is weighted by their income (corresponding to the risk
premium plus the spread) and the distribution of the actually defaulting
contracts (red histogram) is weighted by their loss (corresponding to the face
value reduced by the recovery rate).
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Figure 2, showing the distribution of the predicted default
probabilities. Implicitly and by construction, in this histogram,
every contract is given the same weight. This is the appropriate
view if we want to judge the model’s accuracy where every wrong
or correct decision contributes equally. However, if we focus on
profit, we must consider the completely different cost of wrongly
accepted defaulting contracts vs. the cost of wrongly denied non-
defaulting contracts. The solution is to weigh each contract with
the dollar cost resulting if it is wrongly classified, that is, we weigh
the non-defaulting contracts by the income we lose, if we reject
them ($0.149 income from risk premium plus spread), and the
defaulting contracts by the loss we incur if we accept them ($0.80,
equal to the face value of the contract reduced by the recovery rate
of 20%). Figure 4 shows the resulting histogram.We immediately
see the relative increase of the importance of the defaulting
contracts (red histogram) compared to the equally weighted
distribution in Figure 2. Using the same reasoning as in the
section above, we also see immediately that the optimal threshold,
that is, the crossover point of the histograms of the defaulting and
non-defaulting contracts, now is at a much lower value. We find
an optimal threshold pthr � 0.17. Pushing the threshold higher
than this value, the loss of wrongly accepted additional defaulting
contracts outweighs the income generated by additionally
accepted good business. Figure 5 shows the profit or loss of
accepted contracts as the threshold is increased above 0. The blue
curve shows the profit generated by earning the risk premium
plus spread on accepted non-defaulting contracts. The red curve
shows the loss incurred by accepted but defaulting contracts. The
green curve finally shows the net effect, that is, the profit of the
non-defaulting contracts less the loss generated by the defaulting
ones. At a threshold of 1 (accepting all contracts), we get the profit
of the naive model $140.06. At a threshold of 0 (rejecting all
contracts), we have no business at all and thus also zero profit.
However, in between these two extremes, at the threshold
pthr � 0.17, a very pronounced maximum is reached with a
profit of $265.26. We also see that while the profit achieved
using the accuracy maximizing threshold 0.40 is larger than the

profit of the naive case, it can be considerably further increased by
using the profit maximizing threshold of 0.17. Staying with the
often used threshold of 0.5 would, however, yield a profit quite a
bit smaller than the one achieved by the accuracy maximizing
model and considerably smaller than the one achieved by the
profit maximizing model. The third column in Table 3
summarizes the performance figures of the profit maximizing
model. It has a quite low acceptance rate (roughly 15% of all
contracts are rejected). However, it manages to correctly identify
and reject more than half of the defaulting contracts. This comes
at the cost of wrongly rejecting many of the good, non-defaulting
contracts (nearly 10% of the good business is rejected).
Consequently, the model’s accuracy is (slightly) reduced
compared to the accuracy maximizing model. However, the
model’s profit could be increased considerably since it was
able to identify many more of the defaulting contracts. Even
though, at first sight, using a threshold as low as 0.17 appears to be
quite unattractive since too much of the bank’s potential business
is rejected, a second look on the bank’s profit proves the opposite:
even with this lower business volume, the bank’s profit (in
absolute dollars) is substantially increased. It is again
important to note that the above conclusions also hold true
out-of-sample, that is, in a setting that corresponds to the
model judging completely new, as yet unseen credit applications.

4.1.3 Visualization of Accuracy and Profit
Maximization in the ROC Diagram
The logistic regression model predicts probabilities and allows for
a continuous shift of the decision threshold. Such a model’s
quality is often judged by looking at its receiver operating
characteristic (ROC). Figure 6 shows the in-sample ROC
diagram of our logistic regression model. The ROC curve
shows the model’s true positive rate (TPR) and false positive

FIGURE 5 | As a function of the chosen threshold are shown the income
by the accepted non-defaulting contracts (blue line), the loss incurred by the
accepted defaulting contracts (red line), and the net effect, that is, the bank’s
profit (income less loss, green line).

FIGURE 6 | In-sample ROC curve of the logistic regression model (blue
curve). Added are the curves of equal accuracy (steep dashed lines) and the
curves of equal profit (flat solid lines). The lines more to the upper left represent
spots of higher accuracy and profit, lines more to the lower right
represent spots of lower accuracy and profit. The two red crosses represent
the TPR and FPR of models with thresholds that lead to maximal accuracy or
maximal profit.
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rate (FPR) for thresholds between 0 and 1. This curve starts in the
lower left corner at a threshold of 1.0, representing a model that
accepts all contracts and consequently has 0 TPR (no defaulting
contracts are identified) and 0 FPR (no non-defaulting contracts
are wrongly rejected). As the threshold is lowered below 1.0, more
and more contracts are rejected. This leads to a (fast) increase of
the TPR (many defaulting contracts start to be correctly
identified) but also to a (slow) increase of the FPR (some non-
defaulting contracts are wrongly rejected). Together, this leads to
a steep increase of the ROC curve. As the threshold is decreased
further, the increase of the TPR slows down, while the increase of
the FPR speeds up, leading to a flattening of the ROC curve until
it reaches a TPR and FPR of 1 at the threshold 0 (rejecting all
contracts). The quality of the logistic regression model can be
judged based on the shape of the ROC curve. The more the ROC
curve is bent to the upper left corner (maximal TPR with minimal
FPR), the better the model. The performance figure is the area
under the ROC curve, the AUC. For our logistic regression model,
the in-sample AUC is 0.8058. However, the choice of the best
possible threshold depends on the target function to be optimized.
Both of the target functions we investigate, accuracy and profit
maximization, depend on the number of correct and wrong
decisions made by the model, that is, on the model’s TPR and
FPR. The steep dashed lines in Figure 6 represent combinations of
TPR and FPR that yield the same accuracy. We call these iso-
accuracy lines. Since in our training sample there are
approximately 8 times more non-defaulting contracts than
defaulting contracts, an increase of the FPR by one percentage
point must be compensated by an increase of the TPR by about 8
percentage points to achieve the same accuracy. Thus, the iso-
accuracy lines have a slope of approximately 8. Iso-accuracy lines
close to the upper left corner of the diagram correspond to high
accuracy, while those that are closer to the lower right corner
correspond to lower accuracies. The model’s best possible
threshold is, therefore, achieved at the TPR/FPR combination
where the iso-accuracy line lays tangent to the model’s ROC
curve (c.f. dark dashed line in Figure 6). This point is indicated
in Figure 6 by a red cross and corresponds to a threshold of 0.4
where the model achieves a TPR of 0.3181 and an FPR of 0.0181
(c.f. Table 3). As the main focus of the bank is not to maximize
prediction accuracy but rather to maximize its profit, we added in
the ROC diagram lines of equal profit, iso-profit lines (flat solid
lines in Figure 6). Since wrongly accepted defaulting contracts are
about five times as expensive as wrongly rejected non-defaulting
contracts, the slope of the iso-profit lines is by a factor of 5.36 lower
than the slope of the iso-accuracy lines. The slope of the iso-profit
lines is 8/5.36 ≈ 1.5. The optimal, profit maximizing threshold is
again found at the point where the iso-profit line is tangent to the
model’s ROC curve (c.f. dark solid line in Figure 6). This point is
more to the right along the ROC curve and reached at the much
lower threshold of 0.17 with a TPR of 0.5788 and an FPR of 0.0868.

4.2 Predicting Defaults Using a Single
Decision Tree
As an alternative to the logistic regression model, we illustrate the
steps necessary to calibrate to a profit maximizing model using

another machine learning model, a single decision tree. Even
though this model is even simpler than the logistic regression and,
thus, also more explainable and transparent in its decisions than
the logistic regression model, it is still capable to yield significant
performance improvements by tuning it to profit maximization.
We use a simple tree with a depth of 3 and minimize the Gini
impurity measure to grow the tree. No further restrictions were
imposed while growing the tree.

4.2.1 Tuning the Tree Growth to Maximize Accuracy
and Profit
Since the tree we use is quite shallow (depth of 3 leading to just
eight leaves), it does not make a lot of sense to tune the decision
threshold applied in the leaves to decide whether to accept or
reject a contract. We, therefore, leave the threshold fixed at 0.5,
that is, whether a new contract is accepted or rejected is decided
upon the simple majority of the contracts of the training set in the
leaf to which the new contract is assigned. However, we can tune
the growth of the decision tree by using weights for the two classes
of contracts in the training data. We do this by tuning the relative
weight of the non-defaulting contracts relative to the defaulting
ones in a range from 10− 4 to 104. The left-hand side of Figure 7
shows the resulting in-sample accuracy of trees as a function of
the relative weight applied to the non-defaulting contracts. A very
low weight, that is, more or less neglecting non-defaulting
contracts altogether, leads to a tree that basically rejects all
contracts (corresponding to a logistic regression model with a
threshold close to 0), whereas a high weight, that is, more or less
neglecting the defaulting contracts, leads to a tree that accepts
nearly all contracts (corresponding to the naive model or a
logistic regression model with a threshold close to 1). While
for these extreme weights the accuracy approaches the ratio of
defaulting contracts (for a weight of w � 10− 4 the accuracy is
approximately 0.11) or non-defaulting contracts (for a weight of
w � 104 the accuracy is approximately 0.89), it has a (shallow)
maximum at a weight close to 1. In fact, the maximum accuracy is
reached for weights between 0.7 and 4, where the maximum in-
sample accuracy of 0.9174 is reached. The second column of
Table 4 shows the in-sample and out-of-sample performance of
the decision tree grown using the accuracy maximizing weight of
1 (i.e., using the original, unaltered training dataset). As with the
logistic regression model, compared to the naive model, we see
only a slight improvement in accuracy but a considerable
improvement in the other performance figures achieved by
correctly identifying and rejecting about one-third of the
defaulting contracts. Note also that compared to the accuracy
maximizing logistic regression model, the simple decision tree
shows, in some figures, even a slightly better performance. In
particular, the tree has a similar true positive rate as the logistic
regression model, but a much lower false positive rate. Due to the
asymmetric costs of wrong classification of defaulting and non-
defaulting contracts, it seems natural to assume that a
corresponding over-weighting of the defaulting contracts (or
under-weighting of non-defaulting contracts) should grow a
tree whose decisions lead to higher profits. As accepting a
defaulting contract is more than 5 times as costly than
rejecting a non-defaulting contract, a relative weight of the
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non-defaulting contracts of approximately 1/5 � 0.2 seems
reasonable to assume. The right-hand side of Figure 7 shows
the in-sample profit achieved by trees grown using different
relative weights w of the non-defaulting contracts. We clearly
see a sharp maximum at a relative weight somewhat above 0.1. A
closer inspection of the numbers shows that, as expected, the
maximum profit of $282.54 is actually achieved at a weight of
w � 0.2.5 The third column of Table 4 shows the in- and out-of-
sample performance of the tree grown with a dataset using a
relative weight of 0.2 for the non-defaulting contracts. It is
especially remarkable that in-sample, the profit maximizing

tree achieves a higher dollar value of profit than the profit
maximizing logistic regression model, even though the tree
rejects more than 20% of the contracts. However, the out-of-
sample profit (which is the relevant quantity for the estimation of
the bank’s future profit) of the logistic regression and the tree are
very similar.

4.2.2 Comparison of the Accuracy Maximizing and
Profit Maximizing Trees
Figures 8, 9 show the decision trees at the accuracy
maximizing weight of 1 and the profit maximizing weight
of 0.2. The accuracy maximizing tree identifies approximately
one third of the defaulting contracts only in leaves where
defaults represent a clear majority. The remaining two thirds
of defaults remain hidden in leaves where they are mixed with

FIGURE 7 | In-sample accuracy (A) and in-sample profit (B) of trees as a function of different relative weights of the non-defaulting contracts.

TABLE 4 | Overview of the in- and out-of-sample performance figures of decision tree models with different weightings w of the non-defaulting contracts.

naive Accuracy maximizing Profit maximizing

w =‘ w = 1.0 w = 0.2

In-sample # Contracts 3,159 3,159 3,159
# Accepted contracts 3,159 3,027 2,498
Acceptance rate 1 0.9582 0.7908
# True positives 0 110 254
True-positive rate (TPR) 0 0.3152 0.7278
# False positives 0 22 407
False-positive rate (FPR) 0 0.0078 0.1448
Accuracy 0.8895 0.9174 0.8411
Profit 140.06 224.78 282.54
Δ profit relative to naive 60.5% 101.7%

Out-of-sample # Contracts 1,355 1,355 1,355
# Accepted contracts 1,355 1,296 1,088
Acceptance rate 1 0.9565 0.8030
# True positives 0 44 91
True-positive rate (TPR) 0 0.2953 0.6107
# False positives 0 15 176
False-positive rate (FPR) 0 0.0124 0.1459
Accuracy 0.8900 0.9114 0.8273
Profit 60.74 93.7 107.28
Δ profit relative to naive 54.3% 76.6%

5Note that balancing the training data to equal shares of defaulting and non-
defaulting contracts would correspond to a weight of w � 0.1 and to a profit
of $272.75.
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a majority of non-defaulting contracts. Even though a large majority
of the defaulting contracts is wrongly classified due to the low
number of defaults in our highly unbalanced dataset, this still results
in a tree with maximum in- and out-of-sample prediction accuracy.
However, for the task of profit maximization, the defaults are
assigned a much larger (relative) weight. Therefore, the profit
maximizing tree “tries much harder” to correctly identify and
separate more of the defaulting contracts. Using only four of the
available 19 ratios, namely ratio003, ratio029, ratio005, and ratio019,
the accuracy maximizing quickly arrives at branches and leaves with
clear majorities indicated by the more saturated colors in Figure 8.
The profit maximizing tree needs six different ratios, namely
ratio027, ratio003, ratio005, ratio004, DPO, and turnover, and still
ends up in quite some leaves with rather weakmajorities indicated by
the less saturated colors. It is instructive to note that, confirming our
expectation, most of the ratios used in the branches of the trees are

among the most significant discriminators as identified in our
statistical analysis in Table 2. In fact, the most relevant ratios as
identified during the growth process of the tree are asset-liability
ratios (ratio003 and ratio005) and earnings ratios (ratio027 and
ratio029). This is consistent with the traditional wisdom of banking
experts that these types of ratios are among the most relevant ones
when it comes to judging the credit worthiness of a company.

5 SUMMARY AND CONCLUSION

For many applications, as for example, credit decisions made
by banks, the output of the used models has to be sufficiently
transparent and understandable. This often prevents or at least
complicates the use of many advanced and nontransparent
machine learning models. However, especially in the case of

FIGURE 8 | Tree grown using the dataset, where non-defaulting and defaulting contracts are weighted equally. This tree maximizes prediction accuracy.

FIGURE 9 | Tree grown using the dataset, where the weight of the non-defaulting contracts is reduced by a factor of 0.2 relative to the defaulting contracts. This tree
maximizes the banks profit.
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highly unbalanced datasets one is typically confronted with in
credit applications, already the naive procedure (simply basing
the decision upon the majority class in the training data) or the
use of simple, transparent and ad hoc explainable machine
learning algorithms can easily achieve high prediction
accuracy that is difficult to significantly be enhanced by
more complex and nontransparent algorithms. On the other
hand, for users of machine learning models, it is often not
prediction accuracy which is of most concern, but each
application has its own, business specific target function to
be optimized. In the use-case studied in this study, the relevant
target function is the profit the bank can draw from its credit
business. While application of simple machine learning
algorithms only minimally improves prediction accuracy
over the naive case of accepting all business, it quickly
shows a considerable positive effect on the banks profit by
identifying and rejecting some of the defaulting contracts.
However, neither the often applied pure accuracy
maximization nor the balancing of the training dataset to
equal shares of defaulting and non-defaulting contracts
leads to the maximal profit. In order to maximize profit, it
is crucial to include the user’s target function in the choice of
the best possible model and parameters. In the case of the
logistic regression, we tuned the threshold distinguishing
between accepted and rejected contracts to maximize the
given profit target function. In case of the decision tree, we
used weighting to balance the data not to equal shares of both
types of contracts but to reflect the impact of the model’s
correct and wrong decisions on the target function, the bank’s
profit. As a result, we have seen that applying simple machine
learning algorithms that are tuned to profit maximization can
increase the banks profit on new business considerably. For
both models studied, the bank’s profit could be increased by up
to 80% relative to the naive case of accepting all business. We
observe that the profit-maximizing models tend to reject
surprisingly many of the contracts, that is, these models
accept a lot of falsely rejected good business in order to sort
out a few more of the defaulting contracts. This is because the
cost of a wrongly accepted defaulting contract by far outweighs
the loss incurred by falsely rejected good, non-defaulting
contract (forgone business). With our dataset and models,
up to 20% of all contracts are rejected, approximately two
thirds of which are actually non-defaulting contracts. This
could lead to new business opportunities, for example, for
peer-to-peer lending platforms, that might try to use
additional alternative data and advanced machine learning
techniques to identify some of the remaining good business
within the many contracts rejected by banks. To conclude,
from a purely theoretical point of view, the observations made

in this study of course can be translated to any use case where
one has to deal with unbalanced datasets and target functions
that depend in a highly asymmetrical way on the model’s
decisions.
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