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Geometric models are used for modelling meaning in various semantic-space models.
They are seductive in their simplicity and their imaginative qualities, and for that reason,
their metaphorical power risks leading our intuitions astray: human intuition works well in a
three-dimensional world but is overwhelmed by higher dimensionalities. This note is
intended to warn about some practical pitfalls of using high-dimensional geometric
representation as a knowledge representation and a memory model—challenges that
can be met by informed design of the representation and its application.
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INTRODUCTION

Vector representations are used for several computationally important tasks that involve knowledge
representation. This is for good reason: vectors are a useful representation for cases that involve
aggregating information to learn about things we observe. Continuous vector representations are
convenient for modelling knowledge that is unsuitable for fixed and definitional representations, or
knowledge that has not yet settled into something we are certain about, especially in situations where
new data keep arriving to motivate us to adjust what we know. Vector representations allow us to
compile large amounts of data into a convenient, relatively compact, emergent representation.

Vectors also provide a convenient interface to downstream computation using various flavours of
machine learning: a set of vectors aggregated from observed data can be fed into any of several
effective machine-learning models.

Vectors need to be processed somehow for us to understand what we are working with and how
the things we observe relate to each other. A vector space gives us a way to understand the items
represented in it and how they relate to each other. Spatial models invite us to view distance and
nearness as relevant: spatial reasoning comes with a convenient and well-understood geometric
processing model and a useful palette of metaphors with which we can talk about what we learn.

THE PROMISE OF CONTINUOUS REPRESENTATIONS

Discrete symbolic models have obvious drawbacks for processing human language. Linguistic
expression can be polysemous, indeterminate, vague, unspecific, and non-exclusive: any concept
or notion can be referred to in more or less equivalent ways, the ways in which those ways differ is
difficult to formalise, and most every utterance and constituent of an utterance can be recruited or
coerced to be relevant for situations that are different from the most prototypical ones it can be
expected to appear in. By implementing a continuous rather than a discrete representation, many of
those challenges appear to be less pressing.

Observable functional similarities between linguistic items, both constructional and lexical, are
sometimes discrete and sometimes gradual. Gradual similarities fit well in a continuous
representation (Bengio et al., 2003, e.g., argue this point well). The similarity between the
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utterances given in Example (1) demonstrates how the pairwise
similarity between some of the constituents helps establish that
the utterances are similar in meaning in certain ways, and a
system to learn e.g., constructional patterns or entailments would
be well served to make use of the similarities. Experience with
processing horses will help when a donkey turns up for the first
time.

1) a. The horses need their oats and hay.
b. Everyone who owns a donkey has given it hay and carrots.

This is where a vector-space model can come in handy. A
vector representation allows us to model similarity between items
on a continuous scale, and with an increased dimensionality
several different similarities between items can be accommodated
without blocking each other. This provides a basis for an
automatic generalisation from terms to concepts, which is one
of the fundamental motivators for a distributed or connectionist
approach (Hinton et al., 1986).

Modelling linguistic items by assigning a vector to each, allows
us to use a geometric metaphor for meaning. The clear-cut
formulation by Schütze (1993), “vector similarity is the only
information present in Word Space: semantically related words
are close, unrelated words are distant,” indicates how distance in a
geometric space can be interpreted as a measure of semantic
relatedness. The vector-space representations come with
operations to combine and compare constituents in a well-
understood and computationally habitable algebraic framework.
Probably the first vector-space formulation is by H.P. Luhn (1953):
“If we consider a concept as being a field in a multi-dimensional
array, we may then visualize a topic as being located in that space
which is common to all the concept fields stated. It may further be
visualized that related topics are located more or less adjacent to
each other depending on the degree of similarity and that this is so
because they agree in some of the identifying terms and therefore
share some of the concept fields.” Vector-space models became and
have remained the semantic basis of information-retrieval system
(Salton et al., 1975; Dubin, 2004), while computational linguistics
for a long time favoured symbolic representations. Semantic-space
models were also built by psycholinguists and behaviourists, based
on meaningful and preselected dimensions, and hand-encoded
(Osgood et al., 1957, most notably), to be validated in psychological
experiments. In such settings, test subjects scored items of interest
numerically along a small number of postulated basic semantic
dimensions such as “small vs. large” and “rough vs. polished.” In
the 1990’s, statistical language-processing methods and
connectionist memory models converged with semantic spaces
to formulate models where the makeup of the space emerges from
the data instead of being preselected (Deerwester et al., 1990; Lund
and Burgess, 1996; Kanerva et al., 2000). These models form the
basis for today’s word-embedding models of various kinds.

SIMILARITY AND DISTANCE

The notion that some items of interest are close to each other and
others are far from each other, and that in the neighbourhood of

something interesting we will expect other interesting things to be
found, is catchy and easy to explain. Examples (2-a) and (2-b)
demonstrate how natural it seems to us to use a geometric
metaphor for semantic similarity. The notion of semantic
distance is frequently used and mostly left unexplained as a
primitive but observable effect in psycholinguistics and related
research fields (Rips et al., 1973).

2) a. Is coffee close to tea in meaning?
b. Is coffee closer to tea than to wine?

On another level, vector-space models are intuitive since they
conform somewhat to our current understanding of how our
brains work. All of that is only partially true, but it contributes to
our understanding of the utility of vector-based models.

On a third level, the notion of a continuous rather than a
discrete representation appears to capture both the gradual
learning of new relations and the observable fuzziness of
human language, and thus to handle the occasional vagueness,
polysemy, or unspecificity that linguistic expression exhibits.
Modelling gradual learning with continuous representations is
appropriate, but other characteristics of language are not always
as well suited as they might seem to be at first glance. While
distance can be used to model uncertainty, specifically in a
learning situation, and might be useful for modelling
polysemy, uncertainty1 is different from vagueness and
unspecificity. Neither vagueness nor unspecificity [cf. sentences
given in Examples (3-a) and (3-b)] are well modelled by point-
wise distance measures: a single continuous representation can
not be a cure-all for modelling the complexities of human
language.

3) a. People who like this sort of thing will find this the sort of
thing they like.
b. The vehicle passed the object at a lower than average speed.

Intuitiveness is not always a good thing. The planetary model
for understanding atoms and molecules, for example, leads into
the wrong conclusion about the nature of electrons. We do not
quite have intuitions to understand what high-dimensional space
looks like and what distances mean. If we are in a 128-
dimensional, 1,000-dimensional, or even 10-dimensional space,
the natural sense of space, direction, or distance we have acquired
poking around over our lifetime on the 2-dimensional surface of a
3-dimensional sphere do not quite cut it and risk leading us
astray. This paper is intended to warn of some attendant
methodological pitfalls.

AN AVERAGE IS A LOSSY COMPRESSION

Data in a vector space is mostly represented as points. In a
learning scenario, as we obtain more and more observations of
some item of interest in a noisy stream of sampled data, it does

1A similar point is made by Rekabsaz et al. (2017).

Frontiers in Artificial Intelligence | www.frontiersin.org August 2021 | Volume 4 | Article 6988092

Karlgren and Kanerva Semantics in High-Dimensional Space

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


make sense to take the average or centroid of those observations to
represent the item as a point in some way, possibly weighting or
normalising the observations as we go. We move the point
around to represent the item in the vector space, based on
new information as it accrues. This is intuitively very
attractive: the aggregation of observations seems to generalise
nicely into a concept. But an average is a lossy compression of the
original data set: is there reason to assume that a centroid is a
meaningful representation?

If we have a number of observations from data and take their
centroid to be the generalisation over them, we should make sure
that this is a reasonable thing to do. If the notion we are tracking is
complex or if we wish to combine several items into a
compositional whole, an average might not make sense anymore.

For instance, if we are interested in hot beverages, collecting
different observations of “coffee” to understand how it is used, is a
good idea. We can also collect observations of several terms we
know it might be related to such as “cocoa,” “latte,” “espresso,”
“tea,” “rooibos,” and “earl grey” and join them to get a general hot
beverage concept. This would seem to be sensible. The centroid of
those terms is likely to hold other interesting neighbours such as
“macchiato” and “oolong”. If we then would like to think about
the notion “fika” we might want to consider various terms for
drinking and imbibing, cups and mugs, cinnamon buns and
ginger snaps, and so forth. In a geometric model, averaging out all
these different notions is probably a bad idea (depending a little
on how the terms and their context are collected from observed
language): the “average” of the action of drinking, what is being
drunk, and liquid containers is not a well-defined semantic
notion, not even in a semantic space. Yet, the practice of
folding diverse concepts into a centroid is quite common in
semantic models, such as when a sentiment-analysis model is
built from a set of diverse seed terms: the vector space is assumed
to provide some sort of automatic generalisation of the items of
interest, where it in fact is a collection of observations. A vector
space adds nothing to the information it is built from.

Adding together e.g., all colour words into a centroid, all
names of months into a centroid, or a set of expletives and lewd
terms into a centroid does not yield a representation of
colourfulness, of months, or of profanity.

This becomes especially true in the light of the variety of ways a
semantic space is populated. Context models are sensitive to
definition of what context is and what items are. The items under
consideration can be words, multi-word terms, or constructions
in the case of a lexical semantic space, they can be observed user
action on various levels of granularity, they can be contextual data
or various kinds of measurements. How the vectors that represent
them are accrued also varies, for words ranging from close to
broad contexts, which in various ways determines whether a set of
items is suited for representation by an average vector (Sahlgren,
2006).

In every case a centroid is taken as a representation of several
observations, this should be done with an awareness that items
cannot typically be averaged to get something sensible but should
be done based on a hypothesis that is motivated from both the
type of item under consideration and the type of data used to
aggregate the vector. A vector sum does not in itself provide a

generalisation of the component features. It only provides a
representation of their combination. Representation of
concepts by distributions of points in a high-dimensional
space rather than by an average of several points is a possible
avenue of investigation that would introduce a probabilistic
interpretation of overlaps of such distributions.

THE EMPTINESS OF THE “POLAR CAP”

In whatever dimensionality we operate, we tend to be mostly
interested in the hypersphere or unit sphere (the sphere centred on
the origin and with a radius of 1). This is because we typically use
the cosine as a similarity measure, which normalises vector length
and compares angles between them. The points of interest in the
high-dimensional space are scaled to fall on the surface of the
hypersphere, and we are looking for structure in high-
dimensional space as it is projected on to that surface. Now,
as we move into higher and higher dimensionality, the
hypersphere contains less and less of the volume of the
enclosing hypercube (the cube centered on the origin with
sides of length 2). An increasing majority of the points in a
hypercube is in its corners and thus lies far from the surface of the
hypersphere, and any projected structure in the original space
that depends on the differences in distance from the origin is lost.
The structures we pursue in the vector space are only partially
shadowed onto the wall of the hypersphere cave.

This can be illustrated by first taking a hypersphere in 2-D: a
circle. Pick a point—call it twelve o’clock—and then pick another
point at random and record the angle between the vectors to those
points. Those randomly picked angles are distributed uniformly
between 0° and 180°. Now, in 3-D, where the hypersphere is what
we usually think of as a sphere, again pick a point—call it the
North Pole—and then pick random points on the surface of the
sphere, again recording the angles. There are many more points
on the equator, at 90° from the pole, than on the tropical or polar
circles, and it is much more likely that a point picked at random is
at a low latitude. The angles will be distributed along a bell-shaped
curve. The pointedness of that bell curve continues to become
more pronounced as dimensionality grows, as shown in Figure 1
which shows the probability distribution of the angle between two
randomly chosen points in 3-, 10-, and 1,000-dimensional spaces.

For more mathematical background, see e.g., Kanerva (1988);
Widdows (2004); Widdows and Cohen (2014).

This is important to understand for practical purposes because
of how we relate interestingness to distance and prevalence: from
any point of view the interesting things are close by and relatively
few. We are used to the idea that if A is close to B and A also is
close to C, then B cannot be very far from C or in other words if
items A and B are at distance da,b and items A and C are at
distance da,c then the distance db,c between items B and C is
bounded by da,b + da,c. The challenge is to understand why if
distances da,b and da,c both are low enough to be interesting, why
db,c might not need to be.

Since the distribution of angles is highly concentrated around
90°, points even slightly closer are likely to be interesting. If a
point is at say 70° or even 80° from the North Pole in high

Frontiers in Artificial Intelligence | www.frontiersin.org August 2021 | Volume 4 | Article 6988093

Karlgren and Kanerva Semantics in High-Dimensional Space

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


dimensions this is very rare and something we should make note
of. The horizon of interest extends further, as it were, as we move
into higher dimensionalities. If A and B are at e.g., 70° from each
other, and A and C likewise are at 70° from each other, this tells us
next to nothing about how close B and C are. Interestingness is
not transitive [a similar argument is given by Beyer et al. (1999)].

This has as a consequence that the region of interesting and
notably low distances between points grows while the noise corridor
tightens up. In Figure 2 the distance d(glass, gin) � cos(ω3) is about
the same as the distance d(glass, silicate) � cos(ω2) and while the
angle between them is large, this is still an interesting distance
compared to the noise at higher levels. However, the distance
d(gin, silicate) � cos(ω1) is too large to be notable and descends
beneath the semantic horizon. This example from two dimensions
becomes even more noticeable as the number of dimensions grows.

LOCAL NEIGHBOURHOODS AND GLOBAL
STRUCTURES

Most relations of interest in semantic spaces are local. Mostly, it is
the neighbourhood we want more information about, not the
global structure of the space. A semantic space typically knows of
many things and most of them occur and are observed every now
and then without connection to each other. Most of them have no
definable relation at all and fit comfortably in a space of
sufficiently many dimensions. As distances go, “close” is
interesting and “distant” is not.

It is in the nature of human understanding of the world that
relations between one thing and another thing emerge and grow

to be interesting as events unfold, but most items of interest will
remain uninteresting with respect to each other. This has the side
effect that global structures based on semantic distance alone are
likely not to be useful.

The above points call into question the entire notion of global
semantic structure. There seems to be little reason to assume that the
structure in the semantic space on a global scale holds any meaning.

We conclude that

• semantic spaces are interesting in view of their local
structure and neighbourhood, not the global structure,
and that

• any operation on a semantic space and any manipulation or
transformation of a semantic space that would take
purchase in its global structure is quite unlikely to be
fruitful and very probably wasteful in terms of computation.

The idea that different semantic spaces could be translated to
each other, if trained on similar data, is interesting and intuitively
attractive. Some recent experiments have shown that it is possible
to align a semantic space trained on one language with a semantic
space trained on a comparable text collection in another, and this
would seem to indicate that some such structure could be found
(Alvarez-Melis and Jaakkola, 2018). For instance, if a lexical
model or a word space is trained on text in one language and
then another model is trained on text in another language, they
might be translatable to each other through a distance-preserving
transformation: after all, it is highly likely that the respective
terms for “boat,” and “Boot” will have terms for “ship” or “Schiff”
at similar distances and terms for “spruce” and “Fichte” will find
“oak” and “Eiche” somewhere around. But it is highly unlikely
that navigational and arboreal terms are organised similarly with
respect to each other: since the relation between forestry and
shipbuilding is relatively tentative in recent history, there is no
reason to expect that those relations will hold across sets of
training data. Other recent experiments demonstrate the
challenge of aligning models built with different
implementations (Søgaard et al., 2018) which to some extent
should be expected to carry comparable information in spite of
different encodings. It is not likely that a transformation that
takes purchase in global structure is able to align two models of
this type in the general case.

FIGURE 1 | The distribution of angles between two randomly chosen points on spheres of various dimensionalities [Figure by Anders Holst, from Karlgren et al.
(2008)].

FIGURE 2 | Interestingness is not always transitive.
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INTRINSIC DIMENSIONALITY

In whatever high-dimensional space the items of interest are
embedded, their local neighbourhoods may be of much lower
intrinsic dimensionality. This intrinsic dimensionality has to do
with the complexity of the data under study. A collection of one-
dimensional objects such as sticks or pieces of string is an example.
Each point on each stick or string is perfectly defined by its position
on the stick or string, which can be described in one single dimension.
It may be practical to store all the sticks and strings in a three-
dimensional container, such as a box. Each point on each stick and
string is then in a three-dimensional space and its position can be
specified using a three-dimensional vector in the box space—but the
interesting characteristic of the point is still only its position on the
one-dimensional object.Moving from sticks and strings to words and
linguistic items, their local dimensionality is the question to be
studied. The dimensionality of the global space—the box—may
need to be high to accommodate a large number of semantic
neighbourhoods, even while the intrinsic dimensionalities of those
neighbourhoods are orders of magnitude smaller than the global
dimensionality. Locally, the neighbourhoods do not make use of all
those dimensions. Exploring this further would be in keepingwith the
previous point of the preeminence of local neighbourhoods over
global structure. There is no obvious answer to howmany relations to
other itemswould be necessary to define the local neighbourhood. To
specify the position of turquoise, one needs to relate it to a number of
other hues and tints, and to constructions where they are used, but
not to dinosaur species, teleological notions, or modal auxiliary verbs
and verb-chain constructions. To specify the position of a modal
auxiliary verb, the relations it enters into involve many constructions
and a large variety of main verbs in very different ways than a colour
term.One experiment, where 100,000 points in a semantic spacewere
randomly chosen to have their local neighbourhood probed, verified
the discrepancy between global and local dimensionality, and
hypothesises local structures that are not apparent on a global
level (Karlgren et al., 2008). In the case of linguistic items, the
dimensionality of the box has been experimented with, not
through a principled approach but through evaluation on
linguistic tasks. If the global dimensionality is too low the
compression of the data causes a language model to be noisy.
This has been established variously depending on details of the
implementational framework [on the order of a hundred, in the
case of Latent Semantic Indexing (Deerwester et al., 1990), a few
hundred for most current neural models, and on the order of a
thousand for Sparse Distributed Memory (Kanerva et al., 2000)]. But
the dimensionality of these “sticks” and “strings” has not been studied
more closely: it is to be expected that some of the items have more
convoluted local neighbourhoods than others.

“WHEN THE MAP IS MORE EXACT THAN
THE TERRAIN”

The geometrical toolkit is arbitrarily and deceptively precise even
when the data may be fuzzy. As argued above, most pairs of items
in a semantic space should be completely unrelated. If an other
item is below the horizon of interest as viewed from one of

interest, no answer should be given, rather than a precise float, as
in Example (4).

4) What is the relation between dodecahedron and chilly?

Also, comparisons between distances may be meaningless,
even when the model responds with exact scores. Examples (5-a)
and (5-b) are questions that probably should not be answered, in
contrast with Examples (2-a) and (2-b). When we use exact
computations on approximate data, we risk believing the
numerical results more than they deserve: the map is more
exact than the terrain, as it were. This, of course, is true for
any model that does precise computation on approximate data.

5) a. Is a cow more like a donkey than a skillet is like a kettle?
b. Is Debussy more like Poulenc than Hank is like Waylon?

A geometric model should be consulted with an awareness of
the semantic horizon beyond which any relation is random noise:
aggregating many such irrelevant signals between sets of items
risks assuming a relation where none exists. A geometric model
will deliver precise responses, but that precision is not always
interpretable. Most importantly, a precise distance is not a
measure of certainty. Neither is finding a low distance score
between two items a measure of how confidently the model can
assess their relation.

WHEN AND HOW TO USE PRE-TRAINED
EMBEDDINGS

All the above admonitions apply equally to using pre-trained
embeddings in a project. Frequently word vectors from other
projects are used as input for experiments in e.g., text classification
or topical analysis of material. This is in general a good idea. It allows
an experiment to transcend the reliance on strings and to generalise
from them to a somewhat more abstract level of meaning by using
data from a larger body of language encoded in the vectors, by the
reasoning given in The Promise of Continuous Representations.
However, to do this, the experiment must make explicit what the
hypothesis behind this generalisation step is, and then select (or
retrain) the semantic vectors used accordingly. Is the objective to
generalise from words to their synonym sets? Or is the objective to
incorporate topical associations or connotations? These are all useful
generalisations from a single word to a broader notion of linguistic
meaning, but are not substitutable. Are the vectors trained on the same
or at least comparable genre? Have the linguistic items been weighted
by occurrence frequency or discriminatory power? A research project
that includes a pre-trained semantic model should be able to state
what aspect of meaning the model is intended to enhance.

HIGH-DIMENSIONAL VECTOR SPACES
ARE HERE TO STAY

Processing of linguistic data in high-dimensional vector
spaces has a history of over 40 years, and the concurrent
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increase in computing capacity and an accessible data has
afforded impressive results in recent years. Besides the
import of geometry to our understanding of semantics,
which is the topic of this paper, the mathematics of high-
dimensional spaces includes powerful computational
algebras which allow for hypothesis-driven
experimentation on semantic data. Such algebras are
distinct from linear algebra and have simple operations for
representing compositional structure (Plate, 2003) which
allow combining semantics and syntax in a common
computing architecture (Gayler, 2003) as shown in
experiments that combine geometric and algebraic
properties of high-dimensional representation (Jones and
Mewhort, 2007; Joshi et al., 2017, e.g.). Statistical learning
and rule-based inference are hallmarks of human intellectual
information processing and a representation to handle both
simultaneously is both possible and desirable.
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