AUTHOR=Bhatt Arjun , Roberts Ruth , Chen Xi , Li Ting , Connor Skylar , Hatim Qais , Mikailov Mike , Tong Weida , Liu Zhichao TITLE=DICE: A Drug Indication Classification and Encyclopedia for AI-Based Indication Extraction JOURNAL=Frontiers in Artificial Intelligence VOLUME=Volume 4 - 2021 YEAR=2021 URL=https://www.frontiersin.org/journals/artificial-intelligence/articles/10.3389/frai.2021.711467 DOI=10.3389/frai.2021.711467 ISSN=2624-8212 ABSTRACT=Drug labeling contains an ‘INDICATIONS AND USAGE’ that provides vital information to support clinical decision making and regulatory management. Effective extraction of drug indication information from free-text based resources could facilitate drug repositioning projects and help collect real-world evidence in support of secondary use of approved medicines. To enable AI-powered language models for the extraction of drug indication information, we used manual reading and curation to develop a Drug Indication Classification and Encyclopedia (DICE) based on FDA approved human prescription drug labeling. A DICE scheme with 7,231 sentences categorized into 5 classes (indications, contradictions, side effects, usage instructions, and clinical observations) was developed. To further elucidate the utility of the DICE, we developed 9 different AI-based classifiers for the prediction of indications based on the developed DICE to comprehensively assess their performance. We found that the transformer-based language models yielded an average MCC of 0.887, outperforming the word embedding-based Bidirectional long short-term memory (BiLSTM) models (0.862) with a 2.82% improvement on the test set. The best classifiers were also used to extract drug indication information in DrugBank and achieved a high enrichment rate (>0.930) for this task. We found that domain-specific training could provide more explainable models without performance sacrifices and better generalization for external validation datasets. Altogether, the proposed DICE could be a standard resource for the development and evaluation of task-specific AI-powered, natural language processing (NLP) models.