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The connection between optimal stopping times of American Options and multi-armed
bandits is the subject of active research. This article investigates the effects of optional
stopping in a particular class of multi-armed bandit experiments, which randomly allocates
observations to arms proportional to the Bayesian posterior probability that each arm is
optimal (Thompson sampling). The interplay between optional stopping and prior
mismatch is examined. We propose a novel partitioning of regret into peri/post testing.
We further show a strong dependence of the parameters of interest on the assumed prior
probability density.
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1 INTRODUCTION

Sequential testing procedures allow an experiment to stop early, once the available/streaming data
collected is sufficient to make a conclusion. The benefits of reducing the duration of e.g. Web based
A/B tests, clinical trials or the monitoring of adverse events are obviously very attractive in terms of
saving costs and lives. Wald (Wald, 2004) proposed a sequential probability ratio test (SPRT) for
continuous sequential analyses, where the observation ends if the likelihood ratio exceeds or falls
below predetermined bounds. In order to reduce the dependence on the alternate hypothesis,
Kulldorff et al. (Kulldorff et al., 2011) introduced the use of a maximized sequential probability ratio
test (MaxSPRT), where the alternative hypothesis is composite rather than simple. A detailed
comparison of (a modified) MaxSPRT and the O’Brien & Fleming test (O’Brien and Fleming, 1979)
can be found in (Kharitonov et al., 2015). Note that all of these methods are typically limited to
comparing two treatments at a time and deploy equal allocation, i.e. no attempt is made to maximize
“rewards” during the testing phase. Multi-armed bandits (MABs) offer attractive solutions to both of
these shortcomings.

One consequence of unplanned optional stopping rules for Null Hypothesis significance testing
(NHST) are severely inflated type-I error rates. Bayesian hypothesis testing (BHT) is frequently
hailed as a win-win alternative to traditional A/B testing. While there is a growing literature in favor
of Bayesian stopping criteria based on the sequential collection of data (Rouder, 2014; Schönbrodt
et al., 2017), other authors illustrate the dangers of optional stopping (Erica et al., 2014; Sanborn and
Hills, 2014; de Heide and Grünwald, 2017; Hendriksen et al., 2018). This paper expands upon prior
work (Loecher, 2017) and specifically focuses on the effects of optional stopping on the multi-armed
bandit (MAB) procedure outlined by (Scott, 2010; Scott, 2012). In particular, we use simulations to
demonstrate that the choice of the prior distribution has a significant impact on i) the power to detect
differences between arms, ii) the average sample size as well as iii) the cumulative and terminal regret.
In addition, we examine the precision of the final estimates and the dependence of the sample size on
number of arms and effect sizes.
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Our work touches upon previous research on American
Options (Bank and Föllmer, 2003) that demonstrates a close
connection between multi-armed bandits and optimal stopping
times in terms of the Snell envelope of the given payoff process.

2 MULTI-ARMED BANDITS

As compactly described in (Scott, 2015), the name multi-armed
bandit (MAB) describes a hypothetical experiment where one
faces k> 1 slot machines (colloquially known as “one-armed
bandits”) with potentially different expected payouts. In the
typical setup there are k “arms,” a � {1, . . . , k}, which of
course are metaphors for simple Bernoulli experiments with
success probability pa. Arm a is associated with an unknown
expected reward μa which for clarity we assume to be
proportional to pa. We further assume a Beta (αa, βa) density
as a prior distribution for pa. The goal is two-fold: identify the arm
with the greatest pa (or equivalently μa ) as soon as possible, and
to accumulate the greatest total reward in doing so. This problem
is similar to traditional sequential testing from the statistics
literature (Wald and Wolfowitz, 1948; Jennison and Turnbull,
2000) but more complex due to the balancing of the so called
explore/exploit dilemma: while one wants to find the armwith the
highest reward, the total cost of the experiments needs to be
minimized at the same time. The fundamental tension is between
“exploiting” arms that have performed well in the past and
“exploring” new or seemingly inferior arms in case their true
performance is even better.

2.1 Randomized Probability Matching
Multiple algorithms have been proposed to optimize bandit
problems: Upper Confidence Bound (UCB) methods (Lai and
Robbins, 1985; Auer et al., 2002) for which strong theoretical
guarantees on the regret can be proved, are very popular. The
Bayes-optimal approach of Gittins (Gittins et al., 2011) directly
maximizes expected cumulative payoffs with respect to a given
prior distribution. Randomized probability matching (RPM), also
known as Thompson Sampling (TS) (Thompson, 1933;
Thompson, 1935), is a particularly appealing heuristic that
plays each arm in proportion to its probability of being
optimal. Recent results using Thompson sampling seem
promising (Graepel et al., 2010; Granmo, 2010; Scott, 2010;
May and Leslie, 2011; May et al., 2012), and the theoretical
analysis is catching up (e.g. optimal regret guarantees for TS
have been proven by (Agrawal and Goyal, 2012)).

In contrast to the fixed length, equal allocation of resources in
NHST, RPM assigns the subsequent nbatch samples in proportion
to the 1posterior probability

wa,t ≡ P(μa > μi≠ a∣∣∣∣Ya,t ,Na,t) �
∫ ​ 1

0
Beta(pa∣∣∣∣Ya,t + αa,Na,t − Ya,t + βa)⎡⎢⎢⎣∏

j≠ a

∫​ 1

pj

Beta(pj∣∣∣∣∣Yj,t

+αj,Nj,t − Yj,t + βj)dpj⎤⎥⎥⎦dpa
after each batch of recorded samples, where Ya,t and Na,t denote
the cumulative number of successes and trials observed for arm a
up to time t (which yield the observed sample proportions
p̂at � Ya,t/Na,t). Thus, arm a ∈ {1, . . . , k} obtains na,t � nbatch ·
wa,t samples on batch t respectively. This process is repeated
until a set of stopping rules has been satisfied, the discussion of
which we will defer to section 4. In this paper we do not allow for
differences in prior parameters across arms, so from now on we
assume αj ≡ α, βj ≡ β.

2.2 Regret
It is worth noting that there are important differences between
classical experiments and bandits w.r.t. the assumed optimality
criteria. In many situations the “switching costs” between
treatment arms with essentially equal rewards is small or
even zero, which shifts all the costs to type-II errors. But
even the concept of type II errors needs to be modified to
properly reflect the loss function of a multi-armed bandit
experiment:

1. Instead of “correctly rejecting a hypothesis” we care mainly
about identifying the correct superior arm. For two arms, the
concept of a type S and type M error (Gelman and Carlin,
2014) would be more appropriate.

2. For multiple (k> 2) arms, there are k − 1 different type-II
errors.

3. The magnitude of the difference between the proclaimed and
actual superior arm matters greatly.

A popular loss function which addresses all of the above
concerns -at least for the testing phase-is regret, defined as the
cumulative expected lost reward, relative to playing the optimal
arm from the beginning of the experiment (Scott, 2010):

Let at denote the arm of the bandit that was played at time t
and μa denote the expected reward. Let μ* � maxa{μa} be the
expected reward under the truly optimal arm, and let na,t denote
the number of observations that were allocated to arm a at time t.
Then the expected cumulative regret is

Lc
T � ∑T

t�1
Lt � ∑T

t�1
∑
a

na,t(μ* − μa)
where we refer to the non cumulative Lt as regret.

2.3 Choice of Priors
It is sometimes said that for MABs with Thompson sampling no
tuning parameters have to be chosen at the onset of an
experiment–unlike in classical testing where one has to fix the
smallest difference to be detected at a certain confidence level in
advance of the experiment.

1which can easily be computed either by quadrature or simulation (see Figures 3, 4
in (Scott, 2010)). Note that alternatively (and computationally more efficient) we
draw one random sample from each individual arm’s posterior and choose the one
with the largest draw.
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We point out that the choice of the prior distribution for the
binomial parameter plays a similar role to the parameter settings
in NHST. For Gaussian priors (Honda and Takemura, 2014)
showed that TS is vulnerable to prior misspecification, and
(Bubeck and Liu, 2014) derive prior-free and prior-dependent
regret bounds for more general cases.

In Sections 3, 4 we investigate the impact of a misspecified
prior on the key metrics of a MAB experiment. Note that the
consequences of a mismatch between the assumed and actual
prior distribution have recently received a fair amount of
attention in the literature (Rouder, 2014; de Heide and
Grünwald, 2017; Hendriksen et al., 2018).

In the following simulation study (all simulations are run in
R (R Core Team. R, 2016) using the bandit package (Lotze and
Loecher, 2014)) we repeated each experiment 500 times with
k � 10 arms for a maximum of Nmax � 1000 periods. Each
“batch” consisted of a total of nbatch � k × 50 Bernoulli trials
distributed across the k arms. We need to distinguish between
two implementations of the prior distributions (each a beta
distr. with parameters α, β):

1. Sampling the true values for the k binomial probabilities pi.
We analyze 2 “effect sizes”:
a. “large”: pi concentrated in the range

[0.05, 0.14] (α � 8.8, β � 84).
b. “small”: pi concentrated in the (4 times narrower) range

[0.05, 0.14] (α � 61.5, β � 941).
2. The assumed prior in the computation of the posterior. We

analyze three types: i) a uniform (α � 1, β � 1), ii) a perfect
match (assumed equal true prior), and iii) “strong
disagreement” (a 3 times higher mean of the true prior
than the assumed, equal variance).

Hence, we report on a total of 2 × 3 groups of experiments.

3 INFINITE EXPERIMENTS

In principle, bandits can run indefinitely, hence never forfeiting
exploration, with the appealing consequence that the superior
arms will eventually be correctly identified.

The top row of Figure 1 shows the temporal evolution of the
distribution of the expected regret per time period Lt for the case
of relatively large effect sizes. With the exception of persistent
outliers, the regret in the first two panels quickly decays to zero as
sub-optimal arms are identified and decreasingly likely to receive
further explorative samples. The rightmost panel illustrates the
effects of a strong disagreement between the assumed and actual
prior distribution; while the median regret also decreases, its
interquartile range as well as the 95% percentile do not
decrease. For the smaller effect size (bottom row), even the
median regret does not seem to improve as time passes. Note
the similarity of the results for the uniform and the perfectly
matched prior which would support the perceived robustness
of a non-informative prior. Maybe there is little to be gained
(middle panels) but much to be lost (rightmost panels) if one
tried to carefully calibrate the prior to the expected actual
Bernoulli rates of the particular situation? We will address this
question in the next section.

4 STOPPED EXPERIMENTS

In reality, infinitely long running experiments are rarely practical
or even feasible. The purpose of experimentation is typically to
identify superior treatments and eliminate inferior ones. We will
discuss and implement two stopping rules both based on the
posterior probability wa,t of arm a being optimal at time t. Of
course, in practice, a maximum sample size is often enforced as a
third termination criterion.

FIGURE 1 | Boxplots depicting expected regret per time period Lt for (top row) large and (bottom row) small effect sizes. The columns correspond to the three
assumed priors outlined in the main text.
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Rule I is to decide in favor of one arm as soon as its posterior
probability crosses a threshold which we set to 0.95 and which is
related to the power of the test, i.e. wa,t > 0.95. The second metric
being monitored is the potential value remaining in the
experiment, which is particularly useful when there are
multiple arms. At any instance t, the arm with the maximum
posterior probability, a* � argmaxawa,t , is the most likely
candidate to offer the highest success probability. The value
remaining (VR) is the 95th percentile of the distribution of
(max(μ̂a) − μ̂a*)/μ̂a* , where μ̂a are samples from the posteriors
of arm(s) a. The VR attempts to estimate the amount of increased
conversion rate2 one could get by choosing another arm, a≠ a*.
Note that the VR is a random variable with a distribution that

depends on the observed data and is closely related to the value at
risk metric ubiquitous in finance. Rule II (Scott, 2012) is to end
the experiment when VR< 0.013. Rule III is to stop the
experiments after Nmax � 1000 batches.

For all three stopping rules, the arm with the largest posterior
probability of being optimal is then chosen. Which metric should
we use to evaluate the performance of this procedure? While it is
tempting to simply take cumulative regret as a measure of loss as
done in (Scott, 2010), this would ignore the quality of terminal
decisions (It is easy to see that stopping early, i.e. reducing T
would always decrease LcT !). In support of this claim, Figure 2
shows substantial “gains” for the case of the mismatched priors
(cumulative regret is just 10). At the same time, we see that the

FIGURE 2 | Cumulative expected regret under optional stopping for the large effect size only. The columns correspond to the three assumed priors outlined in
Section 2.3 from the main text. The average cumulative regrets are 115,75, 10, respectively.

FIGURE 3 | Terminal expected regret (measured in percent deviation from the true arm probability) under optional stopping for both effect sizes. The columns
correspond to the three assumed priors outlined in the main text. Note the very large peaks at zero regret (sqrt scaling of the y axis).

2We use conversion rate synonymously to probability of success in a Bernoulli
setting.

3i.e. when there is a probability ≥ 0.95 that the value remaining is less than 1% of
the current estimate of the highest conversion rate pa* ,t .
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average cumulative regret for the perfectly matched prior is
substantially lower (75) than the one under the assumption of
a uniform prior (115).

Instead we adapt the train/test framework from machine
learning to sequential testing and simultaneously monitor the
expected regret after stopping the experiment. We define this
terminal regret (TR) as the percent difference between the
optimal arm and the one chosen by the bandit through a
stopping rule: TR � (μ* − μa* )/μ*. We mention in passing its
close similarity to the so-called simple regret defined in
(Bubeck et al., 2011). The total cost of an experiment is a
weighted sum of the cumulative and terminal regret, where the
weights clearly depend on the ratio of added rewards during
(peri) and after (post) testing. Figure 3 displays the
distributions of the relative version of this metric which is
most relevant for long running campaigns. As terminal regret
is defined conditional upon having triggered the stopping rule,
it is helpful to know the proportion of tests that did not
terminate before the maximum test length, which is
displayed in Table 1.

The numbers confirm the pattern gleaned from Figure 2; a
strong mismatch of priors leads to overly aggressive test
terminations, whereas the uniform prior results in a much
more cautious decision making. We conclude this section with

a possibly redundant message regarding the precision of the
estimates of the superior arm.

Figure 4 shows the percent difference between the estimated
arm probabilities at termination and the true one (for arm 10
which is always chosen to be the one with the largest reward).
While there does not appear to be a noteworthy upward bias we
again notice a somewhat strong dependence of the precision of
the estimates and the assumed prior.

4.1 Calibration
While MABs make no guarantees on type-I/II errors, stopping
rules I and II suggest precise probabilistic statements which a user
might want to rely upon. We now show that the combination of
optional stopping and mismatched priors leads to poor
calibration of inferential expectations.

Table 2 displays the percent of correct early stopping decisions
for each stopping rule, which should be close to 95% and seems to
be correct for the case of agreeing priors (middle column). But the
outcomes for the two other priors send a by now familiar
message: either one faces overly aggressive test terminations
(and hence inflated claims of posterior optimality
probabilities) or the MAB is too conservative. The data in
Table 3 complement the conditional nature of Table 2.

4.2 Accuracy and ASN
All simulations up to this point have been “fully Bayesian” in the
sense that the true k (fixed at k � 10) arm probabilities were
sampled from the corresponding prior distribution anew for each
individual experiment. In this last section, we deviate from that
strategy and instead consider equally spaced parameters in the
interval [0.05 − Δ; 0.05] and vary k ∈ {2, 5, 10}, where the true
effect size is then proportional to Δ. We further restrict ourselves
to the uniform prior. Our goal is to find a dependence of accuracy

TABLE 1 | Percent of tests which did not terminate before the maximum test
length (� 1000). Shown are results for the two effect sizes and the three priors.

Uniform Match Disagreement

Large 25.4 16.9 0.0
Small 79.1 60.8 0.0

FIGURE 4 | Variation of the bias in the estimate of the superior arm. The red vertical lines depict the empirical average of the bias.
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and average sample number (ASN) on this effect size, which is
somewhat more straightforward for this simpler
experimental setup.

The left panel of Figure 5 shows the proportion of choosing
the correct arm for a total of 2, 5 and 10 arms respectively as a
function of the distance Δ to the (optimal) reference arm
p0 � 0.05. For just two arms, the accuracy drops from the
claimed 0.95 to 0.6 as Δ decreases from 0.01 to 0.0005 (Since
the goal of experimentation is to find the optimal arm, error
metrics from classification seem more suited than those from a
traditional hypothesis testing framework; we therefore prefer
accuracy over e.g. power). For multiple arms the loss of
accuracy is much more dramatic and the onset earlier. The
right panel of Figure 5 displays the average number of
iterations/samples (ASN) the bandits took to make a decision.
The logarithmic y-axis reveals an exponentially increasing
effective sample size as the differences between the arms wane.

We treat the special case of Δ � 0 separately as a “Null
simulation.” Surprisingly, with a uniform prior distribution,
collecting nbatch × k × Nmax � 50 × 10 × 1000 samples does not
generate sufficient evidence to declare a value remaining to be
less than 1%, as Figure 6 shows.

TABLE 2 | Percent of correct early stopping decisions. Upper table shows results
for rule I, lower table for rule II, as explained in the text. These fractions are
conditional upon having triggered the stopping rule, the probabilities of which are
shown in Table 3. For small effect sizes and a perfectly matching prior, a low value
remaining is always declared before a significant posterior, which leads to the
missing value in the 2nd row.

Uniform Match Disagreement

Posterior >0.95 Large 100.0 95.0 48.7
Small 80.0 21.3

Value <0.01 Large 98.4 96.4 49.2
Small 94.1 96.2 27.2

TABLE 3 | Percent of triggered early stopping decisions. Upper table shows
results for rule I, lower table for rule II, as explained in the text. The column
sums for corresponding rows in each table may add up to > 100 as stopping rules
are not mutually exclusive.

Uniform Match Disagreement

Posterior >0.95 Large 5.0 16.1 55.0
Small 1.0 0.0 67.6

Value <0.01 Large 74.6 83.1 100.0
Small 21.0 39.2 100.0

FIGURE 5 | (A) Accuracy as a function of distance (Δ) to the reference arm 0.05. The true conversion probabilities for k arms are equally spaced in the interval
[0.05 − Δ; 0.05]. (B) Average sample number (ASN) for multi armed bandits increases exponentially with shrinking distance (Δ) to the reference arm 0.05.

FIGURE 6 | Distribution of the metric value remaining for the Null case of all k � 10 arms being equal (pi � 0.05). With a uniform prior, not a single experiment ended
earlier than the maximum number of iterations, i.e. the lower bound of 0.01 was never crossed!
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5 CONCLUSION

Our contribution is to demonstrate a heightened sensitivity to
prior assumptions in MABs when data-dependent stopping rules
are used; a problem which has been known to be true in simple
Bayesian inference for a few decades by now (Rosenbaum and
Rubin, 1984). We have also shown that i) early high confidence
decisions in MABs are much less reliable than claimed, and that
ii) the prior parameters have a significant impact on most
important metrics used to evaluate MABs. It seems that the
burden of specifying tuning parameters has not vanished but
is less directly obvious than in competing methods. Clearly, the
sensitivity and expected sample size are determined by the beta
prior parameters α, β. While the default uniform prior offers
reasonable performance, it could be optimized by choosing more
appropriate priors, at the risk of greatly worsening the outcome.

We further worry about the inability to easily set priors for the
differences in Bernoulli probabilities rather than just the
parameters themselves. The additional flexibility would allow
to optimize for much more realistic experimental situations.

Of course, it is true that the cost of an experiment can be
substantially reduced by deploying RPM based bandits instead of
pre-committing to a fixed sample size. Allowing to rapidly detect
large differences and not waste resources sticking to an

unnecessarily rigid protocol is obviously a benefit of most
sequential testing algorithms. One difference being that
optimization attempted by Bayesian bandits is not concerned
with a null hypothesis but with minimizing the posterior
expected loss. The implicit assumption that Type-I errors
incur no additional cost is likely to be wrong in realistic
applications: it seems more reasonable that switching
campaigns for no good reason should be avoided. These
insights complement recent literature on frequentist-
oriented bandit algorithms implementing optional stopping
(Kharitonov et al., 2015; Johari et al., 2017; Aziz et al., 2018;
Kaufmann et al., 2018).
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