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The “science of magic” has lately emerged as a new field of study, providing valuable
insights into the nature of human perception and cognition. While most of us think of magic
as being all about deception and perceptual “tricks”, the craft—as documented by
psychologists and professional magicians—provides a rare practical demonstration
and understanding of goal recognition. For the purposes of human-aware planning,
goal recognition involves predicting what a human observer is most likely to
understand from a sequence of actions. Magicians perform sequences of actions with
keen awareness of what an audience will understand from them and—in order to subvert
it—the ability to predict precisely what an observer’s expectation is most likely to be.
Magicians can do this without needing to know any personal details about their audience
and without making any significant modification to their routine from one performance to
the next. That is, the actions they perform are reliably interpreted by any human observer in
such a way that particular (albeit erroneous) goals are predicted every time. This is
achievable because people’s perception, cognition and sense-making are predictably
fallible. Moreover, in the context of magic, the principles underlying human fallibility are not
only well-articulated but empirically proven. In recent work we demonstrated how aspects
of human cognition could be incorporated into a standard model of goal recognition,
showing that—even though phenomenamay be “fully observable” in that nothing prevents
them from being observed—not all are noticed, not all are encoded or remembered, and
few are remembered indefinitely. In the current article, we revisit those findings from a
different angle. We first explore established principles from the science of magic, then
recontextualise and build on our model of extended goal recognition in the context of those
principles. While our extensions relate primarily to observations, this work extends and
explains the definitions, showing how incidental (and apparently incidental) behaviours may
significantly influence human memory and belief. We conclude by discussing additional
ways in which magic can inform models of goal recognition and the light that this sheds on
the persistence of conspiracy theories in the face of compelling contradictory evidence.
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1 INTRODUCTION

Goal recognition is the problem of determining an agent’s goal by observing its behaviour. It is a
long-established area of artificial intelligence (AI) research (Kautz and Allen, 1986; Charniak and
Goldman, 1991; Carberry, 2001), commonly tackled for two quite different purposes: literally, to
determine the observed agent’s goal; but also, once removed, to determine what an observer, seeing
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similar behaviour, is most likely to believe to be the observed
agent’s goal. In recent work, Masters et al. (2021) introduced the
notion of extended goal recognition (XGR) to focus on that
second purpose, which is of increasing concern to
practitioners in robotics and human-machine interaction,
where its use falls under the heading of “interpretable
behaviour” (Chakraborti and Kambhampati, 2019). In this
context, we ask: when these observations are made or this
sequence of actions is performed, what is a human-like
observer most likely to believe?—with the important caveat
that an observer’s belief may be wrong.

This distinction—that traditional goal recognition seeks the
ground truth, while interpretable behaviour is concerned with
potentially erroneous belief—is critically important but rarely
acknowledged. It is easy to assume that, since both humans and
goal recognition systems are trying to solve the same problem
(what is the observed agent’s goal?) they ought not only to be
doing it in the same way but arriving at similar conclusions. Once
recognised, however, the confusion is unsurprising. Artificial
intelligence, as a discipline, has always grappled with this
issue. On the one hand, it sets out to achieve human-like
intelligence in order to make human-like decisions; on the
other, its decisions and behaviour are expected to be governed
by logic and rationality. As Russell and Norvig (2013) point out
(p.1), there is a big difference between thinking humanly and
thinking rationally. In AI, rationality typically has the edge: it
supports a strict and straightforward mathematical definition
convenient both practically (e.g., for roboticists) and theoretically
(i.e., for research). By comparison, human-like reasoning seems
woolly and ill-defined.

Assumptions, preconceptions and false beliefs that may
appear mysterious and anomalous to a computer scientist,
however, are trivially consistent to those who make their
livings by manipulating the beliefs of their fellow humans.
Professionals in this regard include military strategists,
marketers, confidence tricksters and stage magicians. In this
article, we focus on the latter.

It is a magician’s job to manipulate their audience’s beliefs: to
findways of persuading it that the coin is here when really it is there,
that you chose the Ace of Spades of your own free will, that the lady
really has been sawn in half. Lately, moreover, the practice of magic
has been analysed with renewed rigour in terms of the psychological
principles at work, giving rise to an emerging field of study dubbed
by Kuhn (2019) amongst others, the “science of magic”.
These—and related—principles provide both the inspiration for
XGR and a practical demonstration of its effectiveness. Goal
recognition systems use probabilistic reasoning to predict what
an observer is most likely to understand from a given sequence of
actions; informally, magicians have beenmaking similar predictions
for generations, performing sequences of actions such that human
observers reliably draw erroneous conclusions. Importantly,
magicians can rely on the conclusions people will draw. Magic
works by exploiting flaws in human reasoning that are predictable;
and because they are predictable, they are susceptible to
probabilistic/mathematical interpretation.

Behavioural scientists frame human-like reasoning of the type
exploited by magicians as mistakes (Kahneman, 2011). While

acknowledging that instinctive “fast” reasoning is predictable,
they imply that the resultant errors can and should be corrected
by applying more careful “slow” reasoning. This notion has lately
been challenged, for example by King and Kay (2020). They point
out that the short-cuts taken by people operating in the real world
may seem like mistakes in the context of small-world problems of
the type studied by economists and computer scientists, but are
essential to real people operating in the real world. The question
for AI—given that one frequently-cited purpose of the discipline
is to try to replicate human reasoning—is this: should AI try to
replicate human reasoning even when that reasoning is flawed? In
the context of interpretable behaviour, XGR and indeed this
paper, we suggest that it should.

In what follows, we first provide a background to the science
and study of magic. We then present the underlying technical
framework on which we build XGR as a series of extensions and
introduce a test environment. Next, we present the lessons from
magic, providing their psychological basis, their demonstrated
efficacy in the context of magic, their significance to goal
recognition, and formal definitions to support their technical
realisation. Finally, we present our extended model and conclude
by discussing further ways in which magic can inform goal
recognition and the light that this sheds on issues such as the
persistence of conspiracy theories and fake news even in the face
of compelling contradictory evidence.

2 THE “SCIENCE” OF MAGIC

Magic is emerging as a rich source of insight into human
cognition, as confirmed by the growing attention it has lately
received from leading international scientific journals
(e.g., Danek et al., 2014; Kuhn et al., 2014; Rensink and Kuhn,
2015). Work in this field offers a unique perspective to AI
research in general; and to goal recognition in particular.
When conducted for the purpose of human-aware planning,
goal recognition involves predicting a human’s most likely
belief based on observations of an agent’s behaviour.
Magicians, meanwhile, practically demonstrate precisely those
factors that determine how observable phenomena control
what humans are most likely to believe.

Deception is a fruitful context for the study of goal recognition.
An experiment in which someone comes to believe something
that is in fact true may be able to confirm that extraneous actions
caused no confusion but it is only when we see them come to
believe something false that we can begin to evaluate how, why
and when their (false) belief arose. Magicians are amongst a
handful of professional deceivers, alongside military strategists,
con-artists, crime writers and, arguably, advertising executives.
Their skills extend well beyond the notion that “the speed of the
hand deceives the eye”. Consider, for example, that in AI research
we frequently assert that the environment must be only partially
observable in order to achieve deception. Using misdirection, a
magician routinely deceives even in an environment that is fully
observable (in that it is possible for everything in the environment
to be seen) by directing attention away from whatever is to be
hidden and towards whatever is to be believed. Furthermore, in

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 7309902

Masters et al. XGR: Lessons from Magic

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


AI research we frequently assert that the observer must be naïve
(i.e., unsuspecting) in order to achieve deception. A magician,
however, reliably deceives their audience, even though that
audience is fully expecting deception to occur. Unsurprisingly,
practitioners have very different views about magic from those
held by the general public. Amateur magicians and “muggles” in
the audience tend to focus on the physical skills involved: how to
palm a card successfully or conceal a coin without dropping it or
giving ourselves away. But to emphasise a magician’s dexterity is
like thinking the most important attribute of a concert pianist is
their hand hygiene or that an actor is gifted because they are able
to “learn all those lines”. Magicians, sharing information amongst
themselves, tend to focus not on their physical skills but on the
cognitive and decision-making aspects of their craft; and those are
the topics that concern us here.

Bruno’s Anatomy of Misdirection (1978, as cited in Kuhn
et al., 2014) sets out three levels of misdirection that can be seen as
a progression from the lay view towards that typically held by a
magician. Bruno differentiates between: distraction, where several
things seem to be going on at the same time, creating confusion
(perhaps as crude as a loud bang, one of the lay notions of
misdirection); diversion, where although only one thing seems to
be going on, such as the story the magician is telling or apparatus
at which they are pointing, it is something that demands the
observer’s full attention; and relaxation, which refers to those
moments during a performance when, even without them
realising it, the audience’s attention is diminished, as occurs
when a trick seems to have been completed or after the same
actions have been repeated multiple times (so-called “off-beats”,
the more sophisticated perspective of a seasoned performer).

Lamont and Wiseman (2005) emphasise the fundamental
reality that in every trick there are at least two things going
on: a method—actions taken to make the trick happen; and an
effect—what the audience is made to believe. Indeed, in his
general theory of deception, Whaley (1982) points out that
this is a fundamental reality for all strategic deception, which
he maintains is always part dissimulation (hiding the real) and
part simulation (showing the false). It is never enough to conceal
the truth: when something is hidden, something else is necessarily
shown, if only implicitly. You might hide coins in a jar, for
example, showing (implicitly) that there is no money in
the house.

With this in hand, misdirection is readily explained as
anything that directs an audience’s attention away from the
method and towards the effect. Lamont and Wiseman (2005)
distinguish between physical and psychological misdirection.
Physical misdirection, they say, can control where an observer
looks either actively (e.g., by pointing or looking towards the
effect) or passively, creating an area of “primary” interest around
the effect through novelty, movement or contrast. More subtly, a
magician can control when an audience looks, ensuring the
method remains hidden by performing the necessary technical
steps either before the effect begins or after it seems to have been
completed. Psychological misdirection, on the other hand, is
concerned with the observer’s suspicion, which can be reduced
by making sure the method appears natural, that it is justified by
some ruse (e.g., taking something from the pocket to conceal the

fact that you are putting something in) or diverted by introducing
false solutions or expectations. Moreover, suspicion in the
method can be reduced by reinforcing the observer’s belief in
the effect. One further major device considered by Lamont and
Wiseman of interest to us is reconstruction whereby the observer
is encouraged to misremember what they have seen. Only
possible because people are unable to remember an extended
sequence of events precisely, the magician can “remind” a
spectator that the cards were shuffled, for example, and that
she then freely selected a card from the deck when, in fact, the
card was selected first and the deck only shuffled afterwards.
Citing various well-respected magicians, the authors discuss how,
by emphasis or de-emphasis, actions can be made more or less
memorable—and thereby more or less likely to be available for
recall when the audience later attempts to reconstruct how some
particular effect could have been achieved. Figure 1 demonstrates
the extent to which such practices have been found to succeed. An
audience leaving Kar-mi’s performance would doubtless believe
that they witnessed him swallow a gun and fire a shot out of his
mouth but we can be fairly certain that this is not precisely the
event that occurred.

While Bruno (1978, as cited in Kuhn et al., 2014) explains
misdirection primarily in terms of controlling where the spectator
looks, Lamont and Wiseman (2005) additionally link
misdirection to human cognition and consider how human
idiosyncrasies with respect to memory can be exploited. In
their taxonomy of misdirection, Kuhn et al. (2014) take
further steps towards establishing what has become known as
the science of magic (SOMA), explicitly associating magical
techniques with the psychological principles on which they
depend. The authors categorise three types of misdirection:
perceptual (what is observed), memory-related (what is
remembered) and reasoning-related (what is believed).
Perceptual misdirection may be attentional or non-attentional.
That is, misdirection is not only concerned with what you notice
but with what you fail to notice. Memory-related misdirection
includes forgetting and misremembering, and reasoning-related

FIGURE 1 | 1914 poster suggesting what Kar-Mi’s audience were made
to believe. Original held at Boston Library. Reproduced from the
Massachusetts Collection Online under Creative Commons Licence.
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misdirection, the most novel but least developed of the categories,
incorporates a range of ruses and framing devices that may be
used to deliberately engender false belief. In each case, the authors
pinpoint aspects of cognition (with respect to attention, memory
and reasoning) that can be targeted and manipulated and, at the
lowest level, highlight the techniques magicians traditionally use
to exploit them.

This mapping of specific tactics and strategies to psychological
phenomena lies at the heart of SOMA and tricks have been used
to shed light on significant properties of perception and attention.
These include the Gestalt grouping of elements or principle of
simplicity, whereby people assume potentially discontinuous
elements are in fact continuous if they are convincingly
aligned (Barnhart, 2010); inattentional blindness, whereby
observers are unaware of events outside their attentional
range; and change blindness, whereby observers may fail to
notice even quite substantial changes if their vision is
interrupted (Kuhn and Findlay, 2010). As Levin et al. (2000)
point out, phenomena such as these are particularly easy to
exploit because, on the whole, people are unconscious of them
and assume that their visual awareness is muchmore acute than it
really is. In addition to these “hard-wired” effects, SOMA
researchers have also investigated involuntary/exogenous
attention, showing how salient or newly-introduced objects
command attention—creating those areas of primary focus
noted (but not explained) by Lamont and Wiseman (2005).

Ortiz (2006) takes a broader view, focusing on the design and
structure of a trick over the technical mechanics of its method. He
emphasises that “the micro-elements of an effect (sleights, gaffs,
subtleties, misdirection)” should not be regarded as an end in
themselves but rather combined “on the macro level” to achieve
effects that seem genuinely impossible (p.33). From this
perspective, a trick is a story. It might involve making a coin
seem to appear or disappear or move from your pocket to a cup
but the experience of having witnessed something impossible
depends less on individual acts than on the narrative that weaves
them together, convincing the observer, for example, that the coin
itself possesses magical properties. Sometimes the magician
literally tells a story (e.g., by announcing that he will now saw
the lady in half), sometimes implicitly (e.g., by obviously and
repeatedly tearing a newspaper in half, and the halves in half
again, suggesting that the paper must have ended up in shreds).
Smith et al. (2016) formalise (in part) how the extended story in a
magic trick works by leading observers to mentally construct a
false narrative that gradually departs from reality. To do this,
magicians exploit situations of incomplete information by
seamlessly mixing true and false evidence, ensuring that visible
and inferred elements are always consistent with the effect or
“cover” story. As illusionist Derren Brown explains:

“We are all trapped inside our own heads; and our beliefs
and our understandings about the world are limited by
that perspective. Which means we tell ourselves
stories. . .So here we are in this infinite data source.
There’s an infinite number of things that we could
think about but we edit and delete. We choose what
to think about, what to pay attention to. We make up a

story—to make sense of what’s going on. And we all get it
wrong” (Brown, 2019).

3 TECHNICAL FRAMEWORK

In this article, we show how psychological principles exploited by
magicians can be formalised as extensions to existing goal recognition
frameworks. Here, we introduce a generic model from (Masters and
Sardina, 2019b) on which we will build to demonstrate the
applicability of our approach. This model has the advantage that it
can be applied online or offline, to path-planning, task-planning or
motion-planning in discrete or continuous domains.

Recall that goal recognition (GR) is the problem of determining
an agent’s most probable goal from observations of its behaviour.
We assume a single observer (the GR system) seeking to identify a
single goal, though the observed behaviours may be performed by
multiple actors. We further assume that the domain supports the
notion of state-to-state transitions that can be costed and that the
observable phenomena within the domain, whatever they consist
of (e.g., actions, states, fluents, trajectories, etc.), are or can be
associated with the transitions that give rise to them.1

Definition 1. A generic cost-based GR problem is a tuple P �
〈D,Ω, �o, G, s, Prob〉 where:

• D is a model of the GR domain (which defines states,
transitions between states and their cost);

• Ω is the set of all the observable phenomena in D;
• �o � o1, o2, ‥, on is an observation sequence, oi ∈ Ω;
• G is the set of candidate goals;
• s is the initial state, which is fully observable; and
• Prob is the prior probability distribution across G.

Generally, a plan π inD is a sequence of elements or events that
imply transitions from state to state. Given a set of all such elements
E, each element has a cost c: E1R and the cost of a plan
cost(π) � ∑m

i�1c(ei). A plan π � e1, . . ., em is said to satisfy
observations �o � o1, . . . , on, if there exists a monotonic function
f : {1, . . ., n}1{1, . . .,m} such that ef(i)� oi for all i ∈ {1, . . ., n}. That
is, the ordering (in both the plan and the observation sequence) is
preserved. The optimal (lowest) cost of a plan from s to a goal g ∈G
is denoted by optc(s, g) and the lowest cost plan from s to g that
satisfies observations �o is denoted optc(s, �o, g).

The solution to P is a probability distribution which prefers
those goals that best satisfy the observations. In seminal work,
Ramirez and Geffner (2009) and Ramirez and Geffner (2010)
introduced the notion of cost difference as a basis on which to
make that distinction, being the difference between the optimal
cost of a plan that satisfies observations and the optimal cost of a
plan that does not. The power of the formula lies in the fact that
both terms can be calculated by a classical planner while one of
the key insights is that the lower a goal’s cost difference, the
higher its probability (relative to other goals in the distribution).

1Technical detail supporting the current article, including a preliminary version of
the XGR model, appeared previously in Masters et al. (2021).
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The cost difference formula has since been analysed by others
(Escudero-Martin et al., 2015; Masters and Sardina, 2017a;
Masters and Sardina, 2019a) and we adopt a less
computationally demanding construction than the original,
proved by Masters and Sardina (2019a) to return identical
results in all but one corner case:

costdif(s, �o, g) � optc(s, �o, g) − optc(s, g). (1)

The solution to a problem P is given by the probability
distribution at (Eq. 2) below. In words, the likelihood of a
goal is inversely proportional to the cost difference. The
results are then multiplied by priors ( Prob ) and normalised:

Pr(G | �o) � α · 1

eβ(costdif(s, �o,g))
· Prob forg ∈ G, (2)

where α is the normalisation constant and β is a rate
parameter, which changes the shape of a distribution
without changing the rankings: the lower the value of β,
the flatter the distribution.

4 MINDTRAILS

There are many standard test environments within which goal
recognition systems are routinely demonstrated such as grid-
navigation, logistics and blocks world (all used by Ramirez and
Geffner, 2010). Although some aspects of our proposed extensions
can be described in each of these contexts, we find that, individually,
they are too simplistic for our needs. Before proceeding, therefore, we
introduce an environment that combines elements from each of
them, which we will use to provide a running example.

MindTrails (Smith et al., 2021) is a game-like environment
within which:

• the overarching framework is grid-based, with navigational goals;
• shuttles deliver block-like tokens to their destinations;
• achievement of the ultimate goal depends on assembling the
tokens in a particular configuration.

MindTrails was explicitly designed to afford opportunities for
types of deception frequently exploited in stage magic. Critical for
our purposes are:

• a fully observable environment, in that it is possible for all
actions to be observed;

• the ability of the observed agent to execute multiple actions
simultaneously;

• dependence on memory for the observer to successfully
determine the observed agent’s goal;

• an opportunity for the observer to form and develop their
beliefs/suspicions over time.

MindTrails is a two-player game. Figure 2 shows the
environment during and on completion of a typical
game. There is a grid around which are positioned four
generators producing differently-coloured tokens. On the
grid, there are several anchors. Player A’s goal is to create
a continuous trail of red tokens linking any two anchors.
Player B’s goal is to determine which two anchors are being
linked and, based on that information, to block Player A’s
progress.

Player A has control of two shuttles which it uses to collect
the tokens and place them face-down on the grid. The
colours of the tokens are visible while they are being
carried and when first positioned but, once placed, they
all look the same. If an empty shuttle, however, passes
over the top of a face-down token, its colour is
temporarily revealed. Player B blocks by selecting
particular grid locations—those it believes Player A will
want to use—and rendering them unavailable.

A key feature of the game is the necessity for Player A to
deceive Player B in order to win. To this end, Player A deliberately
and systematically places red tokens in false goal zones to
manipulate Player B’s beliefs.

From a goal recognition stand-point, the set of possible goals
thus comprises all possible anchor-to-anchor combinations. For
current purposes, we consider the six shortest combinations only.

FIGURE 2 | TheMindTrails environment during (left) and on completion of a game (right). There are four token generators, two shuttles (empty between turns) and
a grid-like board with several anchors (in this case four). Player A uses the shuttles to ferry tokens onto the board, trying to connect two anchors with a trail of red tokens.
Although the colours are visible while tokens are carried, once positioned they are all white, as if face-down. Player B tries to identify which two anchors are being
connected—the black squares show where B has blocked. On completion of the game, the full state of the board is revealed.
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That is, referring to the representation of the board at Figure 3,
G � {(A1, A4), (A1, A5), (A2, A3), (A2, A5), (A3, A5), (A4, A5)}.

The observable phenomena in a MindTrails domain, Ω, are
the colour/location combinations of deposited tokens. The initial
state is the grid, empty except for the fixed anchors and we
assume that the prior probabilities of all anchor combinations are
equal. To suit the path-planning environment, we measure the
cost of achieving the goal from the currently perceived state sp, as
in (Masters and Sardina, 2019a) and as implied by the concept of
path completion, which measures work left to do in the context of
deceptive planning (Masters and Sardina, 2017b) where the plan
to this point may or may not have been optimal.

costdifMT(s, sp, g) � optc(sp, g) − optc(s, g) (3)

As before, the lower the cost difference with respect to a path
between anchors, the higher the probability that they are the goal.

5 LESSONS FROM MAGIC

The framework in Section 3 incorporates no intentional bias. It is
representative of frameworks that might be used to determine the
most likely goal either of humans or machines. Though
potentially used for the purpose (e.g., Masters and Sardina,
2017b), it tells us nothing—and does not claim to tell us
anything—about the likely beliefs of a human agent making
similar observations in a similar domain.

In this section, we examine a series of tricks and techniques
that shed light on the psychological principles that underlie
what people notice, remember, and believe (Kuhn et al., 2014).
In each case, we suggest how the principle can be incorporated
into a conventional goal recognition framework and illustrate its
application by describing a worked example from MindTrails.
We make two minor preliminary modifications to the Section 3
framework: first, we assume that we are always dealing with an
online problem (i.e., that observations are processed
incrementally and are time-sensitive); secondly, the initial
state or starting point, previously s, is now given as si to
represent the first remembered state at time-step i or
effective starting point.

Importantly, our purpose is not to defeat the goal recognition
system but to extend it in such a way that it better reflects what an
average human is most likely to believe, given the observable
phenomena to which they may be exposed. Inevitably, of course,
this does result in a goal recognition system that can be fooled.

5.1 Method and Effect
For a magical experience to occur, at one ormore moments in any
trick, at least two things must be taking place—actions to achieve
the effect that the magician wants their audience to see and
actions involved in the method they want to conceal.

Lesson 1. The Ambitious Card (Lorayne, 2006).2

The magician asks a spectator to select a card from the deck. He
initially refuses the card as being the only unsuitable card that
could have been chosen. To demonstrate why it is unsuitable, he
puts the card—in this case, the four of diamonds—on top of the
deck, puts another card on top of the four of diamonds, turns over
the top card and it is still the four of diamonds. He puts the four in
the middle of the deck, turns over the top card and it’s the four of
diamonds. Whatever he does with the “ambitious card”, it always
ends up on top.

This is a trick with which the celebrated magician Dai Vernon
is said to have fooled Houdini. The effect—that is, the story sold
to the audience—is that the four of diamonds is an ambitious
card: no matter what the magician does, it always finds its way to
the top. The method—which we do not need to know
precisely—tells an alternative tale in which the card is not
placed where it appears to have been placed and/or not
retrieved from where it appears to have been retrieved.

The lesson for goal recognition is depicted in Figure 4. In the
real world (as in magic and MindTrails) multiple events may
occur simultaneously, some that we notice and some we do not.
Conventional models of goal recognition do not allow for this.
They may accommodate partially observable environments such
that particular actions, events or aspects of the environment are
not available to the observer (e.g., Baker et al., 2011; Ramırez and
Geffner, 2011) and they routinely allow for partial sequences of
observations in that observations may be missing (i.e., not every
step-on-the-path/action-in-the-plan is seen to be taken). But
when an observation is made, everything observable at that
moment and from that vantage point is assumed now known
to the observer.

To be capable of reflecting the likely beliefs of a human agent, a
robust goal recognition system should support the possibility that
observable events may go unnoticed.

To achieve this, we propose replacing the sequence of
individual observations �o � o1, ‥, on of Definition 1 with a
sequence of sets, where each set comprises all potential
observations newly available (or refreshed) at the current
time-step, only one of which is ultimately encoded and
remembered.

Definition 2. Potential observations consist of a sequence of
sets �O � O1, ‥,On, where each set Oi � {o | occurred at time i}.

FIGURE 3 | A representation of the MindTrails environment, with five
anchors A1 to A5.

2For the benefit of those wishing to see the tricks performed, note that most of the
lesson citations link to YouTube videos.
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Practically, the goal recognition system—which in an XGR
context represents human-like reasoning—assembles its own
observation sequence ( �ot, corresponding to the original �o) by
selecting one observation at each time-step ot from the set of
potential observations Ot and adding it to the sequence of
observations �ot−1 selected so-far.

5.2 Passive Misdirection
Attention is a finite resource. When multiple events occur
simultaneously, people must decide—whether consciously
(top-down) or unconsciously (bottom-up)—which is most
deserving of consideration.

Lesson 2. Penn and Teller’s Cups and Balls (Jillette and Teller, 2017).
Cups and balls is a well-known trick. The usual version sees the

magician place three metal cups open-side down on a table then
place three balls, one on top of each. The magician then seems to
make the balls pass through the solid cups so that instead of being on
top they are underneath, or makes the balls move invisibly from one
cup to another, sometimes disappearing altogether, and so on.
Magicians Penn and Teller perform an “Americanised” version of
the trick using transparent plastic cups and two sizes of balls made of
tin foil. There is a lot of patter and movement and then, just before
the trick ends, Penn takes the three smaller balls from under the
centre cup and juggles them saying, “This isn’t juggling, this is
misdirection!”whereupon the centre cup is lifted to reveal a baseball.

Penn’s blatant declaration conforms to the lay view of
misdirection: some commotion takes place which literally attracts
attention. The device is crude but effective because it taps into
passive/exogenous attention mechanisms that are almost impossible
to control (James, 1890; as cited in Ruz and Lupiáñez, 2002). This is
one of the physical misdirection types mentioned by Lamont and
Wiseman (2005) which creates an area of primary interest around an
effect through novelty, movement or contrast.

Figure 5 illustrates the concept in the context of MindTrails
where red tokens are more significant to an observer than non-

reds. Not all observations are of equivalent salience. If an event is
inherently interesting (e.g., red tokens being deposited or Penn
suddenly and ostentatiously juggling), we are unlikely to notice a
simultaneous event that is inherently dull (e.g., yellows being
deposited or Teller momentarily putting his hand in his pocket).
Yet in the observation sequence �o � o1, o2, ‥, on from
Definition 1, there is no capacity for any one observation to
carry greater weight than any other. That is, even if our proposed
model did not involve selecting one out of a set of possible
observations most likely to be noticed at a particular time-step
ot ∈ Ot, it should be possible to evaluate the relative quality of an
observation. The ability to do so—given a conventional model
such as that at Section 3 or as used, say, by Sohrabi et al. (2016)—
could assist in discounting a noisy observation (i.e., one that has
been recorded in error), either because it is of much higher or
much lower quality than those adjacent to it in the sequence.

A human-centric goal recognition system should recognise
that some observable phenomena are more noticeable than
others.

To encapsulate this notion, we say that every observable element
or event in the domain has a fixed basemagnitudemagp(o) for o ∈Ω,
which quantifies the degree to which it is inherently likely to attract
attention. An explosion, for example, has a greater base magnitude
than a firework, and a firework greater base magnitude than a cough.
Moreover, although base magnitude is fixed, an observation o’s
effective magnitude mag(o)—as perceived and later recalled by an
observer—is dynamic. This means that the effective magnitude of an
observation may diminish over time (see Section 5.4 on page 12).
Furthermore, its initial magnitude may itself be amplified or
diminished if, for example, an adversarial agent were willing to
pay more for the event that gave rise to it.

To compare the relative magnitude of multiple simultaneous
observations, we divide by their sum.

Definition 3. Given a set of potential observations Ot, the
comparative magnitude of each o ∈ Ot is given by:

FIGURE 4 | When multiple events occur simultaneously with full observability, a traditional GR system is capable of recording them all; but a human—or a GR
system that supports the notion of selective attention—records only one. Thus, given shuttles delivering the combination of tokens depicted above, a traditional GR
system (left) assesses (A1, A4) and (A2, A5) as equally probable (cost difference � −1) while an extended GR system, if selecting one of two observations randomly at
each time-step, may have noticed nothing of significance so continues to rank all goals equally (cost difference � 0).

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 7309907

Masters et al. XGR: Lessons from Magic

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


CM(o,Ot) �
0 ifmag(o) � 0

0< mag(o)
∑
o′∈Ot

mag(o′)≤ 1 otherwise.

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(4)

5.3 Active Misdirection
Selective attention in humans depends not only on bottom-up,
involuntary responses to external stimuli but also on top-down
processing, whereby people voluntarily focus on one thing at the
expense of another. This is what we usually think of as paying
attention but, although it occurs by choice, it can be manipulated;
and because it can be manipulated, the extent to which it is likely
to occur can be approximated.

Lesson 3. The “Princess” Card Trick (Geek, 2009).
The magician fans out five playing cards and asks a spectator to

memorise one of them. The magician closes up the fan, then goes
through the cards one by one and eventually picks out one of them,
looking to the spectator apparently to verify that this is definitely a
match to the card they are thinking of. The magician slips that card
into a trouser pocket then shows the spectator the remaining four
cards and asks cheekily, “Is your card missing?” It is!

This simple trick, which periodically appears via Facebook and
chain emails—that is, the trick is so simple that even a machine can
execute it!—exploits the surprising limitations of human attention
and, in particular, our propensity for inattentional blindness and
change blindness (e.g., Rensink and Kuhn, 2015). People may believe
that they are attending perfectly well to their environment but
behavioural tests reveal that anything falling outside a very narrow
attentional region is neither processed nor remembered accurately. In
this trick, when the magician explicitly instructs the spectator to
remember one card, they fail to observe and/or remember any of the
others. The principle at play is the same as that exposed in the well-
known psychological experiment in which participants asked to count
baseball passes fail to notice a man in a gorilla suit even though he
walks directly through their line of sight (Simons and Chabris, 1999).

With limited resources, we voluntarily attend to actions
and events that we deem relevant and disregard those that
are not (Heuer, 1981). Contemporary models of goal
recognition, however, even if performing online goal
recognition (i.e., where observations are delivered to the
system incrementally and added to a growing set or
sequence) make no attempt to verify whether or not a
newly added observation makes sense. As with magnitude
(at Section 5.2 on page 9), this capability could help
differentiate between plausible observations and probable
noise. In our case, it is an important factor in determining
which of the observable phenomena in a concurrent set
oi ∈ Oi should be encoded.

A human-centric goal recognition system should be capable of
recognising that some observable phenomena are more relevant
than others.

To formalise this, we build on the notion of a rationality
measure (RM) from (Masters and Sardina, 2019b). The
documented purpose of the RM is to evaluate an agent’s
future expected degree of rationality, given their past
behaviour. Here, we use it to evaluate and compare the
apparent rationality of the observation sequences that would
result from adding each of multiple potential observations
(each o ∈ Ot) to the recalled observation sequence ( �ot−1)
assembled so far. That is, given what we know, which
potential observation provides the most rational continuation
towards any one of the known possible goals.

Definition 4. Given a set of possible goals G, potential
observations Ot, and a sequence of previously attended
observations �ot−1, the relevance of an observation o ∈ Ot is
given by:

rel o, �ot−1, G( ) � max
g∈G

optc(st−1, g)
optc(st−1, �ot−1 · o, g). (5)

Observe that �ot−1 · o in the denominator of Eq. 5 represents the
observations available so far (i.e., at time-step t − 1) to which each

FIGURE 5 | In MindTrails, red tokens are more important than non-reds. While a traditional GR system (left), as before, records everything, a magnitude-aware
system gives greater weight to reds, only resorting to random selection—or potentially forgetting precise locations—when magnitudes are the same. Here, after the first
turn, only the reds adjacent to A4 and A5 are stored at full magnitude/clearly remembered.
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newly available observation o ∈ Ot is appended. Recall also that
st−1 is the first remembered observation—or effective starting
point—at time-step t.

While the concern here is for correctness over efficiency, we
note that probabilities calculated using cost difference Eq. 1 and
its variations require 2|G| calls to the planner. Eq. 5 similarly
requires 2|G| calls to the planner. These are not, however,
additional calls. Rather, they piggy-back calls made to
determine cost difference at the previous time-step.
Furthermore, as Ramirez and Geffner (2016) point out,
although planning is NP-hard, problems are nevertheless
solved efficiently. This is certainly true in the context of grid-
based path-planning. Moreover, in implementation, an estimated
solution would often suffice.

To decide which of multiple potential observations is most
likely to be attended, encoded, and available for future recall, we
must put together both the top-down and bottom-up aspects of
selective attention exposed in Lessons 3 and 2. That is, we propose
to rely on both magnitude and relevance.

Definition 5. Given a set of possible goals G, potential
observations Ot, and a sequence of previously attended
observations �ot−1, the attended observation at time t, ot ∈ Ot is
given by:3

ot Ot, �ot−1, G( ) � arg max
o∈Ot

CM(o,Ot) · rel o, �ot−1, G( ). (6)

Figure 6 shows the probable sequence of attended
observations after Player A’s first turn.

5.4 Time Displacement
A memory-constrained agent (such as a human) cannot
remember everything. Even if we initially give our full
attention to a situation, we may nevertheless forget or

misremember the details. Furthermore, as magicians know,
this forgetfulness is almost certain to occur if our attention is
overloaded and/or we are encouraged to reconstruct our
memories from “alternative facts”.

Lesson 4. Do As I Do (Hugard and Braue, 1949, p.83).
This trick is performed using two packs of cards. The magician

instructs a spectator to copy everything they do. The magician
shuffles one pack, and the spectator shuffles the other in the
same way, then they swap packs and both shuffle again. The
magician secretly chooses a card and replaces it in their pack,
and the spectator does likewise. They continue to cut, swap,
shuffle and reorganise the cards, both following the same
procedure exactly. Finally, they both retrieve the cards they had
each freely chosen at the outset to find that, completely voluntarily,
they had both chosen exactly the same card!

Critical to concealing the method for this trick is the fact that
the spectator fails to remember, or later thinks irrelevant, which
pack they chose their card from in the first place. This memory
failure is virtually guaranteed: first, by the lengthy process of
shuffling, cutting and so on, which continues long after the card
has been selected, and second, owing to the level of attention
required (as already noted, a severely limited resource) to
precisely imitate what the magician is doing.

As Kuhn et al. (2014) remark, if events are sufficiently complex,
critical events are forgotten against the noise of others; a point also
made by the conjuring theorist Fitzkee (1945). In this case,
moreover, the “magic” has taken place at the start of the trick,
temporally distant from the reveal and, as Ortiz (2006) observes, “If
you can mislead them as to when [an] effect happened, you’ll
guarantee they’ll never figure out how it happened” (p.195).

The more observations a person makes, the more likely they
are to forget the ones they made previously. Yet in the context of
goal recognition we typically assume that, once registered, all
observations remain available indefinitely. This mismatch
between machine and human-like processing can critically
derail the goal recognition process in an XGR context.
Figure 7 contrasts the full recall of a typical GR system with
the actual vision that confronts a human or extended GR during a
MindTrails game.

FIGURE 6 | Tokens with the greatest magnitude are recorded at steps 1 and 2. At step 3, a random selection is made between non-contributory (i.e., non-red)
tokens. At step 4, where two red tokens compete for attention, the most relevant red is selected: from Eq. 5, 8/7 versus 8/8.

3Since the definition is comparative (we seek the maximum value), use of
multiplication is somewhat arbitrary. It does, however, conveniently constrain
the result within bounds [0,1]. In implementation, multiple observations might
return the same maximal result in which case selection could be randomised.
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This effect is particularly significant when we consider the
special status typically given to the initial state. Recall from
Section 3 that the core principle of cost-based goal
recognition is that of cost difference (Eq. 1): the difference
between the cost of an optimal plan versus the lowest cost
achievable given actions that have been observed actually to
have occurred. But to estimate either of those parameters, we
need to know which state the agent started from. Now,
contemporary models of goal recognition such as that at
Section 3 typically make the strong assumption that the initial
state is fully observable (e.g., Ramirez and Geffner, 2010; Vered
et al., 2016; Pereira et al., 2020). But what if the human observer
has forgotten the initial state and is instead referencing their first
remembered state? Now the goal recognition system and the
human may be trying to solve completely different problems.

To perform human-like reasoning, the quality of stored
observations should not be fixed; it should decay over time.

Two factors already mentioned facilitate the above. First, recall
from the beginning of the current section that, in our extended
framework, the initial state, previously s, is given as si to represent
the first remembered state at time-step i. Secondly, at Section 5.2
on page 9, we introduced the notion of magnitude as a property of
each observable entity in the domain, to represent an
observation’s memorability. With these in hand, our model
adopts a conventional implementation of decay (familiar from
work such as (Van Dyke Parunak et al., 2007) involving
pheromones).

Given an observation sequence �ot � o1, o2, ‥on, at every
subsequent time-step, t + 1, t + 2, etc., the effective magnitude
of each elementmag(oi) is multiplied by a decay factor δ < 1 ∈ R+.
If magnitude drops below some threshold of negligibility ϵ, the
observation is removed from the sequence at the next time-step.

Definition 6. Given a decay factor δ, observations so-far
attended and remembered �ot−1 and the most recently attended
observation ot, the currently remembered observation sequence at
time t is given by:

�ot � �ot−1 · ot | (mag(o) · δ)> ϵ for each o ∈ �ot−1. (7)

Thus, �ot may represent a different observation sequence at
every time-step. Typically, the sequence is first-in-first-out. That
is, oldest observations are forgotten first. If an observation is
particularly intense, however (i.e., has excessive initial
magnitude), it may persist long after more standard
observations have been forgotten so that an observation
sequence at one time-step may even have different cardinality
from that at another.

5.5 The Ruse
We have so far considered the intrinsic memorability of
observable actions and events (Section 5.2), the likelihood of
them being attended (Section 5.3) and their propensity to decay
(Section 5.4). We noted that the subject of selective attention is
partly determined by its relevance. The ruse represents a corollary
to that. It is one of the mechanisms whereby a magician can make
an observation seem irrelevant and thereby renders it forgettable.

Lesson 5. The Bullet Catch (Moretti, 1980).
The magician introduces an assistant with a gun and a box of

bullets and claims that when the gun is fired at him he will be able
to catch the bullet in his mouth. To demonstrate that no trickery is
involved, he opens the box of bullets, removing its cardboard sleeve,
and invites a spectator to choose three bullets. He then holds out a
container with three pens and asks the spectator to choose one and
make a distinguishing mark on each of the bullets. The bullets are
dropped into a clear wine glass. He invites the spectator to choose
one bullet, which the assistant fires into a metal can to demonstrate
that the gun is real. The spectator now chooses another bullet to be
fired at the magician. The assistant shoots! The magician is
uninjured but immediately appears to have caught something
in his mouth which he spits out onto a small silver plate. As
the spectator verifies, it is the very bullet that was fired from
the gun!

“The ruse is a plausible, but untrue, reason, or action
conveying a reason, for concealing the true purpose for
doing something” which “makes it possible for the magician
to do an unnatural thing naturally” (Fitzkee, 1945). The

FIGURE 7 | A traditional GR system (left) records theMindTrails board correctly, as if all tokens were face-up. A human—and extended GR—depends on currently
perceived data (all face-down) and recalled observations, which are subject to decay. Only those perceived most recently and with the greatest magnitude are likely to
persist.
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actions involved in a ruse may receive attention at the time
they take place (everyone saw the magician handle the
cardboard sleeve around the bullets, the container of pens,
the wine glass, the plate) but what he did with each prop
seemed to have a valid purpose at the time and is likely to be
forgotten once that purpose is complete. What is surprising
here is that spectators, who are in a hyper-vigilant mode when
watching a magic performance, are so willing to disregard and
forget incidental events. This is to do with the way memories
are stored and retrieved. Whereas once it was thought our
memories were laid down almost like video recordings
(Chabris and Simons, 2009), available to “replay” under
hypnosis, for example; we now believe that each time we
recall a memory we reconstruct it from mental
representations that are highly abstracted and edited down
according to perceived relevance (Loftus and Palmer, 1996).

Two lessons are available to us from the ruse. First, once a sub-
goal (e.g., “mark the chosen bullets”) has been realised, the actions
required to achieve it are quickly forgotten so may be pruned
from the observation sequence. To fully incorporate this notion
into our framework, however: first, it must be possible to
decompose the goals into sub-goals; and second, the
framework itself must be capable of supporting the concept
which, in our case, would require non-trivial modification (see
discussion, p.19).

There is, however, a second more general lesson to be taken
from this trick that we will focus on. Researchers have recognised
that a robust goal recognition system ought to be capable of
dealing with noisy observations (Sohrabi et al., 2016) and with
apparently redundant/excessively suboptimal behaviour (Masters
and Sardina, 2021). Audience responses to the ruse suggest that
humans prune such observations out entirely, treating apparently
redundant behaviour as irrelevant; and irrelevant behaviour as
forgettable.

For the purposes of human-like modelling, the less relevant an
observation seems to be, the more quickly it is forgotten.

We have already defined relevance (Definition 4) in order to
model selective attention. We re-use that definition here to
formalise an observation’s forgettability. To achieve this, rather
than one uniform rate of decay δ, we calculate a rate of decay for
each observation, relative to its perceived relevance.

Definition 7. Given a default decay factor δ, goals G, potential
observations Ot, and a sequence of previously attended
observations �ot−1, the decay factor of each observation o ∈ Ot

is given by rel(o, �ot−1, G) · δ.
A fully relevant observation (i.e., one that, when concatenated

to observations already made, conforms to an optimal plan for
one of the goals), decays at the default rate. The less relevant an
observation, the lower the decay factor and therefore—through
multiplication—the faster its corresponding rate of decay.
Practically, to incorporate the notion of forgettability, all
observations must be tested for relevance, not only those that
may initially be overlooked as a result of selective attention (as at
Section 5.3).

Figure 8 demonstrates the implications in the context of
MindTrails.

5.6 Priming
People see what they expect to see. One approach to magic
then—in line with the observation that we become trapped in
the stories we tell ourselves (Brown, 2019)—is to start them off in
the wrong direction: prime them about what to expect, maintain
their false belief, then surprise them when the reality turns out to
be something completely different.

Lesson 6. The Vanishing Ball (Kuhn, 2006).
The magician holds a ball in his hand. He tosses it in the air and

catches it, then tosses it in the air and catches it, then tosses it in the
air and. . .but wait—it’s gone!

FIGURE 8 | The board on the left shows observations potentially recalled under XGR following the second turn (true state as depicted in Figure 7). When dimly
remembered observations and those perceived to be irrelevant determine the rate of decay, the stored state of a human or extended GR system resembles the figure on
the right. Adopting a worst case assumption such that misremembered and unobserved tokens are incorporated into Player B’s assessment as potential reds, a GR
system extended to forget ranks (A2, A5) as more likely than other possible goals (cost difference � − 5). A traditional GR system, which—since every action has
been fully observable—has been able to track the complete state, now ranks (A1, A4) as most probable with a cost difference of − 3, as against the actual cost difference
for (A2, A5) of 7 − 8 � − 1.
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In this trick, repetition primes the audience to expect that the
third ball toss will proceed exactly like the second. The ball will go
up in the air and fall back down again. The repetition also numbs
us somewhat: we know what is going to happen so we pay less
attention. Most people, seeing this trick, report seeing the ball
leave the magician’s hand on the last throw but never come down
(Kuhn and Land, 2006). This “miracle” is achieved by exploiting
an aspect of confirmation bias (Wason, 1968): our tendency to
notice, seek out and remember information which supports our
existing beliefs but to avoid and forget information that might
contradict them. Confirmation bias depends on two conditions,
both present in Lesson 6: first, evidence is partly hidden or too
broad in scope to be fully apprehended; and second, we feel
justified to hold beliefs about partially observed things.

Here, the ball is first, partly hidden when in the magician’s
hand but second, we have the reasonable expectation that it will
not dematerialise just because we cannot see it.

Probabilistic goal recognition systems already accommodate
confirmation bias to a degree. Observation sequences are typically
incomplete and expectation is factored into Bayes’Rule (on which
probabilistic solutions are commonly based) as prior probability.
Generically:

Pr(A | B) � Pr(B | A) × Pr(A)
Pr(B) .

That is, the probability of a goal (A) given the evidence (B) is the
probability of the evidence given the goal multiplied by the prior
probability of the goal and divided by the probability of the
evidence. The framework at Section 3, on which we are
building, references the prior probability distribution across
goals ( Prob ) appropriately in Eq. 2. However, despite the
demonstrated importance of incorporating and updating
priors in systems intended to model human-like reasoning
(Baker et al., 2009; Baker et al., 2011), often those updates
seem not to occur (e.g., Ramirez and Geffner, 2010; Masters
and Sardina, 2019a). Instead, priors are initially assumed equal,
then remain frozen: which means they cancel out and can be

ignored. And this is the case even in online scenarios which
implicitly consider each new observation with reference to those
that have gone before. The conundrum for goal recognition lies in
the fact that priors handled more carefully are more consistent
with human-like reasoning but may generate less accurate
results.4 As Brown (2019) warns, “We make up a story to
make sense of what’s going on. And we all get it wrong”.5

To reflect the current beliefs of a human, prior
probabilities—which represent previously-held beliefs—must be
kept up-to-date, even if the system thereby seems to return the
“wrong” answer.

To incorporate expectation into the model, we must ensure
that prior probabilities are meaningfully considered. To achieve
this, we will replace the Prob parameter of Eq. 2—which
represents the probability distribution across goals supplied as
part of the problem definition—with an explicit reference to the
probability distribution calculated at the immediately preceding
time-step.

Pr G | �O( ) � α · 1

eβ optc( �ot ,g)−optc(st ,g)( ) · Pr g | �ot−1( ) forg ∈ G,

(8)

where α is a normalisation constant, β is the confidence
parameter (discussed below) and �O, recall, is the sequence
of all sets of observations, from which time-sensitive
sequences �ot and �ot−1 can be extrapolated.

To demonstrate how prior probabilities can be exploited by a
deceptive agent, Figure 9 shows a slight reworking of Player A’s
first move in MindTrails, given the same shuttle contents as those
used at Figure 4.

5.7 Convincers
Confirmation bias inclines human observers to seek out
confirmatory evidence for their previously-held beliefs.

FIGURE 9 | A deceptive Player A, programmed to exploit a human or extended GR system’s confirmation bias, plays its first two red tokens on an optimal path
linking (A2, A5). Combined with the impacts of misremembered and forgotten tokens, Player B now assesses the probability of (A2, A5) significantly higher than that of
(A1, A4), with cost differences of − 3 and 0 respectively. When probabilities are reassessed after Player A’s next turn, the differential will be hard to shake.

4For analysis of this issue, refer to Masters et al. (2021).
5Quoted more fully on p.5.
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“Convincers” are one method in a magician’s arsenal for
providing such evidence. Essentially, when our expectations
are confirmed, confidence increases, our next prediction is
made with even more certainty; and the effect can snowball.

Lesson 7. Dai Vernon’s Triumph (Ammar, 1990).
A spectator is invited to pick a card then return it to the deck. The

magician cuts the cards, turns one half face-up, leaves the others
face-down and “riffle” shuffles the two halves together in plain sight
so that the cards must be completely mixed up, some face-up, others
face-down. The magician then cuts the cards a few times allowing us
to notice that, as expected, sometimes the card he cuts to is face-up,
other times face-down. Incredibly, however, after a few more simple
cuts and having passed his hand across the deck, thereby casting a
mysterious shadow. . .the pack is spread out to reveal that all the
cards are now face-down except one: the spectator’s chosen card!

In this trick, the spectator is primed by the shuffle to believe
that the deck of cards is completely mixed up, even though its
actual condition is hidden to them.Whatever the method, themagic
depends on confirmation bias whereby the audience continues to
believe what they were primed to believe at the start. To reinforce the
effect, the magician lets the spectator see face-up and face-down
cards distributed apparently at random through the “mixed” deck.
These are the convincers: brief and highly selective exposures to
hidden aspects of the situation that are consistent with what the
spectator erroneously believes (Ortiz, 1994). Most effective are
accidental convincers, as used here, where the exposure seems
unplanned and as if not even realised by the magician, making
them seem to provide independent support for the spectator’s belief.
This incidental quality, combined with our strong bias to readily
accept confirmatory information, prevents suspicion arising about a
convincer’s brevity or possible selectiveness. A similar technique has
been noted in other contexts: “With respect to deception, one
overwhelming conclusion stands out: It is far easier to lead a
target astray by reinforcing the target’s existing beliefs. . .than to
persuade a target to change his or her mind” (Heuer, 1981, p.298).

MindTrails directly supports the notion of convincers by
revealing the colour of face-down tokens only when an empty
shuttle passes over the top of them. Having deposited their tokens,

empty shuttles must move to the side of the board making this
momentary reveal seem accidental. As shown in Figure 10, if
Player A deliberately passes its shuttles over red tokens on at a false
goal and/or non-reds at a true goal, Player B updates its
observations—and hence its probabilities—accordingly.

Probabilistic goal recognition systems have the capacity to
vary the confidence with which predictions are made, using a rate
parameter to change the shape of a distribution without changing
goal rankings. Ramirez and Geffner (2010) leave adjustment of
the parameter to an assumed operator. In (Masters and Sardina,
2021) the parameter self-adjusts but always negatively, when the
actions of the observed agent seem non-rational.

In a goal recognition system designed to mirror human belief,
confidence should increase when predictions are confirmed.

To formalise the concept, we propose to measure confidence in
terms of progressmade towards the goal previously thought to bemost
probable (i.e., the goal estimated to have the highest prior probability at
the previous time-step). Remembering that oi is the most recently
added observation at time-step i, the following definition measures the
difference between optimal expected and actual progress.

Definition 8. Given a goal ĝ ∈ G such that Pr(ĝ |
�ot−1)≥Pr(g | �ot−1) for all g ∈ G\{ĝ} (i.e., ĝ was the most
probable goal at time-step t − 1), confidence is given by:

conf ot, ot−1, ĝ( ) � eoptc(ot−1 ,ĝ)−optc(ot,ĝ)−optc(ot−1 ,ot). (9)

Under Definition 8, when the most recent observation ot is
part of an optimal plan for the expected goal ĝ (based on the
previous observation ot−1), confidence is maximised; if the plan
has diverged from expectation, confidence is correspondingly
reduced.

Recall that, in the previous section, Eq. 8 incorporates prior
probabilities and also references a confidence parameter β. To
more completely capture those aspects of confirmation bias
exposed in Lessons 6 and 7, we propose to make that
parameter self-modulating, explicitly set to the observer’s
current level of confidence as per Definition 8. That is, with
reference to Eq. 8, β � conf(ot, ot−1, ĝ).

FIGURE 10 | In MindTrails, when an empty shuttle passes over a token its colour is momentarily revealed, reminding Player B of events that might otherwise be
forgotten. Depending on their state of decay, these may be restored to their full magnitude or perceived as entirely new observations. A new positive observation at the
previously suspected goal increases confidence.
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5.8 Last Lessons
We conclude this section by mentioning two lessons that have
already been learnt: one already applied routinely in the context
of goal recognition, the other already applied in a motion-
planning domain.

Lesson 8. Sawing the Lady in Half. The lady climbs into the box.
Her head is at one end, her feet are at the other end. We assume her
body is in the middle. And then the magician takes out his saw. . .

This trick depends on the principle of simplicity whereby we
assume continuity because the two ends of the lady’s body seem to
line up. In a goal recognition context, we apply this principle
routinely to make sense of observation sequences within which
some, oftenmany, observations are missing. Typically, we assume
observations can be “stitched together” by whichever sequence of
actions would be most economical.

Lesson 9. The Disappearing Coin. The magician takes a coin in
his right hand, then passes it to his left hand. In case we might
suspect that he did not really pass the coin, he shows us that his right
hand is empty. But then he reveals that his left hand is empty too!

In this trick, the magician pre-emptively removes one possible
explanation for the effect before revealing that the object has
vanished. The explanation is discounted even before it has been
formed. The principle at work here has been incorporated into goal
recognition byVered andKaminka (2017) who demonstrate it in the
context of motion-planning. If the observed agent changes course so
as to move away from a possible goal by a sufficiently extreme angle,
that goal is pruned from the set of possible goals: the agent has
demonstrated that they are not aiming for that goal so it is
completely removed from consideration.

6 EXTENDED GOAL RECOGNITION

We now bring together what we have learnt under one framework,
a modified version of that presented in Section 3, which
incorporates the extensions that we have been discussing.

XGR is the problem of determining from observed behaviour,
not necessarily the most likely goal (though it may be), but the goal
that will be believedmost likely by a predictably fallible, human-like
observer. Unlike traditional GR, XGR supports several additional
notions: 1) observation sequences are time-sensitive; 2) an agent
may be faced withmultiple competing observable phenomena, only
one of which it is capable of fully attending at any one time; 3)
previously remembered observations may be forgotten. Thus, the
agent’s sphere of operation is partially observable, not because
information is withheld or because the agent’s sensors are faulty,
but because the model aims to capture a boundedly-rational agent
unable to process and retain all the observations made available.
That is, while the domain itself may be fully observable, it is not
necessarily fully observed.

Definition 9. An extended GR problem is a tuple Px �
〈D,Ω, mag*, δ, �O, G, s0, Prob〉 where:

• D is a model of the GR domain which defines states,
transitions between states and their cost;

• Ω is the set of all observable phenomena in the domain;
• mag*: Ω1R is the base magnitude of each observable;

• δ < 1 ∈ R+ is the default decay factor.
• �O � O1,O2, ‥On is a time-ordered sequence of sets, where
each set Oi4Ω comprises all observable phenomena
available to the agent’s sensors at a particular time-step
i ∈ {1, 2, . . ., n};

• G is the set of candidate goals;
• s0 is the initial observation, which includes all cost-relevant
data; and

• Prob is the prior probability distribution over G.

Observe that, as for Definition 1, we assume that the domain
supports costed state-to-state transitions that can be associated
with observable phenomena. We now also assume that
observations include sufficient information for ongoing costs
to be calculated. For example, if costs within the domain are
calculated in terms of distance, then each observation is assumed
to include positional data; if costs depend on spending,
observations include remaining funds. This proviso enables us
to calculate optimal costs that would previously have been
measured by reference to a fully observable initial state by
reference instead to the first remembered observation.

The solution to an XGR problem is a probability distribution
across goals or—more properly, since sets of observations are
delivered incrementally—a sequence of probability distributions
calculated using Eq. 8, for convenience reproduced here.

Pr G | �O( ) � α · 1

eβ optc( �ot ,g)−optc(st ,g)( ) · Pr g | �ot−1( ) forg ∈ G,

(8)

which now explicitly incorporates prior probabilities by reference
to the probability distribution calculated at the previous time-step,
Pr(g | �ot−1) and in which, moreover, the β parameter has been
made self-modulating to represent the observer’s confidence.

Definition 9 differs from Definition 1 in its representation of
the following features.

1) It explicitly describes an online problem. That is, observations
are delivered incrementally at distinct time-steps.

2) Each observable element o ∈ Ω has a base magnitude mag*(o),
which may be infinite but is otherwise subject to decay at a rate
determined by an individualised decay factor calculated from the
default. Thus, at any given time-step, an observation has an effective
magnitude mag(o), which may differ from its base magnitude.

3) Instead of a sequence of individual observations �o � o1, ‥, on, �O �
O1, ‥,On is a sequence of sets, where each set
Oi � {o | occurred at time i}. That is, each set comprises all
potential observations newly available (or refreshed) at the current
time-step, only one of which is ultimately encoded and remembered.

4) There is no initial state as such. s0 is the first remembered state.
Subsequently, st is taken to represent the first remembered
state at time-step t.

Given these modifications, which could be implemented as
extensions to many GR frameworks—not only that of Section 3—all
and any of the enhancements proposed in Section 5 may be
implemented.

Frontiers in Artificial Intelligence | www.frontiersin.org November 2021 | Volume 4 | Article 73099014

Masters et al. XGR: Lessons from Magic

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


To conclude this section, we return to our running MindTrails
example. Although we have not, as yet, undertaken formal
experimental evaluation of the model, we are nevertheless able
to calculate indicative results. Table 1 compares probabilities
calculated under the traditional GRmodel of Section 3with those
now available to us under the extended model. We calculated
probabilities on completion of each turn, assuming fully observed
states as shown at Figure 4 (p.9) and Figure 10 (p.17). As the
table shows, impeded by the limitations with respect to attention
and memory outlined in this paper, extended GR predicts a trail
at (A2, A5), its conviction reinforced by taking probabilities at
Turn 1 as priors for Turn 2. Traditional GR meanwhile,
impervious to manipulation, more narrowly (but correctly)
predicts a trail at (A1, A4).

7 CONCLUSION

In this paper we have considered how magic, with its deep
understanding of the idiosyncrasies surrounding human
cognition and belief-formation, can inform the theory and
practice of goal recognition. Our contribution is not a
framework that performs goal recognition “better” than other
models. If anything, our framework is less likely to determine the

observed agent’s most likely goal than alternative contemporary
models are able to do. Rather, we have aimed to present a
framework that more accurately simulates human-like
reasoning, even where that reasoning may lead to error.

By analysis of nine tricks, we have shown that, with relatively few
modifications, a traditional model of goal recognition can be
transformed into one capable of interpreting an observed agent’s
behaviour in a human-like fashion. We have necessarily
demonstrated the extensions in relation to a particular framework
but, in presenting them as we have, aimed to show that they could
equally be applied, piecemeal or in their entirety, to many other
contemporary models. The lessons from magic relate to attention,
memory and reasoning. Correspondingly, the majority of the
extensions concern the treatment of observations—which
observable phenomena are most likely to be seen? and how long
are they likely to be remembered?—notions almost universally
applicable, whichever model of goal recognition is under
consideration.

The lessons have consequences and their application in the
context of goal recognition go a long way towards explaining
the persistence of conspiracy theories and fake news, even in
the face of contradictory evidence. As we have seen, priming
impacts expectation, which we model as prior probability;
convincers impact confidence; and the two factors work in
tandem. An exaggeratedly confident prediction accentuates
the probability of the most probable goal. If, owing to the
confidence value (β in Eq. 8), an observer is sufficiently certain
of a particular goal, the probability of that goal approaches 1.
At the next time-step, that confident assessment becomes a
prior probability. Now the probability of other goals is pushed
close to zero with the result that—regardless of implications
arising from the most recent observation—they may be
overlooked. This matches our understanding from
behavioural science and other commentators (Heuer, 1981)
and is precisely the effect noted in (Masters et al., 2021), where
in a fully observable path-planning domain, we find that XGR
predicts as most likely a false goal, even after the real but
“disbelieved” goal has been achieved.

We do not claim to have delivered a complete or definitive
account. Magic has a long, rich history and, no doubt, we have
barely scratched the surface. Neither are we the first to consider
principles from magic in the context of AI. The relationship been
magic tricks and mathematical concepts has long been noted and
explored (Gardner, 1956; Diaconis and Graham, 2011). Specific
connections to computer algorithms have been made, especially
for teaching purposes (Curzon and McOwan, 2008). Most
relevant, direct parallels have been drawn to AI with machines
designing tricks (Williams and McOwan, 2016) and in the
formalisation of surprise using Bayesian predictive coding
(Grassi and Bartels, 2021). To our knowledge, however, we are
the first to apply them in a principled way to the problem of goal
recognition.

Looking ahead, we have noted the interplay between goals—or
believed goals—and the way that people reason about observations
(p.14). Owing to our propensity to dismiss and/or quickly forget
actions that seem to have been accounted for, magicians make
considerable use of sub-goals. While early goal recognitionmodels

TABLE 1 | A representative calculation to illustrate the differences between
traditional and extended GR. (Figures in bold indicate the goals with the
highest probability. Under traditional GR, there is no clear winner after Turn 1).

Traditional GR Extended GR

Goal Turn 1 Turn 2 Turn 1 Turn 2

(A1,A4) 0.17 0.21 0.15 0.16
(A1,A5) 0.17 0.16 0.15 0.14
(A2,A3) 0.15 0.14 0.13 0.10
(A2,A5) 0.17 0.16 0.22 0.30
(A3,A5) 0.15 0.16 0.15 0.11
(A4,A5) 0.17 0.14 0.17 0.16

Table 1 shows probabilities calculated for each MindTrails goal (i.e., anchor pairs that
may be linked) taking the game state as at Figure 4 (p.9) for Turn 1 and as at Figure 10
(p.17) for Turn 2. For traditional GR, probabilities were calculated using Eq. 2, assuming
access to all available data (i.e., actual token colours and locations). For extendedGR, we
usedEq. 8, assuming observations limited in line with principles established in Lessons 1
to 7 and under the worst-case assumption (i.e., unknown tokens may be red). Under
these conditions, extended GR identifies (A2, A5) as the most probable goal after Turn 1
and, with Turn 1 probabilities used as prior probabilities for calculations after Turn 2 (for
extended GR but remaining frozen and equal under the traditional model), the result is
accentuated, as seen in the accompanying chart.
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based on an event hierarchy natively incorporate sub-goals
(e.g., Kautz and Allen, 1986) as do those based on probabilistic
grammars (e.g., Geib and Goldman, 2009; Geib et al., 2016), they
are not readily combined with the cost-based reasoning used in
this paper. Meanwhile landmarks (i.e., actions or events that must
occur in order for a particular goal to be achieved), though
ostensibly similar to sub-goals (Masters and Vered, 2021), are
not associated with sub-sequences of behaviour and it is these sub-
sequences that we would typically wish to prune. We see the
accommodation of sub-goals into our framework as an interesting
challenge for future work, perhaps building on (Pattison and
Long, 2010).

Findings from behavioural economists have found their way
into AI research, in particular with revelations about our inability
to properly execute probabilistic reasoning (Kahneman, 2011).
This is eminently respectable work with a strong mathematical
foundation and has been eagerly taken up by computer scientists
(Rossi and Loreggia, 2019; Bonnefon and Rahwan, 2020, etc.).
Magic has a different pedigree; to the uninitiated, seemingly
haphazard and undisciplined. We submit, however, that
revelations from stage magicians, in relation to human
cognition and people’s lack of insight with respect to their
cognitive limitations, are equally compelling, certainly more
disturbing and—when imported into goal recognition systems
for the purpose of investigating and supporting human-robot
interaction and applications involving interpretable

behaviour—potentially more useful. The secrets shared
between magicians are just beginning to be mathematically
formalised while the principles that underlie them continue to
be empirically proven night after night in performances around
the world.
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