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Mislabeling of cases as well as controls in case–control studies is a frequent source of
strong bias in prognostic and diagnostic tests and algorithms. Common data processing
methods available to the researchers in the biomedical community do not allow for
consistent and robust treatment of labeled data in the situations where both, the case
and the control groups, contain a non-negligible proportion of mislabeled data instances.
This is an especially prominent issue in studies regarding late-onset conditions, where
individuals who may convert to cases may populate the control group, and for screening
studies that often have high false-positive/-negative rates. To address this problem, we
propose a method for a simultaneous robust inference of Lasso reduced discriminative
models and of latent group-specific mislabeling risks, not requiring any exactly labeled
data. We apply it to a standard breast cancer imaging dataset and infer the mislabeling
probabilities (being rates of false-negative and false-positive core-needle biopsies)
together with a small set of simple diagnostic rules, outperforming the state-of-the-art
BI-RADS diagnostics on these data. The inferred mislabeling rates for breast cancer
biopsies agree with the published purely empirical studies. Applying the method to human
genomic data from a healthy-ageing cohort reveals a previously unreported compact
combination of single-nucleotide polymorphisms that are strongly associated with a
healthy-ageing phenotype for Caucasians. It determines that 7.5% of Caucasians in
the 1000 Genomes dataset (selected as a control group) carry a pattern characteristic
of healthy ageing.
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INTRODUCTION

The analysis of biomedical data often aims to identify a specific (small) set of characteristics or
biomarkers that will allow for the most accurate and efficient discrimination between groups. For
example, it is assumed that an unknown combination of characteristics offers the best possibility to
distinguish a group of patients with a certain symptom or disease from all other groups. A wide
variety of statistical and machine learning tools have been developed to select the optimal feature set
through an analysis of labeled data (Bair and Tibshirani, 2004; Hastie et al., 2009; Luo and Ren, 2014;
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Taylor and Tibshirani, 2015). In practice, however, mistakes in
the assignment of labels and features during the data acquisition
procedure may introduce serious bias when common methods
are applied or even prohibit their use. Erroneous assignments
occur in many studies for a variety of reasons: experimental
errors, differences in platforms used to acquire data from
different groups, differences in protocols used to post-process
data, or intrinsic difficulties in distinguishing the case and control
groups (Lam et al., 2011; ORawe et al., 2013; Ross et al., 2013;
Weißbach et al., 2021). This is particularly evident in the case of
coronavirus data emerging from different sources where it has
been shown that data variability is an important factor
concerning the usability of such data for machine learning
(Sáez et al., 2020). Furthermore, diagnoses for many diseases
only reach a certain level of confidence; in some cases (e.g.,
Alzheimer’s disease), a 100% diagnosis is only possible during a
postmortem autopsy (Gomez-Nicola and Boche, 2015). This
means that subjects with a negative diagnosis might
nevertheless carry a latent form of a disease without showing
symptoms yet. Assigning those individuals to the control group in
a (bio)medical study can introduce a strong source of errors and
can certainly have severe consequences for the patients, if this
mislabeling cannot be identified, and correct medical treatment
will be withheld.

Most methods that are commonly applied to deal with the
problem of mislabeling are based on detection of anomalies and
outliers and aim to avoid the problem by thoroughly cleaning the
data during preprocessing, removing those points that appear to
be mislabeled (Brodley and Friedl, 1999; Barandela and Gasca,
2000; Teng, 2001; Jiang and Zhou, 2004; Frénay and Kaban, 2014;
Frenay and Verleysen, 2014). They detect outliers because they
deviate significantly from a model that has already been imposed
on a data subset—which is again—presumed to be correctly
labeled (Chandola et al., 2009). This cleaning however can be
problematic because it first may not be possible if too little is
known to determine what might be mislabeled, and second
because it can severely reduce the size of the available data,
making statistical results less reliable (Teng, 2001; Bootkrajang
and Kabán, 2012). Popular methods to analyze data based on
supervised (Tibshirani, 1996; Hastie et al., 2009; Luo and Ren,
2014) and semi-supervised machine learning methods (Moya and
Hush, 1996; Bair and Tibshirani, 2004; Rodionova et al., 2016) for
labeled data analysis (e.g., generalized linear models and neuronal
networks) are also implicitly based on an assumption that at least
one of the groups to be discriminated has been labeled perfectly or
at least assume a subset of perfectly labeled data (Hendrycks et al.,
2019). On the other side, common unsupervisedmethods (such as
hidden Markov models, Bayesian mixture models (Frühwirth-
Schnatter, 2006; Todorov et al., 2020), and advanced clustering
methods (Andreopoulos et al., 2009; Gerber and Horenko, 2015;
Rodrigues et al., 2021)) ignore any prior assignments of data to
labels and groups in a given dataset. Herewith, however, a lot of
valuable information is lost.

Also in a broader context of unsupervised data anomaly
detection, two major method families like the one-class
support vector machines (OCSVM, sometimes also referred to
as one-class learning methods) (Choi, 2009; Zhu et al., 2016) and

isolation forests (IF, anomaly detection algorithms based on
random forest ideas) (Liu et al., 2008; Hariri et al., 2021) rely
either on the explicit knowledge of some subsets of correctly
identified data anomalies that can be used for training or on
knowing the exact proportion of anomalous data in the given
dataset. In the latter case, providing the exact proportion of
anomalous data in OCSVM and IF allows identifying the exact
value of the anomaly threshold that can be used to separate
normal data from anomalous data. The primary aim of this study
is providing a robust computational mislabeling inference
procedure for generalized linear models (e.g., logistic
regressions)—an algorithmic procedure that does neither rely
on the explicit knowledge of the particular mislabeled data
instances nor on the knowledge of the exact proportion of the
mislabeled data in the given dataset. Instead, the introduced
procedure relies on the knowledge of the upper bound for the
mislabeled data proportion and deploys the tools from
information theory (like Akaike information criterion) to infer
the optimal logistic model and the optimal class-specific
mislabeling probability matrix. We thus address the currently
existing methodological gap and propose a scalable method that
can realistically be applied in the analysis of biomedical data. The
method permits reduced sets of discriminative features to be
inferred while co-estimating the group-specific data mislabeling
risks. We apply the method to two examples: breast cancer
diagnoses based on radiographs (example 1) and an analysis
of genomic features from a Wellderly cohort (example 2)
(Erikson et al., 2016)—a cohort of people who live to be
80 years or more without having experienced a serious or
chronic disease. Analysis of a synthetic dataset (i.e., a dataset
created by a generalized linear model with known parameters and
known group-specific mislabeling, which mimics the breast
cancer imaging data from example 1) is shown in Section 3 of
the Supplementary Material.

MATERIALS AND METHODS

Here, we give a brief description of the methodology. Detailed
mathematical derivation and an investigation of its mathematical
properties (a case of mislabeled Bernoulli trials, proofs of
conditions for existence and uniqueness of solutions,
monotonicity, and convergence of the numerical method) can
be found in Lemmas 1–5 in the Supplementary Material. We
consider a problem of analyzing the labeled datasets (X,Yobs)
that are grouped into Ng cohorts/groups, with Tg being the
number of instances, for example, the number of patients in
the cohort/group g.

For every data instance (t, g) (for every patient number t in the
group g), we would like to identify a relation between a vector of
features Xt,g (an n-dimensional vector containing, e.g., the
genotype, the age, and some other patient-specific
information) and a “true”—but directly
unobserved—categorical label Yt,g. This “true” label is taking
values in the finite set of m categories y � {y1, y2, . . . , ym}
and represents, for example, a certain phenotype. A typical setting
would be to compare features from a cohort of ill people to a
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control group, resulting in m � 2 representing labels like y1 �
“sick” and y2 � “healthy.” We consider the “true” labels Yt,g to be
unobserved since they are not directly available. Only the
observed labelings Yobs

t,g are available and can be mislabeled in
every instance (t, g) with some, yet unknown, cohort-specific
mislabeling probability ri,j,g � [Yt,g � yi|Yobs

t,g � yj]. We assume
that a parametric (i.e., dependent on a vector of parameters α)
discriminative model is establishing a conditional dependence
between the particular “true” unobserved labeling and a
particular observed feature vector Xt,g. The parametric
function relating features and labels is denoted as ϕi(Xt,g, α).
These parametric functions can, for example, be a generalized
linear model (GLM, e.g., the standard logit and probit models for
m � 2) (McFadden, 1974; Friedman et al., 2010) or a neuronal
network (Hastie et al., 2009).

Let yobs
t,g,j � χ(Yobs

t,g � yj), where χ is the indicator function,
taking value 1 if its argument is true and 0 otherwise. Then it can
be shown that the unknown optimal model parameters α* can be
inferred together with the optimal mislabeling risk matrix r* by
solving the following maximization problem (see Section 1 of SI
for a step-by-step derivation):

αp, rp( ) � argmax
α,r

L(α, r),

L(α, r) � ∑Ng,Tg

g,t�1

1
NgTg

log ∑m
i,j�1

yobs
t,g,jri,j,gϕi Xt,g, α( )⎛⎝ ⎞⎠,

(1)

which is subject to the following constraints:

∑m
i�1
ri,j,g � 1, ∀g, j, (2)

0≤ r−i,j,g ≤ ri,j,g ≤ r+i,j,g < 1, ∀g, i, j, (3)

|α|1 � ∑n
d�1

|αd|≤C, (4)

where [r−i,j,g, r+i,j,g] are user-defined intervals for mislabeling risks
(based, e.g., on some prior knowledge) and C is the a priori
unknown constant that implicitly confines the number of non-
zero components of the parameter vector α. The user-defined
choice of matrices r+/− is not really arbitrary and should be done
based on prior knowledge in such a way that the r-constraints (3)
do not lead to an empty set.

It is straightforward to verify that the particular case of problem
(1–4) with fixed r being an identity matrix is equivalent to the widely
used Lasso (or l1 − ) regularization methods introduced by
Tibshirani (1996), Bair and Tibshirani (2004), Friedman et al.
(2010), Simon et al. (2011), and Taylor and Tibshirani (2015). In
context of these Lasso-regularized methods, decreasing the constant
C in (4) one reduces the number of non-zero elements in α, thereby
reducing the number of non-zero parameters and avoiding
overfitting. This becomes especially important in biomedical
applications, where the number n of model parameters is large
compared with the size of the available statistics—a typical scenario
when the danger of overfitting becomes imminent.

As proven in Section 2 of the SI, given the imperfectly labeled
datasets (X,Yobs), the solution of this optimization problem
(1–4) results in the parameter vector α* for any fixed

combination of r and C. This solution will be optimal in the
case of the log-likelihood, that is, choosing this particular α* will
result in a maximal probability for observing the given data
(X,Yobs), confined to a particular choice of r and C. Selection
of the optimal parametric model class ϕ, as well as selection of
parameters r and C, can be approached with the standard model
selection procedures of machine learning, for example, by means
of the cross-validation, with the help of the information criteria or
through selective inference (Burnham and Anderson, 2002;
Zhang et al., 2010; Taylor and Tibshirani, 2015) (see, e.g.,
Figure 1A). Uncertainty of the obtained mislabeling risks r*
and model parameters α* can be obtained using the common
non-parametric bootstrap sampling procedure (Efron and
Tibshirani, 1993) (see, e.g., Figures 1C,E, 2A).

If m and Ng are not too large, one can use the following
numerical scheme: 1) first, the rectangular domain spanning a set
of admissible values for mislabeling matrix elements in (3) and
admissible values of C in (4) is sampled (e.g., by means of a
uniform equidistant grid), and 2) for every particular grid point
(rs, Cs), one deploys some standard gradient-based optimization
method to solve (1–4). In the second step (ii), one can use an
interior-point method or the sequential quadratic programming
(Nocedal and Wright, 2006)), performing constrained concave
optimization of (2) subject to a constraint (4) only, with fixed
values of rs and Cs. For example, whenm � 2 and Ng � 1 (the case
emerging in examples 1 and 2), there will be only two
independent parameters in r. Together with the scalar
dimension for the regularization constant C, this will result in
a 3D grid (rs, Cs).

With respect to the model function ϕ, optimization of the
concave problem (1–4) would only require the evaluation and
communication of the function values and the gradients of ϕ with
respect to α. This means that a solution of the overall problem
(1–4) can be easily integrated into the common software packages
for labeled data analysis. Moreover, solutions of problem (1–4)
for different particular choices of (rs, Cs) can be found completely
independent of each other, herewith allowing for a highly scalable
(“embarrassingly parallel”) implementation on high-
performance computing facilities.

RESULTS

Example 1: Breast cancer diagnostics
based on the standard BI-RADS X-ray
imaging data.
First, we consider an analysis and feature selection problem for
the standard breast cancer BI-RADS dataset based on X-ray
imaging. This dataset is available for open access at the UCI
Machine Learning Repository http://archive.ics.uci.edu/ml/
datasets/Mammographic+Mass and contains information from
biopsies of 403 healthy (benign) subjects and 427 malignant
breast cancer patients. For each patient, six attributes are
given: 1) the BI-RADS assessment (with values from 1 to 5),
2) the patient’s age, 3) the mass shape (with 4 subcategories), 4)
the mass margin (with 5 subcategories), 5) the mass density (with
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4 subcategories), and 6) the final binominal label for severity: benign
� 0 or malignant � 1. This results in a set of 26 binary features for the
shape, margin, and density and one real-valued age feature, that is, in
total, we have 27 features to consider. This standard categorical
dataset is widely used to access the quality of various computer-aided
diagnostic tools (CADs), with the general aim of identifying such a
CAD that would use non-invasive information of age and
mammographic image features for the precise diagnostics of
breast cancer (Elder et al., 2007; Ayer et al., 2010; Zhang et al., 2010).

The standard measure for CAD performance adopted in the
medical literature is called area under curve (AUC) (Qin and
Hotilovac, 2008). The closer the AUC value is to 1.0, the better is
the performance of the respective CAD and the lower is the
probability of a false-positive or false-negative diagnosis. To
compute the AUC values of different CADs—together with
95% confidence intervals of AUC, we use the methodology
described in Qin and Hotilovac (2008). The implementation of
this method is available for open access at https://github.com/
brian-lau/MatlabAUC.

The given label “benign” or “malignant” (m � 2) in the dataset
is obtained based on an invasive core-needle biopsy analysis of
the tissue. Whereas the rate of the false-positive core-needle
breast biopsy outcomes is practically zero, the rate of the false-
negative biopsy findings can be quite significant. According to the
literature, it can vary in a wide range between 0.005 and 0.19
(Shah et al., 2003; Verkooijen et al., 2004; Boba et al., 2011). CADs
based on artificial neuronal networks (ANNs) have been reported
to have the highest AUC for these data (Elder et al., 2007; Ayer
et al., 2010; Gerber and Horenko, 2017). Training such ANNs
results in an AUC of 0.85 with an 95% confidence interval of
[0.82, 0.88], whereas using the standard BI-RADS diagnostics (on
the same data and computed deploying the methodology from
Qin and Hotilovac (2008), one obtains an AUC of 0.82 with a 95%
confidence interval of [0.78, 0.84].

However, published CAD methodologies that used this
standard BI-RADS dataset for training do not consider an
eventual risk of mislabeling due to wrong biopsy outcomes. As
mentioned before, this risk may achieve 0.19 (Shah et al., 2003;

FIGURE 1 | Application of (1–4) to the analysis of the standard BI-RADS dataset from http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass: (A) Model
selection by cross-validation (bootstrap-averaged values of the functional L from (1) with optimal parameters from the training sets being evaluated on the validation
datasets); (B) optimal parameter vector α*; (C) probability of a malignant diagnosis as a function of BI-RADS features for the two groups of patients; (D) average impact of
single BI-RADS features (sensitivity of the risk to the 7 binary features of importance).
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Verkooijen et al., 2004; Boba et al., 2011). If there are mislabelings
in the data, then the AUC of the validation set is biased and
misleading.

To apply the suggestedmethodology presented here, we set the
broad a priori bounds for mislabeling risks (with r− � 0, r+ � 0.5)
and tested various model classes ϕ, including the naive Bayesian
classifier models, linear models, probit models, and logit models.
The optimal results are achieved for ϕ being a logit model
function. Analysis results are summarized in Figure 1.

Figure 1A shows the negative values of L from optimal (1)
with αp obtained for the training sets and evaluated on the
validation sets, averaged over 500 random cross-validations,
when the full dataset is randomly divided into the training set
(with 75% of the data) and the validation set (25% of the data). It
appears that the cross-validation optimal model is characterized
by the false-negative biopsy rate rp close to zero and the optimal
regularization parameter value C around eight. Figure 1B
visualizes the optimal parameter vector αp with the features of
interest together with their impact.

Furthermore, to estimate the confidence intervals for αp and
rp, we deploy the common non-parametric bootstrap sampling
procedure (Efron and Tibshirani, 1993) (see Figure 1C). The
resulting posterior distribution of inferred false-negative biopsy
outcomes is shown in Figure 1C, together with their expected
posterior estimate—being 0.6%. As can be seen from Figures
1C,D, the obtained diagnostic model is robust and contains the
binary yes/no characteristics from just three features that
statistically significantly influence malignancy risk (from age,
margin, and shape of the inclusion). In contrast, commonly
applied diagnostic strategies include 28 characteristics from
four features, including an additional intrusion density feature
(with 4 categories). Age appears to be the most significant feature,
almost doubling the average risk for individuals older than
80 years as compared to twenty-year-olds. Besides age, there

are two binary factors that increase malignancy risk (“margin is
not circumscribed” and “shape is irregular”) and four risk-
decreasing binary factors (“margin is circumscribed,” “shape is
not irregular,” “margin is not spiculated,” and “shape is not
lobular”).

In a perfect situation, one would need to have a validation set
with 100% correct labelings to make the comparison of different
diagnostic strategies with respect to their AUC. Since such
datasets are not available in the published medical literature,
we follow a different way and investigate and compare the
systematic bias that is imposed by the latent mislabeling risks
on the AUC values of different diagnostic procedures. In order to
better address the aforementioned issue of AUC with
mislabelings to the bias induced by different mislabeling rates,
we computed and compared the bootstrap confidence intervals of
the systematic bias that is introduced by the latent mislabeling
risks on the AUC values of different diagnostic procedures (see
Supplementary Figure S2 from the Supplement).

The application of the introduced strategy described in the
Methods section to these BI-RADS data revealed that it is almost
perfectly labeled (inferred expected malignant mislabeling rate is
almost 0% and the benign mislabeling rate is 0.6%). This result is
in agreement with the range of false-negative biopsy outcomes
from the clinical reports (Shah et al., 2003; Verkooijen et al., 2004;
Boba et al., 2011). The AUC values obtained with the mislabeling
model (1–4) introduced in the article are statistically significantly
higher than the AUC values of the BI-RADS and of the ANN
strategies (without considering potential mislabeling) published
in the literature. These results indicate that the obtained
classification model with mislabeling would have AUC values
that are statistically significantly higher than the common BI-
RADS diagnostics.

Furthermore, the logit model performs robustly, despite the
number of mislabelings, and offers a good estimate with respect to

FIGURE 2 | (A) Significant correlation between the true synthetically induced mislabeling rate of the mammography data and the error rate predicted by the co-
inference method. (B) Performance of different model types on the mammography dataset with various mislabeling rates. All models, except the original one, were
trained using the respective mislabeled dataset. The average prediction accuracy was calculated based on the original mammography dataset. Co-inference
outperforms a linear SVC and performs nearly on par with a state-of-the-art SVC using an RBF kernel.
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the mislabeled data, as indicated by the calculated the Pearson
correlation between the estimated and true mislabeling rates (R �
0.096, p � 0.002 9) (see Figure 2A). Additionally, we evaluated
our logit model against two types of support vector classifiers
(SVCs) with linear and radial basis function (RBF) kernels to
compare model performance apart from the aforementioned
AUC metric. For this, we trained all models with 200
bootstrap steps on synthetically mislabeled datasets based on
the breast cancer data with known mislabeling rates and
calculated their average model accuracy with respect to the
original breast cancer data. The logit model outperforms the
linear SVC and performs nearly on par with a state-of-the-art
SVM with RBF kernel (see Figure 2B and Supplementary
Material Chapter S3, Supplementary Table S1). Compared to
the SVMwith RBF kernel, which performs about equally well, our
method is the only one that can predict the expected mislabeling
rate. This prediction—although generally somewhat less than the
true value—shows a strong correlation between the true
synthetically induced mislabeling rate of the mammography
data and the error rate predicted by the co-inference method
(see Figure 2A).

Example 2: Wellderly Data Analysis and
Extraction of Genomic Patterns of Healthy
Aging
In the second example, our method is applied to human
sequencing data in the context of genome-wide association
studies (GWASs), where a population sharing a trait is
compared to a “normal” control population. The sample
consists of the Wellderly cohort, a cohort of healthy elderly
(older than 80 years) individuals (Erikson et al., 2016), and
the Caucasian population of phase 3 from the “1000 Genomes
Project” (1 KG), which serves as the control (The 1000 Genomes
Project Consortium, 2015). The analytical question would be to
compare both groups and to find genetic patterns that correlate
with the “Wellderly” phenotype.

GWAS may suffer a number of statistical errors, such as
overfitting, p-value misinterpretation, or batch effects due to
different sequencing platforms (Nuzzo, 2014; Gerber et al.,
2020; Pfenninger et al., 2021; Weißbach et al., 2021). In our
Wellderly control cohort, we face the additional problem of
almost certain sample mislabeling between “cases” and
controls, which is impossible to prevent. Specifically, some of
the individuals from the control group may actually progress to
be healthy individuals of advanced age and thus belong to the
Wellderly population and not the control population. It would be
impractical to wait several decades to observe the outcome.

For the analysis, precomputed VCF files were obtained from
the 1000 Genomes Project and the Wellderly cohort. Then the
cohorts were merged and filtered (minimum allele frequency
filter of 1%, no missing genotypes, only SNPs that appear in both
cohorts). Themerged cohort was subset further to 163 individuals
from each population, who were most closely related (according
to the genomic distance) and whose self-reported Caucasian
inheritance was above 95% in the Wellderly cohort, to
counteract population stratification. Lastly, the vcf data were

filtered to only contain biallelic SNPs, since the model does
not yet accommodate other SNP types, and the vcf entries
were recoded as 0, 1, and 2 to indicate major minor or mixed
alleles. The final cohort was split into training and test data (25
and 75%, respectively) and the mathematical model introduced
above (1–4). A non-parametric bootstrap sampling paradigm was
used for independent random separations of the cohort into
training and validation groups. All 100 results from applying
(1–4) to each of these random training and validation choices
were used to create the posterior probability density functions of
mislabeling risks for the two data groups, as well as to compute
the 95% confidence intervals for feature weights and for
individual Wellderly probabilities in the groups. Optimal
results appear to be achieved with the logit model function ϕ.

First, the mislabeling probability between Wellderly and
control individuals was assessed. Here, the estimated posterior
probability for the perfect group labeling altogether was only 0.09,
meaning that samples were mislabeled between Wellderly and
control with a probability of 91%. Figures 3A,B illustrate the
expected proportion of “mislabeled” individuals in each cohort.
According to the model, there were 7.5% control cases mistakenly
classified as Wellderly and about 3.2% Wellderly individuals
possibly mislabeled.

Then the feature weights αwere recorded, which means that
the SNPs were statistically relevant to the Wellderly
phenotype, according to the model. Forty-five SNP features
had statistically significant values of α. The full list of features,
together with their estimated mean impacts on Wellderly
probability, is provided in Section 3 of the SI. Note that
this result does not imply that only these 45 features have a
significant impact on the healthy ageing probability, and it
does not mean that the other features (that got zero weights αi)
are completely unrelated to the Wellderly genotype. As
mentioned before, deploying our model (1–4), one can
identify a unique compact pattern of features. However, the
model tries to establish a consensus between finding the largest
number of informative features and overfitting, which may
result in some SNPs not labeled as informative simply because
the model tries to correct for potential overfitting, and
vice versa.

The investigation of these 45 SNP features revealed rs429358,
situated in the coding region of the APOE gene. rs429358 is one of
two markers that define the APOE-E4 status, which is the
strongest common genetic risk factor for Alzheimer’s disease.
The remainder of statistically significant SNP features are either
intronic (38 SNPs) or intergenic (6 SNPs), where intergenic SNPs
were often near a gene bearing a statistically significant intronic
SNP. In fact, the 45 SNP features tended to cluster within a
smaller number of genes 28 genes (see the table in
Supplementary Material), suggesting multiple independent
genetic signals are present within these genes. Further
inspection of these genes reveals dramatic enrichment of genes
associated with longevity, including lipid metabolism genes:
APOE, APOC3, and CETP; insulin signaling and mTOR
signaling: ADCY2, AKT3, CREB5, IGF1R, INSR, PIK3CD, and
RHEB; and AMPK-dependent metabolic signaling: CAMK4,
PPARGC1A, PRKAA1, and PRKAG2.
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DISCUSSION

Although the raw datasets used in many types of biomedical data
analysis are very large, making sense of them requires statistical
methods able to handle data problems where the dimensionality n
of their feature spaces is typically orders of magnitude larger than
the number T of individuals in the groups. According to central
limit theorems, the uncertainty of typical parameter estimation
procedures will reduce as T1/2 with the growing statistics size T
only if the individual data instances in the statistics can be
assumed to be independent. The more that dependence
between the data instances, the slower will be the rate of this
uncertainty reduction with T. In this respect, genomic SNP data
pose special problems as they contain a huge fraction of

dependencies between SNP pairs that are in a linkage
equilibrium with each other. Another source of bias is
introduced through the impact of latent/unobserved factors
(e.g., in the form of stratification effects and latent variables)
and various forms of mislabeling. Mislabeling can bias the results
obtained by standard relation measures that dwell on an exact
labeling assumption (e.g., it can bias the results of the t-test, chi-
square test, Fisher’s exact test, odds ratio, and many other
methods). Common methods to overcome this problem,
including outlier detection methods and HMMs, either rely on
the presence of some subsets that are exactly labeled or introduce
additional variables that estimate the probability of every
particular data point being an outlier. This significantly
increases the dimension of the parameter space and the risk of

FIGURE 3 | Application of (1–4) to the analysis of filtered SNP data from (Erikson et al., 2016): (A) posterior probability distribution of the inferred optimal
mislabelings from the “close-to-Wellderly European” cohort from 1000 Genomes (basis for the control group); (B) posterior probability distribution of the inferred optimal
mislabelings from the “Wellderly Caucasian” cohort (Erikson et al., 2016) (basis for the case group); (C) estimated optimal weights αi of the SNP patterns together with
their 95% confidence intervals; (D) individual probabilities of Wellderly being due to genomic factors (together with their 95% confidence intervals), as inferred from
the optimal feature weights α from panel (C). Posterior distributions in (A,B) and confidence intervals in (C,D) are obtained by means of the non-parametric bootstrap
sampling (Efron and Tibshirani, 1993) with 100 ensemble realizations.
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overfitting. These problems remain an issue even when the
numbers of individuals sequenced by platforms such as
23andme approach millions. All these issues (n > > T,
violation of the independence assumption, latent impacts, and
mislabeling) lead to uncertainty in estimating parameters and
make biomedical GWAS applications very challenging. These
issues also limit the applicability of advanced Big Data tools such
as artificial neuronal networks to problems of this type. A
promising direction toward solving these problems can be
found in methods based on Lasso regularization ideas first
introduced by R. Tibshirani and coworkers (Tibshirani, 1996;
Bair and Tibshirani, 2004; Friedman et al., 2010; Simon et al.,
2011; Taylor and Tibshirani, 2015), through a robust and
computationally efficient shrinkage of the feature space and
zeroing out of less relevant feature components. As
demonstrated before, introducing a measurement of the
probability of group-specific mislabeling and deploying
Bayesian tools permit a natural extension of these ideas to
situations in which none of the data groups is presumed
perfectly labeled. This is accomplished without introducing
many new parameters that have to be estimated. For example,
in the case of a one-data group (Ng � 1) with two data labels (m �
2, e.g., “Wellderly” and “non-Wellderly” labels in example 2),
only two additional mislabeling parameters need to be estimated.
The open-source MATLAB implementation we provide here
permits implementation of the algorithm in a strongly scalable
way. A full analysis of the data in example 2 takes 24 days on a
single-core PC, 2 days on a PC workstation with 12 cores, and
only 5 h on a small-scale computer cluster with hundred nodes.
Measuring the performance of such methods has a general
problem due to the presence of latent impacts and mislabeling,
which can bias either standard measures such as AUC, accuracy
scores, and Fisher’s exact test or and linkage disequilibrium
measures. In future studies, a better understanding of ever-
growing sets of biomedical data requires the further
development of robust and computationally scalable relation
measures that can explicitly infer and take into account
eventual latent effects and mislabeling.

DATA AVAILABILITY STATEMENT

Publicly available datasets were analyzed in this study. These data
can be found in the following site; a parallel MATLAB
implementation of this method is provided for open access via
GitHub: https://github.com/SusanneGerber/Mislabeling_Coinference/
tree/master/Release/Mislabeling_Coinference. The breast cancer
BI-RADS dataset is available for open access at the UCI Machine
Learning Repository: http://archive.ics.uci.edu/ml/datasets/
Mammographic+Mass. Aggregate unfiltered annotated variants

for healthy-ageing Caucasian individuals (Wellderly) and their
allele and genotype frequencies are available via Scripps
Translational Science Institute Variant Browser: https://
genomics.scripps.edu/browser.

AUTHOR CONTRIBUTIONS

SG contributed to conceptualization, investigation, supervision,
writing—original draft, writing—review and editing,
visualization, project administration, and funding acquisition.
LP assisted with methodology, software, formal analysis, and
writing—review and editing. SS helped with writing—original
draft, validation, and writing—review and editing. CH assisted
with software, validation, formal analysis, investigation,
writing—review and editing, and visualization. AT contributed
to data acquisition, software, formal analysis, and
writing—review and editing. IH helped with conceptualization,
methodology, software, validation, formal analysis, investigation,
writing—original draft, writing—review and editing,
visualization, supervision, and funding acquisition.

FUNDING

The work of CH was supported by the Forschungsinitiative
Rheinland-Pfalz and ReALity. The work of SS was funded by
the Forschungsinitiative Rheinland-Pfalz and M3odel. AT
acknowledges funding by the NIH-NCATS UL1TR002550
grant. The work of IH was partly funded by the German
Research Foundation (“Mercator Fellowship” of IH in the
Collaborative Research Center 1114 Scaling Cascades in
Complex Systems).

ACKNOWLEDGMENTS

SG and IH acknowledges funding from the Emergent AI Center
funded by the Carl-Zeiss-Stiftung. SG and CH acknowledge
funding by the Landesinitiative Rheinland-Pfalz and the
Resilience, Adaptation, and Longevity (ReALity) initiative of
the Johannes Gutenberg University of Mainz. SS and SG
acknowledge funding by M3odel Initiative.

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/frai.2021.739432/
full#supplementary-material

REFERENCES

Andreopoulos, B., An, A., Wang, X., and Schroeder, M. (2009). A Roadmap of
Clustering Algorithms: Finding a Match for a Biomedical Application. Brief.
Bioinform. 10, 297–314. doi:10.1093/bib/bbn058

Ayer, T., Ayvaci, M., Liu, Z. X., Alagoz, O., and Burnside, E. S. (2010). Computer-
aided Diagnostic Models in Breast Cancer Screening. Imaging Med. 2, 313–323.
doi:10.2217/iim.10.24

Bair, E., and Tibshirani, R. (2004). Semi-supervised Methods to Predict Patient
Survival from Gene Expression Data. PLOS Biol. 2. doi:10.1371/
journal.pbio.0020108

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7394328

Gerber et al. Co-Inference of Mislabeled Data

https://github.com/SusanneGerber/Mislabeling_Coinference/tree/master/Release/Mislabeling_Coinference
https://github.com/SusanneGerber/Mislabeling_Coinference/tree/master/Release/Mislabeling_Coinference
http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
http://archive.ics.uci.edu/ml/datasets/Mammographic+Mass
https://genomics.scripps.edu/browser
https://genomics.scripps.edu/browser
https://www.frontiersin.org/articles/10.3389/frai.2021.739432/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/frai.2021.739432/full#supplementary-material
https://doi.org/10.1093/bib/bbn058
https://doi.org/10.2217/iim.10.24
https://doi.org/10.1371/journal.pbio.0020108
https://doi.org/10.1371/journal.pbio.0020108
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Barandela, R., and Gasca, E. (2000). Decontamination of Training Samples for
Supervised Pattern Recognition Methods. Berlin Heidelberg: Springer, 621–630.
doi:10.1007/3-540-44522-6_64

Boba, M., Kołtun, U., Bobek-Billewicz, B., Chmielik, E., Eksner, B., and Olejnik, T.
(2011). False-negative Results of Breast Core Needle Biopsies –retrospective
Analysis of 988 Biopsies. Polish J. Radiol. 76, 25–29.

Bootkrajang, J., and Kabán, A. (2012). Label-noise Robust Logistic Regression and its
Applications. BerlinHeidelberg: Springer, 143–158. doi:10.1007/978-3-642-33460-3_15

Brodley, C. E., and Friedl, M. A. (1999). Identifying mislabeled Train. Data 11,
131–167. doi:10.1613/jair.606

Burnham, K., and Anderson, D. (2002).Model Selection and Multimodel Inference: A
Practical Information-Theoretic Approach. Berlin Heidelberg: Springer-Verlag.

Chandola, V., Banerjee, A., and Kumar, V. (2009). Anomaly Detection: A Survey.
ACM Comput. Surv. 41 (15), 58, 2009 . 1–15. doi:10.1145/1541880.1541882

Choi, Y.-S. (2009). Least squares one-class support vector machine 30, 1236–1240.
doi:10.1016/j.patrec.2009.05.007

Efron, B., and Tibshirani, R. (1993). An Introduction to the Bootstrap. New York,
United States: Macmillan Publishers Limited.

Elder, M., Schulz-Wendtland, R., and Wittenberg, T. (2007). The Prediction of
Breast Cancer Biopsy Outcomes Using Two CAD Approaches that Both
Emphasize an Intelligible Decision Process. Med. Phys. 34, 4164–4172.

Erikson, G., Bodian, L., Rueda, M., Molparia, B., Scott, E. R., Zeeland, A. A. S.-V.,
et al. (2016). Whole-genome Sequencing of a Healthy Aging Cohort. Cell 165,
1002–1011. doi:10.1016/j.cell.2016.03.022

Frénay, B., and Kaban, A. “A Comprehensive Introduction to Label Noise,” in
Proceedings of the 2014 European Symposium on Artificial Neural Networks,
Computational Intelligence and Machine Learning (ESANN 2014), Bruges,
Belgium, April 2014. (i6doc.com.publ.).

Frenay, B., and Verleysen, M. (2014). Classification in the Presence of Label Noise.
A Surv. 25, 845–869. doi:10.1109/tnnls.2013.2292894

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization Paths for Generalized
LinearModels via Coordinate Descent. J. Stat. Softw. 33, 1–22. doi:10.18637/jss.v033.i01

Frühwirth-Schnatter, S. (2006). Finite Mixture and Markov Switching Models.
Berlin Heidelberg: Springer.

Gerber, S., and Horenko, I. (2015). Improving Clustering by Imposing Network
Information. Sci. Adv. 1 (7), e1500163. doi:10.1126/sciadv.1500163

Gerber, S., and Horenko, I. (2017). Toward a Direct and Scalable Identification of
Reduced Models for Categorical Processes. Proc. Natl. Acad. Sci. 114,
4863–4868. doi:10.1073/pnas.1612619114

Gerber, S., Pospisil, L., Navandar, M., and Horenko, I. (2020). Low-cost Scalable
Discretization, Prediction, and Feature Selection for Complex Systems. Sci. Adv.
6, eaaw0961. doi:10.1126/sciadv.aaw0961

Gomez-Nicola, D., and Boche, D. (2015). Post-mortem Analysis of
Neuroinflammatory Changes in Human Alzheimer’s Disease. Alzheimer’s
Res. Ther. 7, 42. doi:10.1186/s13195-015-0126-1

Hariri, S., Kind, M. C., and Brunner, R. J. (2021). Extended isolation For. 33,
1479–1489. doi:10.1109/tkde.2019.2947676

Hastie, T., Tibshirani, R., and Friedman, J. (2009). The Elements of Statistical Learning:
Data Mining, Inference and Prediction. 2 edn. Berlin Heidelberg: Springer.

Hendrycks, D., Mazeika, M., Wilson, D., and Gimpel, K. (2019). Using Trusted
Data to Train Deep Networks on Labels Corrupted by Severe Noise. Available
at: https://arxiv.org/abs/1802.05300.

Jiang, Y., and Zhou, Z.-H. (2004). Editing Training Data for kNN Classifiers with
Neural Network Ensemble. Berlin Heidelberg: Springer, 356–361. doi:10.1007/
978-3-540-28647-9_60

Lam, H. Y. K., Clark, M. J., Chen, R., Chen, R., Natsoulis, G., O’Huallachain, M.,
et al. (2011). Performance Comparison of Whole-Genome Sequencing
Platforms. Nat. Biotechnol. 30, 78–82. doi:10.1038/nbt.2065

Liu, F. T., Ting, K. M., and Zhou, Z.-H. “Isolation forest (IEEE),” in Proceedings of
the 2008 Eighth IEEE International Conference on Data Mining, Pisa, Italy,
December 2008. doi:10.1109/icdm.2008.17

Luo, J., and Ren, J. (2014).An Infinite Latent Generalized LinearModel. Berlin Heidelberg:
Springer International Publishing, 155–166. doi:10.1007/978-3-319-08010-9_18

McFadden, D. (1974). “Conditional Logit Analysis of Qualitative Choice Behaviour,” in
Frontiers in Econometrics. Editor P. Zarembka (NewYork: Academic Press), 105–142.

Moya, M., and Hush, D. (1996). Network Constraints and Multi-Objective
Optimization for One-Class Classification. Neural Networks 9, 463–474.
doi:10.1016/0893-6080(95)00120-4

Nocedal, J., andWright, S. J. (2006).Numerical Optimization. 2nd edn.NewYork: Springer.
Nuzzo, R. (2014). Scientific Method: Statistical Errors. Nature 506, 150–152.

doi:10.1038/506150a
ORawe, J., Jiang, T., Sun, G., Wu, Y., Wang, W., Hu, J., et al. (2013). Low

Concordance of Multiple Variant-Calling Pipelines: Practical Implications
for Exome and Genome. sequencing 5, 28. doi:10.1186/gm432

Pfenninger, M., Reuss, F., Kiebler, A., Schönnenbeck, P., Caliendo, C., Gerber, S.,
et al. (2021). Genomic Basis of Drought Resistance in Fagus Sylvatica. eLife 10,
e65532. doi:10.7554/eLife.65532

Qin, G., and Hotilovac, L. (2008). Comparison of Non-parametric Confidence
Intervals for the Area under the ROC Curve of a Continuous-Scale Diagnostic
Test. Stat. Methods Med. Res. 17, 207–221. doi:10.1177/0962280207087173

Rodionova, O., Oliveri, P., and Pomerantsev, A. (2016). Rigorous and Compliant
Approaches to One-Class Classification. Chemometrics Intell. Lab. Syst. 159,
89–96. doi:10.1016/j.chemolab.2016.10.002

Rodrigues, D. R., Everschor-Sitte, K., Gerber, S., and Horenko, I. (2021). A Deeper
Look into Natural Sciences with Physics-Based and Data-Driven Measures.
iScience 24, 102171. doi:10.1016/j.isci.2021.102171

Ross, M. G., Russ, C., Costello, M., Hollinger, A., Lennon, N. J., Hegarty, R., et al.
(2013). Characterizing and Measuring Bias in Sequence Data. Genome Biol. 14,
R51. doi:10.1186/gb-2013-14-5-r51

Sáez, C., Romero, N., Conejero, J. A., and García-Gómez, J. M. (2020). Potential
Limitations in COVID-19 Machine Learning Due to Data Source Variability: A
Case Study in the nCov2019 Dataset. J. Am. Med. Inform. Assoc. 28, 360–364.
doi:10.1093/jamia/ocaa258

Shah,V.,Raju,U.,Chitale,D.,Deshpande,V.,Gregory,N., andStrand,V. (2003).False-negative
Core Needle Biopsies of the Breast. Cancer 97, 1824–1831. doi:10.1002/cncr.11278

Simon, N., Friedman, J., Hastie, T., and Tibshirani, R. (2011). Regularization Paths
for Cox’s Proportional Hazards Model via Coordinate Descent. J. Stat. Softw.
39, 1–13. doi:10.18637/jss.v039.i05

Taylor, J., and Tibshirani, R. (2015). Statistical Learning and Selective Inference.
Proc. Natl. Acad. Sci. 112, 7629–7634. doi:10.1073/pnas.1507583112

Teng, C. M. (2001). A Comparison of Noise Handling Techniques. Available at:
https://www.aaai.org/Papers/FLAIRS/2001/FLAIRS01-052.pdf.

The 1000 Genomes Project Consortium (2015). A Global Reference for Human
Genetic Variation. Nature 526, 68–74. doi:10.1038/nature15393

Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. J. R. Stat. Soc.
Ser. B (Methodological) 58, 267–228. doi:10.1111/j.2517-6161.1996.tb02080.x

Todorov, H., Searle-White, E., and Gerber, S. (2020). Applying Univariate vs.
Multivariate Statistics to Investigate Therapeutic Efficacy in (Pre)clinical Trials:
A Monte Carlo Simulation Study on the Example of a Controlled Preclinical
Neurotrauma Trial. PLoS One 15, e0230798. doi:10.1371/journal.pone.0230798

Verkooijen, H. M., Hoorntje, L. E., and Peeters, P. H. M. (2004). False-negative Core
Needle Biopsies of the Breast. Cancer 100, 1104–1105. doi:10.1002/cncr.20077

Weißbach, S., Sys, S., Hewel, C., Todorov, H., Schweiger, S.,Winter, J., et al. (2021). Reliability
of Genomic Variants across Different Next-Generation Sequencing Platforms and
Bioinformatic Processing Pipelines. BMC Genomics 22. doi:10.1186/s12864-020-07362-8

Zhang, Y., Li, R., and C, T. (2010). Regularization Parameter Selections via Generalized
InformationCriterion. J. Am. Stat. Assoc. 105, 312–323. doi:10.1198/jasa.2009.tm08013

Zhu, F., Yang, J., Gao, C., Xu, S., Ye,N., andYin, T. (2016). AWeightedOne-Class Support
Vector Machine. Neurocomputing 189, 1–10. doi:10.1016/j.neucom.2015.10.097

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Gerber, Pospisil, Sys, Hewel, Torkamani and Horenko. This is an
open-access article distributed under the terms of the Creative Commons Attribution License
(CC BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original publication
in this journal is cited, in accordancewith accepted academic practice. No use, distribution or
reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org January 2022 | Volume 4 | Article 7394329

Gerber et al. Co-Inference of Mislabeled Data

https://doi.org/10.1007/3-540-44522-6_64
https://doi.org/10.1007/978-3-642-33460-3_15
https://doi.org/10.1613/jair.606
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.patrec.2009.05.007
https://doi.org/10.1016/j.cell.2016.03.022
https://doi.org/10.1109/tnnls.2013.2292894
https://doi.org/10.18637/jss.v033.i01
https://doi.org/10.1126/sciadv.1500163
https://doi.org/10.1073/pnas.1612619114
https://doi.org/10.1126/sciadv.aaw0961
https://doi.org/10.1186/s13195-015-0126-1
https://doi.org/10.1109/tkde.2019.2947676
https://arxiv.org/abs/1802.05300
https://doi.org/10.1007/978-3-540-28647-9_60
https://doi.org/10.1007/978-3-540-28647-9_60
https://doi.org/10.1038/nbt.2065
https://doi.org/10.1109/icdm.2008.17
https://doi.org/10.1007/978-3-319-08010-9_18
https://doi.org/10.1016/0893-6080(95)00120-4
https://doi.org/10.1038/506150a
https://doi.org/10.1186/gm432
https://doi.org/10.7554/eLife.65532
https://doi.org/10.1177/0962280207087173
https://doi.org/10.1016/j.chemolab.2016.10.002
https://doi.org/10.1016/j.isci.2021.102171
https://doi.org/10.1186/gb-2013-14-5-r51
https://doi.org/10.1093/jamia/ocaa258
https://doi.org/10.1002/cncr.11278
https://doi.org/10.18637/jss.v039.i05
https://doi.org/10.1073/pnas.1507583112
https://www.aaai.org/Papers/FLAIRS/2001/FLAIRS01-052.pdf
https://doi.org/10.1038/nature15393
https://doi.org/10.1111/j.2517-6161.1996.tb02080.x
https://doi.org/10.1371/journal.pone.0230798
https://doi.org/10.1002/cncr.20077
https://doi.org/10.1186/s12864-020-07362-8
https://doi.org/10.1198/jasa.2009.tm08013
https://doi.org/10.1016/j.neucom.2015.10.097
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Co-Inference of Data Mislabelings Reveals Improved Models in Genomics and Breast Cancer Diagnostics
	Introduction
	Materials and Methods
	Results
	Example 1: Breast cancer diagnostics based on the standard BI-RADS X-ray imaging data.
	Example 2: Wellderly Data Analysis and Extraction of Genomic Patterns of Healthy Aging

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	Supplementary Material
	References


