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Mapping the characteristics of Africa’s smallholder-dominated croplands, including the
sizes and numbers of fields, can provide critical insights into food security and a range of
other socioeconomic and environmental concerns. However, accurately mapping these
systems is difficult because there is 1) a spatial and temporal mismatch between satellite
sensors and smallholder fields, and 2) a lack of high-quality labels needed to train and
assess machine learning classifiers. We developed an approach designed to address
these two problems, and used it to map Ghana’s croplands. To overcome the spatio-
temporal mismatch, we converted daily, high resolution imagery into two cloud-free
composites (the primary growing season and subsequent dry season) covering the
2018 agricultural year, providing a seasonal contrast that helps to improve
classification accuracy. To address the problem of label availability, we created a
platform that rigorously assesses and minimizes label error, and used it to iteratively
train a Random Forests classifier with active learning, which identifies the most informative
training sample based on prediction uncertainty. Minimizing label errors improved model
F1 scores by up to 25%. Active learning increased F1 scores by an average of 9.1%
between first and last training iterations, and 2.3%more thanmodels trained with randomly
selected labels. We used the resulting 3.7 m map of cropland probabilities within a
segmentation algorithm to delineate crop field boundaries. Using an independent map
reference sample (n � 1,207), we found that the cropland probability and field boundary
maps had respective overall accuracies of 88 and 86.7%, user’s accuracies for the
cropland class of 61.2 and 78.9%, and producer’s accuracies of 67.3 and 58.2%. An
unbiased area estimate calculated from the map reference sample indicates that cropland
covers 17.1% (15.4–18.9%) of Ghana. Using the most accurate validation labels to correct
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for biases in the segmented field boundaries map, we estimated that the average size and
total number of field in Ghana are 1.73 ha and 1,662,281, respectively. Our results
demonstrate an adaptable and transferable approach for developing annual, country-
scale maps of crop field boundaries, with several features that effectively mitigate the errors
inherent in remote sensing of smallholder-dominated agriculture.

Keywords: active learning, machine learning, PlanetScope, smallholder cropland, field size, label error, Africa,
Ghana

1 INTRODUCTION

Amidst all the challenges posed by global change, a particular
concern is how agricultural systems will adapt to meet humanity’s
growing food demands, and the impacts that transforming and
expanding food systems will have on societies, economies, and the
environment (Searchinger et al., 2019). A number of efforts are
underway to address various aspects of this challenge, including
work on diagnosing and closing yield gaps (Lobell et al., 2009;
Licker et al., 2010; Mueller et al., 2012), expanding and
commercializing production (Morris and Byerlee 2009), and to
understand (Rulli and D’Odorico 2014; Kehoe et al., 2017; Davis
et al., 2020) and mitigate (Estes et al., 2016b) agriculture’s
ecological impacts. The success of these efforts depends
heavily on data that accurately describes the location and
characteristics of croplands (Fritz et al., 2015), and, given the
rapid pace of agricultural change (Gibbs et al., 2010; Zeng et al.,
2018; Bullock et al., 2021), how these are changing from 1 year to
the next. Unfortunately, for many regions, existing cropland
datasets are inaccurate, and are usually created as once-off or
infrequently updated products. As such, estimates of global
cropland area tend to vary widely, often disagree about where
croplands are located (e.g. Fritz et al., 2011, Fritz et al., 2013), and
become rapidly outdated. Errors in these maps can propagate in
subsequent analyses that use cropland data as inputs, resulting in
potentially misleading answers (Estes et al., 2018). Beyond
distributions, few data are available on key cropland
characteristics such as field size, an important variable needed
to estimate yield and other key food security variables (Carletto
et al., 2015), and as an indicator of farm size (Levin 2006; Samberg
et al., 2016), a critical component of rural livelihoods given
increasing population densities and longstanding debates about
the relationship between farm size and productivity (Feder, 1985;
Carletto et al., 2013; Desiere and Jolliffe, 2018).

The deficit of information is due to the fact that in many
regions the only source of cropland data are remotely sensed land
cover maps, which are prone to error. This is particularly true in
Africa (Fritz et al., 2010; Estes et al., 2018), where agricultural
changes will be largest and the need for accurate baseline data is
thus greatest (Searchinger et al., 2015; Estes et al., 2016b; Bullock
et al., 2021), and where the characteristics of croplands exacerbate
the error inherent in remote sensing analyses. Half of all fields in
Africa’s smallholder-dominated agricultural systems are smaller
than 1 ha (Lesiv et al., 2019). This size is small relative to the
30–250 m resolution of the sensors typically used in many
landcover mapping efforts (e.g. Chen et al., 2015; Sulla-
Menashe et al., 2019), which results in errors due to mixed

pixels and aspects of the modifiable area unit problem
(Openshaw and Taylor 1979; Boschetti et al., 2004), wherein
the pixel’s shape does not match that of crop fields, and is too
coarse to aggregate into an approximation of that shape (Dark
and Bram 2007; Estes et al., 2018). On top of the matter of scale is
the high variability within and between fields, their tendency to
intergrade with surrounding vegetation (Estes et al., 2016a;
Debats et al., 2016), and the high temporal variability within
croplands. These last three aspects pose challenges for the
classification algorithms that are applied to the imagery.

Recent technological advances are helping to overcome these
challenges. Chief among these are the growing numbers of
satellites that collect high (<5 m) to near-high (10 m)
resolution imagery at sub-weekly intervals (Drusch et al., 2012;
McCabe et al., 2017). The spatial resolution of these imagery
addresses the scale mismatch between sensor and field, and their
high frequency captures the seasonal dynamics of cropland,
which helps classifiers distinguish cropland from surrounding
cover types (Debats et al., 2016; Defourny et al., 2019). On top of
this, the opening of satellite image archives (Wulder et al., 2016)
and advances in cloud computing are placing large volumes of
moderate to near-high resolution imagery together with the
computational and algorithmic resources necessary to classify
them at scale (Gorelick et al., 2017). These capabilities have
already been used to create a new generation of higher
resolution (10–30 m) cropland and landcover maps for Africa
and other regions [ESA (n.d.); Lesiv et al. (2017); Xiong et al.
(2017) (Zhang et al., 2021);]. However, the potential of the highest
resolution (<5 m) imagery to map cropland over very large
extents (e.g. country scales) has yet to be realized, presumably
because these data are commercial and relatively expensive, and
require significant computational resource to process.

Beyond the imagery and computational gains, machine
learning algorithms are rapidly advancing, providing large
gains in classification performance (Maxwell et al., 2018; Ma
et al., 2019). However, the ability to take advantage of these gains
is often limited by newer models’ need for large training datasets,
which are typically unavailable, hard to collect, or contain
numerous errors (Ma et al., 2019; Elmes et al., 2020; Burke
et al., 2021). To build sufficient training samples, as well as
the reference data needed to objectively assess their
performance (we refer collectively to both types as “labels,”
distinguishing between each as needed), map-makers rely
heavily on visual interpretation of high resolution satellite or
aerial imagery (Chen et al., 2015; Xiong et al., 2017; Stehman and
Foody 2019), as it is impractical and expensive to collect these
data in the field over large areas, particularly on an ongoing basis.
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Consequently, a number of web-based platforms have been
developed to collect such labels (Fritz et al., 2012; Estes et al.,
2016a; Bey et al., 2016). Image-drawn labels present two
particular problems. The first is that they inevitably contain
errors of interpretation, which can vary substantially according
to the skill of the labeller, particularly over complex croplands
with small field sizes (Estes et al., 2016a; Waldner et al., 2019).
The second problem is that visual interpretation depends on high
resolution imagery (<5 m), as fields are increasingly difficult to
discern as image resolution decreases. Typically the only available
source of high resolution imagery is “virtual globe” basemaps (e.g.
Bing or Google Maps), which present mosaics of high resolution
satellite and aerial images collected over a span of several years
(Lesiv et al., 2018). This within-mosaic temporal variation can
create a temporal mismatch between the labels and the imagery
being classified, which is usually from a different source (e.g.
Landsat, Sentinel; Xiong et al. (2017)). If a land change occurs in
the interval between the two image sets (e.g. a new field was
created), the label, even if accurately drawn, introduces error into
the classifier. This source of error may be elevated in croplands
where swidden agriculture is practiced (Van Vliet et al., 2013), or
in rapidly developing agricultural frontiers (Zeng et al., 2018).
Despite the high potential for it, label error is often not considered
during model training and map accuracy assessment, resulting
not only in the potential for maps to be misused or
misinterpreted, but in missed opportunities to improve model
performance (Estes et al., 2018; Stehman and Foody, 2019; Elmes
et al., 2020).

Taking into consideration the advances and remaining
limitations described above, the ability to map smallholder-
dominated croplands can be further improved by 1) more fully
exploiting the profusion of high frequency, high resolution imagery
provided by CubeSats (McCabe et al., 2017), and 2) by
implementing methods that improve the ability to collect and
minimize errors in image-interpreted labels. We developed a
mapping approach that focuses on these two sources of
improvement. Our approach uses PlanetScope imagery collected
by Planet’s fleet of Dove satellites, which provide 3–4 m resolution
imagery over large areas at near daily intervals (McCabe et al.,
2017; PlanetTeam 2018), at relatively low to no cost for academic
research1 and non-commercial, sustainability-oriented
applications2. Although these data are of lower spectral depth
and, in some cases, quality, than Landsat, Sentinel, or Worldview
imagery, their daily revisit enables country-to continent-scale
image mosaics to be created for multiple periods during a
single agricultural year, even over the cloudiest forest regions
where it is hard to successfully construct cloud-free composites
from optical imagery with longer return intervals (even by a few
days). This ability to capture intra-annual variability can be more
important for classifying cropland than spectral depth (Debats
et al., 2016). Beyond the frequency, PlanetScope’s 3.7 m
resolution–although substantially coarser than the 0.5–1 m
imagery available in most areas covered by virtual globes–is

sufficiently resolved for humans to discern small fields under
many conditions (Fourie 2009; Estes et al., 2018). This allows
labels to be made using the same imagery that is classified, which
helps to minimize label error. To further reduce label noise, we
developed a platform that includes rigorous label accuracy
assessment protocols and a novel approach for creating
consensus labels, which helps reduce mistakes made by
individual labellers (Estes et al., 2016a; Elmes et al., 2020). We
couple the labelling platformwith a machine learningmodel inside
an active learning (Cohn et al., 1994; Tuia et al., 2011) framework,
in which the model is trained interactively, using the model’s
prediction uncertainty over unlabelled areas to select new sites for
additional labelling (Cohn et al., 1994; Tuia et al., 2011). This
approach helps boost the performance of the classifier while
reducing the overall number of labels required to achieve a
given level of performance (Debats et al., 2017; Hamrouni et al.,
2021). An unsupervised segmentation step is then applied to
convert pixel-wise cropland predictions into vectorized maps of
individual field boundaries.

FIGURE 1 | An overview of the primary mapping components, the data
stores that hold the inputs and outputs from each component, and the
direction of connections between them. The dashed line indicates iterative
interactions, while solid lines indicate one-time or irregular connections.

1www.planet.com/markets/education-and-research/
2assets.planet.com/docs/Planet_ParticipantLicenseAgreement_NICFI.pdf
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Here we use this approach to create a high resolution, national
map of crop field boundaries in Ghana, a country where
smallholder farming predominates across a broad mix of
climate and agricultural systems, ranging from primarily grain
and vegetable crop production in the northern savannas to tree
crop-dominated systems in the forested southwest, including
large areas where shifting agriculture is practiced (Samberg
et al., 2016; Kansanga et al., 2019). The map represents a
single agricultural year (2018–2019), as opposed to a multi-
year epoch, thereby demonstrating a capacity for annual, high
resolution maps that can be used to monitor rapidly evolving
small-scale agricultural systems, including key characteristics
such as field size. In addition to providing valuable new data
and insight into Ghana’s agriculture, our study demonstrates one
of the most spatially extensive agricultural applications of
CubeSats to date, provides a new technique for converting
daily imagery into seasonal composites, and shows how best
practices for model training and label collection can be applied to
improve map accuracy (Elmes et al., 2020).

2 MATERIALS AND METHODS

The mapping approach we developed is comprised of four open
source components (Figure 1) that are designed to run in a cloud
computing environment. The first component collects daily
PlanetScope imagery and converts them into cloud-free
seasonal composites. The second is a custom-built platform
that provides tools for labelling the composites, along with
procedures to assess and minimize label error. This platform
interacts with the third component, a machine learning process,
within an active learning (Cohn et al., 1994; Tuia et al., 2011)
loop, to produce a map of predicted cropland probabilities for
each image pixel. The fourth and final component is an algorithm
that segments the image composites, then filters the resulting
polygons using the pixel-wise cropland predictions produced by
the active learning classifier, resulting in a final set of vectorized
field boundaries.

We describe each component in further detail in the following
section, and how we applied them to map Ghana’s annual
cropland boundaries, excluding tree crops.

2.1 Image Compositing
The image processing component was designed for PlanetScope
Analytic surface reflectance imagery (PlanetTeam, 2018), which
provides three visual (red, green, blue) and near-infrared bands at
3.7 m resolution at nominal daily frequency. The images are
provided as ortho-rectified and converted to surface reflectance,
although there are residual errors from inter-sensor differences
and the radiometric normalization process (Houborg and
McCabe, 2018), variation in the orientation of scene
footprints, as well as a high frequency of cloud cover over the
study region (Wilson and Jetz, 2016; Roy et al., 2021) that are not
fully captured by the provided cloud masks. To minimize the
effect of these residual errors, we developed a procedure for
creating temporal composites of the primary growing and non-
growing seasons within a single 12-month period. For Ghana, we

defined the primary growing season as May through September,
followed by the off (or dry) season from November or December
through February. We chose these two seasons because prior
work shows that the contrast between them improves cropland
classifications (Debats et al., 2016), Furthermore, capturing the
seasons in this sequence during the same year helps minimize
differences caused by land change. The wide time intervals we
used to define each season were necessary for collecting a
sufficient number of images to make high quality composites,
as Ghana’s cloud cover renders many scenes unusable and
therefore unavailable in Planet’s catalog, thus the effective
return interval can be substantially longer than 24 h during
the cloudiest months (Roy et al., 2021).

We collected all available scenes intersecting Ghana and falling
within these two seasons during the 2018 agricultural year
(defined here as March 2018-February 2019) via the Planet
API (PlanetTeam, 2018), and transferred these to cloud
storage (Amazon Web Services [AWS] S3). We then converted
each scene into analysis ready data (Dwyer et al., 2018) by
cropping each to the boundaries of a 0.05° grid that it
intersected (see Supplementary Figure S1), which provided
the dimensions for making composited image tiles. We chose
this cell size for tiling because it is slightly narrower than the short
axis of a PlanetScope scene, which increases the number of
intersecting scenes that completely cover the tile, thereby
helping to minimize edge artifacts in the composites.

To create a seasonal composite, we calculated two weights for
the time series of each pixel within the ARD stack for a given
season:

W1t � 1

blue2t
(1)

W2t �
1

NIR4
t

, ifNIRt <median{NIRt1,NIRt2, . . . ,NIRti}.

1, otherwise.

⎧⎪⎪⎨
⎪⎪⎩

(2)

Where t is a particular date in the pixel time series, which
begins at date 1 for the given compositing period and ends on date
i, blue is the blue band, and NIR the near infrared band. Eq. (1)
assigns lower weights to hazy and clouded pixels as the blue band
is sensitive to these atmospheric features (Zhang et al., 2002),
while Eq. (2) assigns low weights to pixels in cloud shadow (Zhu
and Woodcock 2012; Qiu et al., 2020).

After assigning these two weights, we calculated the final
composited pixel value:

�B � ∑T
t�1BtpW1tpW2t
∑T

t�1W1tpW2t
(3)

Which is the weighted mean for each pixel for each band B for
the given season.

Each composited seasonal tile was saved as a cloud-optimized
geotiff, and a “slippy map3” rendering was created for each

3https://wiki.openstreetmap.org/wiki/Slippy_Map
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composite using Raster Foundry (Azavea 2020), for display
within the labelling platform (section 2.2.1).

We generated a catalog of 16,232 composite tiles (hereafter
simply “tiles”) for Ghana, consisting of a seasonal pair for each of
the 8,116 0.05° tile grid cells covering Ghana. To assess the quality
of the resulting composites, 50 tile grid cells were randomly
selected, and two separate observers graded each corresponding
seasonal composite using four categories that evaluated the degree
of 1) residual cloud and 2) cloud shadow, 3) the number of visible
scene boundary artifacts, and 4) the proportion of the image with
resolution degraded below the 3.7 m PlanetScope resolution (e.g.
because of between-date image mis-registrations). Each category
was qualitatively ranked from 0 to 3, with 0 being the lowest
quality, and 3 the highest (see SI for complete protocol), making
the highest possible score 12. We rescaled scores to fall between 0
and 1.

2.2 Mapping Cropland Probabilities With
Active Learning
The first step in creating a country-wide field boundary map of
Ghana was to create a pixel-wise classification of cropland
probabilities throughout the country. Given the high
resolution of the imagery and the need to minimize the
computational burden, we divided Ghana into 16 distinct
mapping regions, or Areas of Interest (AOIs). We constructed
the AOIs by grouping together tile grids into blocks representing
the larger 1° cells used to assign tile identifiers (Supplementary
Figure S1A). We grouped tile cells from 1° degree cells that
overlapped Ghana’s boundaries together with those from the
nearest 1° cell contained entirely within Ghana (with the
exception of AOI 16, which was comprised of tile grids from
the 1° cells along Ghana’s southern coast. The average extent of
the resulting AOIs was 15,457 km2 (range 12,160–23,535 km2).

We used the active learning process to develop a separate
cropland classification model for each of these AOIs, based on an
approach described by Debats et al. (2017). We initiated the
process by training a starter model using labels from a set of
randomly selected training sites drawn from a 0.005° grid that was
nested within the tiling grid. This finer grid, which we refer to as
the “primary grid” for simplicity, provided the target area for
creating labels (section 2.2.1), as well as the unit for distributing
computing jobs (section 2.2.2).We then assessed the performance
of the starter model against a separate set of validation labels
developed for each AOI, applied the model to predict cropland
probabilities for pixels in unlabelled primary grid cells in each
AOI, and calculated an uncertainty criterion (Debats et al., 2017):

QI � ∑
I(x,y)ϵI

(p(x, y) − 0.5)2 (4)

Where Q is the uncertainty for each unlabelled primary grid cell I,
calculated from the predicted probability p of a randomly selected
subset of pixels (x, y) drawn from it. Pixels with predicted
probabilities closer to 0.5 are least certain as to their
classification, thus the lowest values of Q represent primary
grid cells posing the most difficulty for the classifier.

We ranked the unlabelled primary grid cells from least to most
certain, randomly selected a subset of cells from the top 30% of
the ranking (to minimize the risk of spatial autocorrelation), and
sent these back to the labelling platform. After these new sites
were labelled, they were added to the starter pool of labels, the
model was retrained with the larger training set, its performance
and prediction uncertainty was reassessed, and a new sample of
the most uncertain primary grid cells was again sent for labelling.
This loop was typically repeated for 3 iterations, after which a
final map of cropland probabilities was made.

In the next two sections, we describe the labelling andmachine
learning components of the active learning process in more detail.

2.2.1 Labelling
To collect the initial randomized samples for model training, we
grouped the AOIs (Supplementary Figure S1A) into three
clusters based on approximate agro-ecological similarity: the 6
northernmost savanna-zone AOIs (Cluster 1), a central to
southeastern cluster (Cluster 2) consisting of the 3 middle
(AOIs 7–9) and 2 southeastern AOIs (12 and 15), and a
southwestern cluster (Cluster 3) made up of the forest zone
AOIs (10, 11, 13, 14, 16). Within each cluster, we randomly
selected and labelled 500 primary grid cells, which provided
relatively large initial training samples for these agro-
ecologically similar regions, while helping to minimize the
overall amount of labelling effort. To create validation
samples, we randomly selected and labelled 100 primary grid
cells per AOI, and a further 100 cells were labelled in each AOI
during each active learning iteration.

In addition to training and validation labels, we also collected
training reference labels and map reference labels (Elmes et al.,
2020). The former were a set of 98 primary grid cells selected to
represent the range of cropland types and densities in Ghana,
which were labelled by expert analysts (the lead researchers on
this project). We used these to assess the performance of the
individual labellers collecting training and validation labels. Map
reference labels were collected and used to assess the accuracy of
the final map (see Section 2.4).

We collected all labels using a custom-built platform that we
adapted from an earlier prototype we developed for
crowdsourced labelling (Estes et al., 2016a). We enhanced this
platform by making several major additions, including an
independent backend that allowed us to recruit and manage
our own labelling teams, improved procedures for assessing
and improving label accuracy, and processes for automating
the machine learning component. The platform runs on a
cloud-hosted Linux virtual server (AWS EC2) and is
comprised of a database (PostGIS/Postgres), a mapping
interface (OpenLayers 3), an image server (Raster Foundry),
and a set of utilities for managing, assessing, and converting
digitized field boundaries into rasterized labels.

We created a separate labelling instance for each AOI. To
create training and validation labels, labellers (the co-authors of
this paper) logged into the website (built with Flask) for a
particular AOI and navigated to the mapping interface
(Figure 2), where they were presented with a white target box
representing a primary grid cell to label, a set of digitizing tools,
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and several different sources of imagery. These included true and
false color renderings of the growing season and dry season
PlanetScope composites, and several virtual globe basemaps.
They then used the polygon drawing tool to digitize the
boundaries of all crop fields visible within the PlanetScope
overlays that intersect the target grid cell. For this project,
labellers were instructed to digitize active or recently active
crop fields, avoiding tree crops, and fallow or potentially
abandoned fields (see SI for digitizing rules). To aid with
interpretation, labellers toggled between the PlanetScope
renderings and the basemaps to help form a judgement about
what constitutes a field. The labeller assigned each digitized
polygon a class category (e.g. annual cropland), saved all
completed fields to the database, and were then presented with
the next target to label. If the target grid cell did not contain any
fields, labellers simply pressed save to go to the next cell.

The flow of labelling targets presented to each worker was
determined by the platform’s built-in scheduler. Each primary
grid cell selected for labeling was placed into a queue within the
platform’s database, and converted into a labelling task with a
specified number of assignments (the boundaries drawn by an
individual labeller) that had to be completed in order to finish the
task. There were two types of tasks, accuracy assessment or model
training/validation, with the assignments for each
indistinguishable to labellers. Upon completing an accuracy
assessment assignment, the platform invoked a scoring
algorithm that compared the labeller’s digitized boundaries
against a set of training reference polygons, resulting in a label
quality score:

scorei � β0I + β1O + β2F + β3E + β4C (5)

Where i indicates the particular assignment, and β0−4 represent
varying weights that sum to 1. I refers to “inside the box”
accuracy, O is the accuracy of those portions of the labeller’s
polygons extending beyond the target grid boundaries, F is
fragmentation accuracy, a measure of how many individual
polygons the labeller delineated relative to the reference, E
measures how closely each polygon’s boundary matched its
corresponding reference polygon boundary, and C assesses the
accuracy of the labeller’s thematic labels (see SI for individual
formulae). Eq. (5) is an extension of the approach described by
Estes et al. (2016a).

We configured the platform’s scheduler to present workers
with accuracy assessment assignments at a rate of 1 for every 5
assignments mapped. This generated a history of accuracy
assessment scores that we used to assess label quality and
minimize label error.

For training and validation, where there was no reference data
to assess label accuracy, we set each task to have four assignments,
i.e. each was completed by four separate labellers. When all four
assignments were complete, a Bayesian merging routine was
invoked to combine the four sets of labels into a single
consensus label:

P(θ|D) � ∑
n

i�1
P(Wi|D)P(θ|D,Wi) (6)

Where θ represents the true cover type of a pixel (field or not
field), D is the label assigned to that pixel by a labeller, and Wi is
an individual labeller. P(θ|D) is the probability that the actual
cover type is what the labellers who mapped it says it is, while
P(Wi|D) is the average score (ranging between 0 and 1) of the

FIGURE 2 | An overview of the labelling platform’s interface.
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accuracy assessment assignments an individual labeller
completed within the AOI, and P(Wθ|D, Wi) is the labeller’s
label for that pixel. This approach therefore used the average
assignment quality score to weight each labeller’s label for a given
pixel (see SI for further details). Each pixel in the target grid cell
was merged using this approach (n � 40,000), which helps to
minimize individual labeller’s errors. We estimated a confidence
measure for each consensus label by calculating its Bayesian Risk
(see SI), which ranges between 0 and 1, with 0 indicating full
agreement between labellers for all pixels, and 1 indicating
complete disagreement.

2.2.2 Cropland Classification Model
Upon completing each batch of labels, the platform automatically
launched a machine learning cluster (Elastic Map Reduce4)
comprised of several hundred to a thousand CPUs, depending
on the size of the AOI.

The first step in the process was to derive a set of features
from the image composites. Previous work showed that a large
number of simple features summarizing image reflectance and
vegetation indices within local neighborhoods were highly
effective for classifying smallholder croplands (Debats et al.,
2016). We followed that logic in this study, but used a smaller
feature set because the storage and memory required for our
mapping geographies were several orders of magnitude larger.
For each seasonal composite, we calculated the mean and
standard deviation of each band within an 11 × 11 and 5 × 5
moving window, respectively (initial tests revealed these two
window sizes to be most effective). This provided an overall
set of 24 features, including the unmodified bands of both
composites (Table 1).

We used a combination of GeoTrellis5, rasterio6, and
RasterFrames7 to derive the features on the fly (which was
enabled by converting the composites to Cloud-optimized
Geotiffs8) and convert them into Apache Spark DataFrames.

The extracted features were combined with their
corresponding training and validation labels and passed to the
machine learning classifier, a SparkMLlib implementation of
Random Forests (Breiman 2001). We trained the model with a
balanced sample and a tree depth of 15 and total tree number of
60. Initial testing showed that model performance saturated with
increasing values of these parameters (cluster failures occurred
when tree depths and numbers were simultaneously ≥ 16 and

≥ 50, respectively), and that model stability was satisfactory with
these settings, as there was ≤0.01 difference in accuracy for
separate models trained on the same labels.

2.2.3 Model Performance
To assess performance of the Random Forests classifier, we used
the validation sample to calculate binary accuracy, the F1 score
(the geometric mean of precision and recall), and the area under
the curve of the Receiver Operating Characteristic (Pontius and
Si, 2014), as well as the false positive rate. We calculated these
measures each time the model was retrained for a given AOI, in
order to assess the change in classifier performance with each
active learning iteration.

To evaluate whether active learning improvedmodel performance
relative to randomized label selection, we ran an additional test within
three AOIs (1, 8, and 15), in which we retrained the model with 100
randomly selected labels for each iteration. We then compared the
differences in accuracy, AUC, and F1 between the actively and
randomly trained models (Debats et al., 2017).

To quantify the potential impact of label error on classification
results, we conducted two further analyses. We evaluated the
performance differences between models trained with three
different sets of labels: 1) those from the lowest scoring
labeller to map each training site, 2) those from the highest
scoring labeller, and 3) the consensus labels. We also calculated
the correlations between the mean Bayesian Risk of labels in each
AOI and the corresponding model performance metrics
(Supplementary Table S3).

2.3 Segmentation
Upon completion of the active learning process, we deployed a
five-step algorithm to create a segmented map of field boundaries
(see Supplementary Figure S3 for illustration of the steps). In the
first step, we identified edge features within the imagery. To do
this, we applied the meanshift algorithm (Yizong Cheng, 1995) to
each dry-season composite tile, and then passed a Sobel filter over
the mean-shifted green, red, and near-infrared bands, and the
corresponding map of predicted cropland probabilities. We then
summed the four resulting edge images to produce a combined
edge image.

In the second step, we used a compact watershed algorithm
(Neubert and Protzel, 2014) to segment the edge image,
specifying a high number of segments (6,400) per tile, so that
the mean segment size (<0.5 ha) was finer than the expected
mean field size (>1 ha).

In the third step, we hierarchically merged the resulting
polygons. We first constructed a region adjacency graph for
each tile, with each node representing all image pixels within
each polygon. The edge between two adjacent regions (polygons)
was calculated as the difference between the means of the
normalized colors of all bands. We then merged the most
similar pairs of adjacent nodes until there were no edges
remaining below the predetermined threshold of 0.05.

In the fourth step, we overlaid the merged polygons with the
cropland probability images, and polygons in which the mean
probability was greater than 0.5 were retained as crop fields.

TABLE 1 | List of image features.

Feature Window size N Features

RGB-NIR 1 × 1 8
Mean 11 × 11 8
Standard deviation 5 × 5 8

4https://docs.aws.amazon.com/emr/latest/APIReference/emr-api.pdf
5https://github.com/locationtech/geotrellis
6https://rasterio.readthedocs.io/en/latest/
7https://rasterframes.io/
8https://www.cogeo.org/
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In the fifth and final step, we refined the crop field polygons, by
removing holes and smoothing boundaries using the Visvalingam
algorithm (Visvalingam and Whyatt, 1993). We then merged
neighboring polygons that overlapped along tile boundaries.

The resulting map represents dry season crop field boundaries,
as we did not segment growing season images.Wemade this choice
because labels were primarily drawn on dry season composites,
when boundaries were typically more visible.

2.4 Map Assessment
We followed recommended guidelines (Stehman and Foody,
2019) to conduct an independent assessment of the categorical
accuracy of the final maps, using a set of 1,207 (487 cropland;
720 non-cropland) point-based, map reference labels, which
were placed across Ghana using a stratified random sample
design, and collected through the labelling platform by two
expert supervisors (see SI for full details on sample design and
collection). For efficiency, the supervisors labelled separate
portions of the sample, but overlapped on a small subset (n �
23). We calculated the label agreement (87%) on this subset to
estimate uncertainty in the map reference sample (Stehman
and Foody, 2019). In addition to this, the sample was labelled
with four classes: cropland; non-cropland; unsure but likely
cropland; unsure but likely non-cropland. The last two classes,
which constituted 15.7% of the sample, provided a further
measure of uncertainty in the map reference sample.

We used the sample to calculate the overall accuracy for each
map, the class-wise User’s and Producer’s accuracy, and the 95%
confidence intervals for each accuracy measure (Olofsson et al.,
2013; Olofsson et al., 2014; Stehman and Foody, 2019). We
calculated these measures across the entire country, as well as
several different zones, to evaluate regional difference in accuracy.
We defined two sets of zonations (Supplementary Figure S5), each
containing four zones, the first created by grouping 1) the three
northern AOIs (1–3), 2) the six central AOIs (4–9), 3) the four
southwestern AOIs (10, 11, 13, 14, 16), and 4) the two southeastern
zones (13, 15). This grouping differs from the three clusters used to
collect initial model training samples, as we designed these to
divide the country more finely, and to isolate the less forested
southeastern third of Ghana from the more forest northwest. The
second zonation was developed by grouping the country’s eight
agro-ecological zones into four broader clusters (Supplementary
Figure S5B). We applied this zonation only to the per-pixel
classification, to better understand patterns of error in the model.

To assess how effectively the segmentations captured field
characteristics, we compared the size class distributions of the
segmented field boundaries against those calculated from the field
boundaries digitized by the labellers within the 100 validation sites
from each AOI. We chose this approach because of existing
uncertainties in polygon-based accuracy assessment methods
(Ye et al., 2018), and because the map’s ability to represent field
sizes was of greatest interest. To undertake this comparison, we
selected the polygons from the most accurate labeller to digitize the
100 validation grids in each AOI, and calculated the average area
and number of polygons in each cell. We then calculated the same
statistics from the segmented boundaries that intersected each
validation grid, and compared the two sets of statistics.

We used the final maps to evaluate the characteristics of
Ghana’s croplands. We calculated the estimated area of
cropland in Ghana, as well as the average size and total
number of fields in the different AOIs. We used the map
reference sample to calculate adjusted area estimates and
confidence intervals for each map class, and used the
differences between labellers’ polygons and segmented
boundaries at validation sites to calculate bias-adjusted
estimates of mean field sizes and the total number of fields.

3 RESULTS

Our results produced two separate maps of Ghana’s annual
croplands, over a total area of 248,343 km2 that included
portions of the neighboring countries overlapped by image tiles.

FIGURE 3 | The location and quality scores of 100 randomly selected
tiles (A) for the growing and off-growing season, and the corresponding
distributions of the quality for each season (B).
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3.1 Image Quality
The assessment of image composites found that their quality in
both seasons was highest in the northern half of the country and
lowest in the southwest, (Figure 3A), where the substantially
greater cloud cover resulted in a much lower density of available
PlanetScope imagery for each time period (Supplementary
Figure S6). The average quality score of growing season
composites was 0.88, with 70 percent having scores ≥0.85 (out
of 1; Figure 3B), while the mean score of dry season composites
was 0.92 (74 percent ≥0.85).

3.2 Cropland Probabilities
To make the initial maps of cropland probabilities, the active
learning process ran for 3 iterations in 12 of 16 AOIs, varying
from as little as 1 to as many as 4 iterations across the other 4
AOIs, with the number of iterations varying according to the
performance of the starter models (i.e. AOIs with higher starting
performance stopped after fewer iterations). Each AOI’s model
was trained by 300–500 randomly selected labels
(Supplementary Figure S7A), plus an additional 100–400
(typically 300) labels within each AOI that were selected by
active learning. Actively selected labels showed distinctive
patterns in several AOIs (Supplementary Figure S7B), such as
concentrating along ecotones or the boundaries of agro-
ecological zones. A total of 6,299 training and 1,600 validation
labels were collected by 20 labellers to develop and assess model
performance (Supplementary Figure S8).

3.2.1 Performance Gains During Active Learning
The performance of the Random Forest classifier typically
improved with each active learning iteration. The average
accuracy, AUC, and F1 at iteration 0 were 0.786, 0.809, and
0.464, respectively, increasing to 0.825, 0.818, and 0.507 by

iteration 3 (Figure 4). These differences represent respective
gains of 4.9, 1.1, and 9.1 percent for the three metrics. The
largest gains for each metric occurred on iteration 1, averaging
2.9, 1, and 3.8 percent for accuracy, AUC, and F1, while the
lowest gains were realized on iteration 3, with accuracy, F1,
and AUC respectively increasing by just 1.2, 0.9, and 0.3%. The
scores achieved on the final iteration varied substantially
across AOIs and metrics. Accuracy ranged between 0.725
(AOI 15) and 0.948 (AOI 16), while AUC varied from 0.725
(AOI 4) and 0.93 (AOI 11), and F1 from 0.252 (AOI 13) and
0.636 (AOI 8).

The experiment conducted in three AOIs (in AOIs 1, 8, and
15) showed that training models with active learning improved
performance compared to randomized approaches to label
selection. After three iterations, the accuracy, AUC, and F1
scores for the actively trained models were respectively 0.8,
0.6, and 2.3 percent higher than those for randomly trained
models (Supplementary Figure S9). However, there was more
variability in earlier iterations, with average score differences of
−1.7 (accuracy), 0.6 (AUC), and 0.8 percent (F1) after iteration 1,
and −0.3 (accuracy), 0.4 (AUC), and 1.8 (F1) percent after
iteration 2

3.2.2 The Impact of Label Error and Uncertainty on
Model Performance
We used the two measures of label quality calculated by the
platform, the average quality score of each labeller and Bayesian
Risk (or simply “label risk”), to assess the potential impacts of
label error on model performance. The average of each labeller’s
AOI-specific accuracy score was 0.71 (range 0.6–0.85; see
Supplementary Figures S8, S10 for details on label scores and
number of assignments per labeller). The average Bayesian Risk
was 0.124, with highest label risk (0.165) in the northern AOIs

FIGURE 4 | Scores for overall accuracy, area under the curve of the Receiver Operating Characteristic, and the F1 scores for the Random Forests model results
after each iteration of the active learning loop for each AOI (gray lines), as well as the mean score per iteration across all AOIs (black lines).
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(AOIs 1–6; Supplementary Figures S11, S12), lowest (0.165) in
the southwestern AOIs (AOIs 10, 11, 13, 14, 16), and intermediate
(0.131) in the central-southeastern AOIs (AOIs 7–9, 12, 15).

Treating each labeller’s average label quality scores
(Supplementary Figure S10) as a proxy for error, we used
these scores to develop training sets to test the impact of label
error on model performance. The results of these tests, which
were conducted in AOIs 1, 2, 8, and 15, showed that the average
accuracy, AUC, and F1 scores for models trained with the
consensus labels were respectively 0.772, 0.8, and 0.555
(Figure 5). Performance metrics from consensus-trained
models were just 0.5–1.2 percent higher than those models
trained with the most accurate individuals’ labels (accuracy �
0.762; AUC � 0.796; F1 � 0.55), but were 11.6–27.4 higher than
models trained with the least accurate individual labels (accuracy
� 0.606; AUC � 0.716; F1 � 0.44).

Correlations (Supplementary Table S3) between the mean
label risk per AOI (Supplementary Figures S11, S12) and
model performance metrics showed strong (Spearman’s Rank
Correlation � −0.824) to moderate (r � −0.568) negative
correlations between label risk and accuracy and AUC,
respectively, while F1 had a weaker but moderate
positive association (r � 0.456). The positive sign of the
latter relationship is counter-intuitive, but is explained by
risk’s association with precision, one of two inputs to F1,
which was moderately positive (r � 0.629), whereas risk had a
negligible correlation with recall (r � 0.206), F1’s other
component. The correlation between risk and the false
positive rate (r � 0.688), another important performance
metric, shows that labelling uncertainty may increase
model commission error.

3.3 Map Accuracy
3.3.1 Categorical Accuracy
We used the map reference sample to evaluate the accuracy of the
cropland probability map (after classifying it using a threshold
probability of 0.5) and the map of segmented field boundary
maps. We found that the overall accuracy of the pixel-wise
classifications was 88% against this map reference sample
(Table 2). Confining the map reference sample to four distinct
zones (Supplementary Figure S5A) shows that overall accuracy
ranged from 83.3% in Zone 1 (AOIs 1–3) to 93.6% in Zone 3
(AOIs 10, 11, 13, 15, and 16). The Producer’s accuracy of the
cropland class was 61.7% across Ghana, ranging from 45.6% in
Zone 3–67.9% in Zone 1, while the User’s accuracy was 67.3%
overall, ranging from 59.8% in Zone 4–71.4% in Zone 3. Both
measures of accuracy were substantially higher for the non-
cropland class across all zones, typically exceeding 90%. The
lowest accuracies for the non-cropland class was in Zone 1
(Producer’s � 89.3%; User’s � 87.7%).

The overall accuracies obtained from the segmented maps
were generally 1-2 percentage points lower than those of the per-
pixel maps, while User’s accuracies tended to be 8–10 percentage
points less (Table 2). In contrast, Producer’s accuracies were
15–20 points higher than in the per-pixel map. The segmentation
step therefore helped to reduce omission error while substantially
increasing commission error.

3.3.2 Segmentation Quality
The comparisons of digitized versus segmented field
boundaries showed that the mean field size across all
validation sites averaged 4.97 ha (Median � 3.75; StDev �
6.04), which was 1.41 times larger than the 2.06 ha (Median �

FIGURE 5 | Scores for overall accuracy, area under the curve of the Receiver Operating Characteristic, and the F1 score resulting from models trained with
consensus labels, and labels made by the most and least accurate labellers to map each site. Comparisons were made for AOIs 1, 2, 8, and 15, denoted by grey
symbols, while the mean scores across these AOIs are shown for each metric.
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1.35; StDev � 3.26) mean area of labeller-digitized polygons.
This discrepancy was primarily caused by results in four AOIs
(2, 3, 7, and 15; Supplementary Figure S14), where segments
averaged between 7.76 and 10.76 ha, compared to
2.18–2.77 ha for the corresponding hand-digitized
polygons. The number of segmented fields per validation
site averaged 3.08 (median � 2.66; StDev � 2.9) compared
to 4.4 (median � 3.38; StDev � 4.52) for digitized polygons
(Supplementary Figure S15).

3.4 Ghana’s Croplands
Two separate maps of cropland were produced for each AOI, a
per-pixel map derived from the cropland probabilities, and the
vectorized map of field boundaries (Figure 6). The former
provides the more accurate picture of cropland distributions
in Ghana, which are most concentrated in the Southeastern

corner (AOI 15), the central-western region (AOI 7, the
northeastern and northwestern corners of AOIs 10 and 11,
and the south of AOI 8), and the northeastern quadrant
stretching from AOI 9 through AOIs 5 and 6 and up to
AOIs 2 and 3. The northern third of AOI 1 also has
noticeable densities of cropland. Several prominent areas of
low cropland density indicate the presence of large protected
areas, such as Mole National Park in the southeastern corner of
AOI 1 and Digya National Park in the northwestern corner of
AOI 12. The relative absence of cropland in AOIs 13, 14, and 16
does not reflect the scarcity of agriculture in these areas, but
rather the predominance of tree crops, which we did not map.

Using the map reference sample and each map, we made
two separate estimates of the total cropland area in Ghana in
2018. The cropland extent estimated from the field boundary
map was 42,359 km2 (with a margin of error of 4,395 km2), or

TABLE 2 |Map accuracies and adjusted area estimates for the 3 m pixel-wise classifications (based on Random Forests predictions; top 5 rows) and the segmented map
(bottom 5 rows). Results are provided for 4 zones (Zone 1 �AOIs 1–3; Zone 2 � AOIs 4–9; Zone 3 �AOIs 10, 11, 13, 14, 16; Zone 4 � AOIs 12, 15) plus the entire country.
The error matrix (with reference values in columns) provides the areal percentage for each cell, and the Producer’s (P), User’s (U), and overall (O) map accuracies and their
margins of error (in parenthesis) are provided, as well as the sample-adjusted area estimates (in km2) and margins of error.

Non-crop Crop Total U O n Area

Per-pixel classification Non-crop 64.2 9 73.2 87.7 (5.5) 83.3 (4.3) 138 40,992 (2,468)
Crop 7.7 19.1 26.8 71.2 (5.9) 226 16,025 (2,468)

Zone 1 P 89.3 (5.5) 67.9 (5.9)
n 186 178

Non-crop 73.9 6.7 80.6 91.7 (4.2) 86.5 (3.6) 169 65,123 (2,866)
Crop 6.8 12.6 19.4 64.8 (6.0) 247 15,533 (2,866)

Zone 2 P 91.5 (4.2) 65.3 (6.0)
n 242 174

Non-crop 89.6 4.8 94.4 94.9 (3.2) 93.6 (3.1) 177 70,885 (2,413)
Crop 1.6 4 5.6 71.4 (9.0) 98 6,860 (2,413)

Zone 3 P 98.2 (3.2) 45.6 (9.0)
n 196 79

Non-crop 80.7 5.3 85.9 93.8 (5.9) 89.1 (5.3) 65 26,473 (1,615)
Crop 5.7 8.4 14.1 59.8 (10.4) 87 4,199 (1,615)

Zone 4 P 93.4 (5.9) 61.4 (10.4)
n 96 56

Non-crop 77.2 6.7 83.9 92.0 (2.3) 88.0 (2.0) 549 202,856 (4,904)
Crop 5.3 10.8 16.1 67.3 (3.6) 658 43,233 (4,904)

Ghana P 93.6 (2.3) 61.7 (3.6)
n 720 487

Non-crop 57.6 4.2 61.8 93.2 (5.3) 81.4 (3.9) 88 40,890 (2,236)
Crop 14.4 23.8 38.2 62.3 (5.7) 276 15,905 (2,236)

Segmentation Zone 1 P 80.0 (5.3) 84.9 (5.7)
n 186 178

Non-crop 70.4 3.7 74.1 95.0 (3.9) 85.2 (3.2) 121 65,642 (2,599)
Crop 11.2 14.8 25.9 56.9 (5.7) 295 14,841 (2,599)

Zone 2 P (3.9) 80.1 (5.7)
n 242 174

Non-crop 86.6 3 89.6 96.6 (2.9) 92.6 (2.8) 148 71,695 (2,181)
Crop 4.3 6.1 10.4 58.3 (8.6) 127 7,167 (2,181)

Zone 3 P 95.2 (2.9) 66.7 (8.6)
n 196 79

Non-crop 75.3 3.4 78.7 95.7 (6.0) 86.1 (5.1) 46 26,712 (1,593)
Crop 10.4 10.8 21.3 50.9 (9.6) 106 4,446 (1,593)

Zone 4 P 87.8 (6.0) 76.0 (9.6)
n 96 56

Non-crop 73.2 3.6 76.8 95.3 (2.1) 86.7 (1.8) 403 204,940 (4,395)
Crop 9.7 13.5 23.2 58.2 (3.4) 804 42,359 (4,395)

Ghana P 88.3 (2.1) 78.9 (3.4)
n 720 487
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17.1% (15.4–18.9%) of the mapped area. The estimate from the
per pixel map was 43,233 km2 (margin of error � 4,904 km2),
or 17.6% (15.6–19.6%) of area.

The field boundary map provides additional information
on how the characteristics of croplands vary across Ghana,

ranging from narrow, strip-like fields in parts of AOI 15
(Figure 6’s lower right inset) to more densely packed, less
distinctly shaped fields in AOI 5 (upper right inset in Figure 6).
To explore how field characteristics varied geographically, we
mapped the average size and total number of fields within each

FIGURE 6 | The distribution of croplands in Ghana. The main map shows the percentage of croplands in each 0.005° grid cell, derived from the predicted cropland
probabilities. The insets on the margins illustrate predicted probabilities (top map in each couplet) at original image resolution (0.000025°) and segmented field
boundaries overlaid on the dry season PlanetScope composite, for four separate tiles. Each tile’s position is shown on the main map by the red line.

TABLE 3 | The average size and total number of crop fields for each AOI and for Ghana overall. The original and bias-adjusted values for each measure are provided, as well
as the total number of 0.05° degree tiles in each AOI.

AOI N tiles Size Size (adj) N N/tile N (adj) N (adj)/tile

1 777 3.71 1.26 97,822 126 127,580 164
2 597 7.66 1.96 87,666 147 120,651 202
3 501 8.24 2.18 108,819 217 104,422 208
4 465 2.44 2.82 26,276 57 50,163 108
5 400 4.24 2.09 43,290 108 53,756 134
6 429 5.10 2.15 81,363 190 145,347 339
7 471 5.64 1.49 93,282 198 123,005 261
8 400 4.89 1.98 55,500 139 78,868 197
9 479 4.10 1.82 72,081 150 89,840 188
10 630 2.24 1.04 119,019 189 170,907 271
11 400 3.65 1.52 52,510 131 94,709 237
12 471 3.44 1.77 44,667 95 52,947 112
13 627 0.84 0.96 67,996 108 125,368 200
14 400 1.09 2.72 56,006 140 101,767 254
15 548 4.95 1.54 75,752 138 105,681 193
16 521 0.95 1.41 49,097 94 117,268 225
Ghana 8,116 3.92 1.73 1,131,146 139 1,662,281 205
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0.05° tile grid (Supplementary Figure S16). These patterns generally
correspond to those seen in the cropland density map (Figure 6),
with larger sizes and field counts occurring where field densities were
higher, although the biases (relative to the validation labels) in both
measures (Supplementary Figures S14, S15) complicate
interpretations of those variations. To minimize this
complication, we used the calculated biases to develop
adjusted estimates of field size and count (Table 3). These
adjusted estimates show that the typical field size in Ghana is
1.73 ha, ranging from 0.96 in AOI 13 to 2.82 ha in AOI 4, with
fields in the forest zone AOIs (10, 11, 13, 14, 16) generally
smaller than those in the northern half of the country
(Table 3). The estimated total number of fields is 1,662,281,
or 205 fields per tile grid cells, varying from 108 fields/tile cell
in AOI 4 to 399 in AOI 6.

4 DISCUSSION

These results demonstrate a capability to map the
characteristics of smallholder-dominated cropping systems
at high spatial resolution, annual time steps, and national
scales. The resulting maps provide an updated and more
granular view of the distribution and extent of croplands
in Ghana, complementing existing national to regional land
cover maps derived from moderate resolution imagery
(Hackman et al., 2017; Xiong et al., 2017; ESA nd.). Those
prior studies estimated that cropland covers 19.4 (Xiong et al.,
2017) to 32% (Hackman et al., 2017) of Ghana in 2015. In
contrast, our 2018 maps provide a raw estimate of 16.1–23.2%
cover (Table 2), and our map reference sample-based
estimate was 17.1–17.6%. Our results thus suggest that
Ghana’s croplands are less extensive than those previous
estimates. However, this difference may arise from our use
of a cropland definition that excludes longer fallows and
abandoned fields, which in some regions may comprise
over half of total cropland area (Tong et al., 2020).

In addition to this updated information on Ghana’s cropland
extent and distribution, our results provide new insights into field
size and number at a national scale (Figure 6, Supplementary
Figures S14, S15). Previous efforts to map smallholder field
boundaries have either used in situ data collection (Carletto
et al., 2013, Carletto et al., 2015) or remote sensing studies
over relatively small (e.g. Forkuor et al., 2014; Persello et al.,
2019) or discontiguous (Estes et al., 2016a) areas. The most
extensive studies to date enlisted crowdsourced volunteers to
classify fields visible within high resolution imagery sampled
from virtual globes into broad size categories (Fritz et al.,
2015; Lesiv et al., 2019). Those efforts included country-
specific results for Ghana (n � 263), which yield an average
field size estimate of 5.33 ha9. This estimate exceeds our Ghana-

wide average segment size (3.92 ha; Table 3), but is closer to the
mean (4.97 ha) within AOIs 1–9, 12, and 15, which is where most
of the crowdsourced sample appears to have been collected.
However, our bias-adjusted estimates of 1.73 (Ghana-wide)
and 1.87 (AOIs 1–9, 12, and 15) ha were much smaller.

4.1 Map Accuracy and Key Sources of Error
Although these maps provide valuable new information, they
nevertheless contain substantial errors that can impact
“downstream” uses (e.g., estimating crop production estimates)
and decisions based on these maps in unpredictable ways (Estes
et al., 2018). The overall accuracies (86.7–88%, Table 2) are near
the boundary of what might be considered achievable map
accuracy (Elmes et al., 2020), given that we only have ∼85%
confidence in our map reference sample, which is our best
estimate of the “truth.” However, accuracies for the cropland
class were much lower, falling between 62 (producer’s) to 67
(user’s) percent country-wide for the per-pixel map (Table 2),
meaning the model produced substantial commission and
omission errors for this class. The segmented boundary maps
had fewer omission errors (producer’s accuracy � 79%), but higher
false positives (user’s accuracy � 58.2%). These accuracies are near
the middle to upper ranges of those reported for the cropland class
in other large-area mapping studies (Hackman et al., 2017; Lesiv
et al., 2017; Xiong et al., 2017).

The patterns of accuracies within the cropland class varied by
zone. These zones largely align, albeit with some discrepancies,
with the country’s agro-ecological zones (AEZs), thus the
accuracy patterns may be in part because some regions are
simply more difficult to map. Producer’s accuracy for both
maps was highest in the two northern zones (1 and 2), which
are primarily savannas (Supplementary Figure S5), and lowest in
zones 3 and 4, which are comprised of forest or coastal savannas.
User’s accuracy followed a similar pattern, with the exception of
Zone 3, which had the highest user’s accuracy, albeit from a very
small sample. Aligning the reference samples more precisely with
agroecozone boundaries (Supplementary Figure S5B) provides
further insight into error patterns within the per-pixel map’s
cropland class (Supplementary Table S4). Coastal savannas in
the southeast had the highest producer’s and lowest user’s
accuracy, perhaps because this region has high density
cropland inter-mixed with uncultivated areas that have low
woody cover, which could help promote commission error.
Maps in the northern savannas had the best balance between
omission and commission error, and had the highest overall
user’s accuracy. The transitional zone between forest and savanna
had a very low Producer’s accuracy (21%), which likely reflects
the fact that it was divided between several AOIs for mapping
(Supplementary Figure S5), and thus was under-represented in
the training samples, particularly in AOIs 10 and 11
(Supplementary Figure S7B).

Beyond the errors linked to regional differences, several other
important factors contributed to map error. The first of these
related to the mapping extent and image resolution. Given the
goal of developing a high resolution, country-scale map, the large
data volume constrained us to use a relatively small feature set
and less than the recommended tree number and depth (Maxwell

9Obtained by calculating the weighted mean from the count of the five size classes
and the mean of the hectare range provided for the four smallest size classes, and
the lower bound of the size range provided for the largest size class. Data sourced
from Supplementary Table S3 in Lesiv et al., 2019.
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et al., 2018) in our Random Forests models, in order to limit
computational costs. Previous work found that Random Forests
achieves much better performance on small-scale croplands when
trained on a much larger number of features (Debats et al., 2016;
Lebourgeois et al., 2017). However, applying such a large feature
set within the extent of our AOIs was not possible, as the
computing time and costs would have been several times
larger10. This reduced the skill of the model, particularly when
it came to differentiating cropland from bare or sparsely
vegetated patches, which were common in many AOIs.

The inherent difficulty of the labelling task was another major
limiting factor. Our platform was designed to minimize label
errors, but determining croplands from non-croplands in these
agricultural systems can be difficult. Labellers had to evaluate
multiple image sources and to rely heavily on their judgment,
which inevitably led to errors. Interpretation was particularly
hard where croplands and surrounding landscapes had similar
dry season reflectances, which was a particular problem in the
northernmost savannas. Smaller field sizes also complicated
labelling, as these become increasingly indistinct in the ∼4 m
PlanetScope composites. The difficulty of labelling is reflected in
the magnitude of the Bayesian Risk metrics (Supplementary
Figures S11, S12), and by the average assignment quality
scores of each labeller (71%; Supplementary Figure S10).
Although prior work (Rodriguez-Galiano et al., 2012; Mellor
et al., 2015) found that Random Forests are robust to label
error, we found that it has substantial impact (Figure 5),
which suggests that improving label quality is one of the most
important factors in increasing model accuracy. Newer models,
such as convolutional neural networks, may be less sensitive to
label error, provided the error is random and the map reference
samples are of high quality (Burke et al., 2021). However, over
many smallholder systems training label errors will likely be
biased in a particular direction (e.g. towards omission when fields
are not easily distinguished from the background), and our results
show that reference labels can have substantial uncertainty.

Image quality was another issue, although primarily in the
forested AOIs, where frequent cloud cover and the corresponding
lower number of available images resulted in lower quality
composites (Figure 3), with more brightness artifacts and blur.
This impacted labeller’s abilities to discern fields, and doubtless
affected model predictions. Little can be done to mitigate these
errors, short of confining imagery to the less cloudy dry season,
which could reduce model performance by removing the
temporal contrast (Debats et al., 2016; Defourny et al., 2019),
or by adding radar data (e.g., Sentinel-1) to the predictor set,
which would reduce map resolution. Composite quality could be
improved by using imagery from the same seasons over multiple
years, but this would undermine the goal of developing annual
maps, while the dynamism of the croplands would blur field
boundaries within the imagery.

The final major source of error arose from the segmentation
process. The vectorized maps had high commission errors caused

by uncertainties in the Random Forests predictions. Model
uncertainty meant that many pixels in non-cropland areas had
probabilities with values near 0.5. Segments in these areas were
retained if the average probability of intersected pixels
exceeded the 0.5 classification threshold. A more accurate
classifier would reduce such errors, as would a locally
varying classification threshold (e.g., Waldner and
Diakogiannis, 2020). Over-merging was another source of
error in the segmentation algorithm, which led to
overestimated field sizes and unrealistic shapes in some
areas, particularly in high density croplands (e.g. in AOIs 2
and 8; Figure 6) where boundaries between adjacent fields
were indistinct in the imagery. Preventing merging could help
in such cases, but potentially lead to over-segmentation,
thereby underestimating field sizes.

4.2 Error Mitigation Features
Despite these numerous sources of errors, our approach was
effective in mitigating several of these error sources. Label
quality assessment and consensus labelling were the most
effective error mitigation tools. Label quality scores allowed
us to quantify the impact of label error on model performance
(Figure 5), while consensus labels produced maps that were
more accurate than they would have been if we had relied on
individually generated labels. The quality scores also helped to
improve the overall accuracy of consensus labels, by placing
higher weight on the work of more accurate labellers. In
addition to these benefits, label quality scores
(Supplementary Figure S10) also allowed us to select the
labels most likely to accurately capture field sizes and
numbers, which we used to estimated and correct the biases
in these two measures derived from the segmented field
boundaries.

Active learning improved overall model performance
relative to randomized training site selection, in line with
findings from two recent efforts (Debats et al., 2017;
Hamrouni et al., 2021). Although the relative performance
gains that we observed were smaller (e.g., Debats et al., 2017
found 29% higher model performance after one iteration, and
8% higher on the final iterations), those comparisons were
made by starting with a training sample that was <1/10 the
size of ours. Our large starter sample meant that the models
were substantially trained before they were exposed to actively
selected labels, thereby diluting their impact on performance.
Nevertheless, we found higher performance from active
learning, most notably in the F1 score (Supplementary
Figure S9), a balanced performance metric, which further
demonstrates its effectiveness.

The detail, temporal precision, and large extent of our maps
was enabled by our use of PlanetScope data, which is currently the
only source of sub-5 meter imagery with daily coverage (McCabe
et al., 2017). These spatio-temporal characteristics, together with
the compositing technique we developed, allowed us to create a
complete image catalog for Ghana covering the two major
seasons in the 2018 agricultural year. Daily revisits were key to
this capability, as they increased the number of cloud-free
observations that could be collected in each season. Over rainy

10Each active learning iteration ran for ∼4–8 h on 800 CPUs, followed by a final
∼10–14 h for prediction
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tropical regions, such as southern Ghana, the odds of obtaining a
single clear PlanetScope observation within a 1–2 week period is
often less than 50% (Roy et al., 2021). Although Sentinel-2 is free
and has sufficient spatial resolution to effectively classify small-
scale croplands (e.g. Defourny et al., 2019; Kerner et al., 2020), its
5-days interval is likely too infrequent to generate adequate
seasonal composites over much of Ghana. The smaller number
of clear observations that Sentinel-2 can provide compared to a
daily acquisition schedule would result in greater reflectance
discontinuities and residual cloud cover in the resulting
composites. Given Ghana’s persistent cloudiness, such artifacts
were present in a number of our PlanetScope composites.
However, these were not large enough to have an appreciable
impact on the resulting maps, as the mapping algorithms
appeared to be relatively insensitive to these anomalies and
any discontinuities along tile boundaries.

4.3 Lingering Questions
Several potential issues not addressed in our assessment merit
further exploration. One of these was the degree of
correspondence between image- and ground-collected
labels. However, such comparisons may reveal unresolvable
discrepancies between the two perspectives. The highly
dynamic nature of these agricultural systems means that
relatively narrow differences between the dates of ground-
and image-based label collection can lead to substantial
disagreement, simply because the fields themselves may
have shifted during the interval (Elmes et al., 2020). These
discrepancies can be exacerbated by the definition used to
determine what constitutes a field, which might vary on the
ground depending on who is being asked, or who is doing the
collecting. These factors suggest that difference between
ground- and image-collected labels would not necessarily
indicate how far image labellers were from the “truth.”
Nevertheless, a comparison against ground data would
help to assess how accurately image-collected labels
capture the typical size of fields, and thus merits further
investigation.

The temporal discrepancies mentioned above (and
discussed in Elmes et al., 2020) are another reason why we
chose not to label on basemap imagery (in addition to
restrictive usage terms), which is typically several years old
(Lesiv et al., 2018). However, we did not assess whether the
higher label accuracy one might achieve by digitizing on a
<1–2 m resolution basemap would offset model errors caused
by temporal mismatches.

Another potential issue is the degree to which our assessment
of label error on model performance (Figure 5) was influenced by
the validation dataset we used, which was based on consensus
labels. This could have confounded the analysis, particularly
when comparing the consensus label-trained models with
those trained with the most accurate individual labels.
However, a visual assessment of the resulting probability maps
confirms that models trained with the consensus and most
accurate individual labels were more precise than the
model trained with lower quality labels (Supplementary
Figure S13).

5 CONCLUSION

This work demonstrates a proof of concept for developing high
resolution, annual maps of field boundaries in smallholder-
dominated croplands at national to regional scales. The approach
we used to develop these maps includes a novel procedure for
compositing daily PlanetScope imagery, and follows recommended
best practices for training and assessing machine learning models
(Elmes et al., 2020). Using PlanetScope data enabled us to make a
country-wide, high-resolution, two-season catalog of imagery for a
single year, even over areaswith frequent cloud cover.Methods to assess
labeller accuracy and to create consensus labels helped to minimize
training label errors, which in turn substantially improved the accuracy
of the mapping model. Model performance was further enhanced by
using an active learning framework, which selects the most informative
training sample. This mapping approach can be readily updated to
integrate improvements, such as newer machine learning models.

The resulting maps provide valuable information on Ghana’s
agricultural systems, including an updated estimate of cropped area,
and new data on the characteristics of Ghana’s cropping systems,
such as the sizes and numbers of fields. Beyond the information
about field characteristics, field boundary maps can help improve
remote estimation of crop areas and yield (e.g. Estes et al., 2013),
and provide deeper insights into important socioeconomic aspects
of agricultural systems, such as the relationships between
agricultural productivity and farm size (Feder, 1985; Carletto
et al., 2013; Desiere and Jolliffe, 2018). Such maps will be
important for understanding the rapid agricultural change that is
currently occurring in Africa.
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