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The tumor immune microenvironment (TIME) encompasses many heterogeneous cell
types that engage in extensive crosstalk among the cancer, immune, and stromal
components. The spatial organization of these different cell types in TIME could be
used as biomarkers for predicting drug responses, prognosis and metastasis.
Recently, deep learning approaches have been widely used for digital histopathology
images for cancer diagnoses and prognoses. Furthermore, some recent approaches have
attempted to integrate spatial and molecular omics data to better characterize the TIME. In
this review we focus on machine learning-based digital histopathology image analysis
methods for characterizing tumor ecosystem. In this review, we will consider three different
scales of histopathological analyses that machine learning can operate within: whole slide
image (WSI)-level, region of interest (ROI)-level, and cell-level. We will systematically review
the various machine learning methods in these three scales with a focus on cell-level
analysis. We will provide a perspective of workflow on generating cell-level training data
sets using immunohistochemistry markers to “weakly-label” the cell types. Wewill describe
some common steps in the workflow of preparing the data, as well as some limitations of
this approach. Finally, we will discuss future opportunities of integrating molecular omics
data with digital histopathology images for characterizing tumor ecosystem.

Keywords: histopathology image analysis, deep learning, image data labeling, cell type classification, tumor immune
microenvironment, tumor heterogeneity

INTRODUCTION

In clinical settings, histopathology images are a critical source of primary data for pathologists to
perform cancer diagnostic. For some cancer types, clinicians may decide treatment strategies based on
histopathology images coupled with molecular assay data. With the widespread adoption of digital slide
scanners in both clinical and preclinical settings, it is becoming increasingly common to digitize histology
slides into high-resolutions images.Digital pathology,which is the process of digitizing histopathology images,
creates a new “treasure trove of image data” for machine learning (ML). Machine learning can be utilized for
various image analysis tasks that are routinely performed during histological analyses including detection,
segmentation, and classification. Some commercial image analysis software already incorporates machine
learning algorithms to assist researchers and clinicians in quantifying and segmenting histopathological
images. These tools have greatly reduced the laborious and tedious manual work in image analysis and can
reduce inter-observer variability in reaching diagnostic consensus (Tizhoosh et al., 2021).
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Machine Learning which focuses on methods to construct
computer programs that learn from data with respect to some
class of tasks and a performance measure, has been widely applied
in several challenging problems in bioinformatics due to the
algorithm’s ability to extract complex relationships from high-
dimensional data. Conventional machine learning methods (e.g.
random forest, support vector machines) were limited by their
ability to extract features from raw data, and in many cases, a
feature selection step is needed to reduce dimensionality of the
data. In addition, efforts have been invested in careful feature
engineering and domain knowledge to construct informative
features to train the model. However, some engineered
features are difficult to interpret biologically and have limited
utility in biomedical applications.

In early 2000, several breakthroughs including new types of
algorithms (e.g., deep learning), availability of large datasets (e.g.,
open access and large digitized images), and advancements in
computing power (e.g., graphical processing units) have
reenergized the machine learning developments and
applications in real-world problems (LeCun et al., 2015). Deep
Learning (DL) is a family of new machine learning models
composed of multiple processing layers that learn
representations of data with multiple levels of abstraction
without feature engineering. The ability of deep learning to
discover intricate structure in large data sets powered by a
backpropagation algorithm allows the machine to change its
internal parameters to compute a representation in each layer
from the previous layer. The “deep” in deep learning representing
the number of layers used in the model to deconvolute the feature
representation of the raw data. These methods have dramatically
improved the state-of-the-art in multiple domains ranging from
speech and text recognition to object detections in biomedical
applications (Esteva et al., 2017; Lee et al., 2018; McKinney et al.,
2020; Nagpal et al., 2020; Liu et al., 2021).

The field of cancer pathology is proving to be a supremely
suitable proving ground for the development of machine learning
models, in no small part due to the construction of publicly
available, curated whole slide image (WSI) datasets from
initiatives like the Cancer Genome Atlas (TCGA), Clinical
Proteomic Tumor Analysis Consortium (CPTAC), and the
Cancer Image Archive (TCIA) (Clark et al., 2013; Prior et al.,
2013). The datasets contained within these repositories often
include other related data, such as clinical characteristics, patient
outcomes, molecular analyses, and other imaging modalities, in
addition to theWSIs. These data can be utilized as target features,
such as predicted progression-free survival duration, or even
integrated into the machine learning model for higher
dimensional analysis. The numerous types of cancer collected
by these repositories allow researchers to focus their applications
as narrowly or broadly as they desire, from single subtypes (e.g.,
lung adenocarcinoma) to pan-cancer analyses.

However, the majority of machine learning applications in this
field rely on supervised learning methods based on clinical
parameters or pathologists’ annotations to generate training
datasets. Within supervised learning approaches, there exists
several distinct resolutions of annotation required to generate
a high-quality training dataset depending on the scale of the

analysis. The ultimate goal of machine learning applications for
histopathology is to generate clinically beneficial output, but this
may be achieved in a wide variety of ways. For example, both a
model designed to flag regions of concern for a pathologist to
review in detail and a tool that identifies cancer patients that are
likely to respond to immunotherapies by classification of immune
cell types are likely to improve clinical outcomes, but these two
models will require very different training datasets. In this review,
we will consider three different scales of histopathological
analyses that machine learning can operate within: WSI-level,
region of interest (ROI)-level, and cell-level.

Many reviews have been published in describing the methods
and applications of deep learning in pathological image analysis
[see (Janowczyk and Madabhushi 2016; Dimitriou et al., 2019;
Serag et al., 2019; Roohi et al., 2020; van der Laak et al., 2021)],
however, none of these publications discussed or reviewed on the
topic of training datasets preparation for ML/DL, which is the
most crucial step in developing a useful model in
histopathological image analysis. In addition, it is becoming
clear that the tumor immune microenvironment (TIME) plays
crucial role in determining cancer progression, metastasis, and
response to treatment. Therefore, it is important to detect and
classify the different immune cell types of the TIME in
histopathological images. However, it is impractical to
manually curate and annotate these individual cell types for
training the model. To address this knowledge gap, we will
discuss the basics of applying machine learning models for
histopathological analysis within a cancer pathology setting,
review currently published models and applications in the
three different scales of histopathology analyses, and provide a
simplified framework for the development of a cell-type classifier
using weakly labeled datasets generated from immunolabeled
slides. We aim for this review to be an approachable introduction
to histopathological applications of machine learning/deep
learning for clinicians, biologists, and data scientists, thereby
encouraging further development of this interdisciplinary field.

MACHINE LEARNING-BASED
HISTOPATHOLOGY IMAGE ANALYSIS AND
DATA GENERATION METHODS

Histopathology Image Data Preparation for
Training Machine Learning Models
Regardless of the feature scale of the ML analysis, it is also
important to understand how the input data is prepared.
Histopathology analysis is most commonly performed using
sections of tissue collected during biopsy or after surgical
resection. These tissues are typically preserved by formalin
fixation and paraffin embedding (FFPE) to preserve their
morphology, and subsequently sliced into thin sections on
glass slides for further processing. The tissue sections are
commonly subjected to chemical staining to highlight specific
tissue or cellular features, such as nuclei or proteins of interest.
Normal hematoxylin staining produces intense purple staining
the nuclei of cells while eosin is used to counterstain the
remaining cytoplasm of cells a vivid pink (Figure 1).
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Hematoxylin and eosin (H&E) staining is employed in nearly
every histological workup and is therefore the most common type
of histological image used as inputs for machine learning models.
Figure 2 shows the overview of the histopathology slide
preparation and machine learning model construction.

Training a machine learning model for image segmentation
requires a large amount of high-quality, labeled images as a
training dataset. Therefore, building an effective training
dataset requires a careful balancing of data quantity, data
quality, and cost. In comparison to many other fields that
utilize computer vision, the amount of publicly available
histopathology data suitable for training a machine learning
model is quite limited. As previously mentioned, there is a
growing number of datasets from consortia like TCGA, but
many published studies also rely on in-house datasets for
training and testing their machine learning models. This
scarcity of data is compounded by the need for trained experts
capable of producing accurate annotations that capture the
defining features of the model’s target classes. The difficulty of
these annotations in terms of both the rater’s expertise and the
effort required to create increases sharply between whole slide-
level, region-level, and cell-level analyses (Figure 1).
Constructing the best training dataset will require annotations
at the same level as the target outputs of the machine learning
model (i.e., cell-level analysis performs best with cell-level
annotation), but approaches like crowd-sourcing annotations
may work as an alternative to expert annotation by sacrificing
annotation quality for quantity (Amgad et al., 2019). For some
applications, lower resolution annotations, such as annotating a
region as a single class for training a cell-level classifier or labeling
of cell centroids, may also be used to generate “weakly-labeled”
annotations for model training. Alternatively, histology slides can
be immunolabeled to identify specific cells or features of interest
that can then be used to weakly label an adjacent, registered H&E

image, an approach we will discuss later in this review. While
these challenges may incline researchers to annotate at the lowest
usable resolution to expedite model training, it should be noted
that many analyses require the abstraction of higher resolution
classifications to a lower level to produce biologically meaningful
results (e.g., calculating the density of a cell type within a region
after classification of individual cells).

Despite the complexities of training dataset generation, the
number of applications and tools that utilize machine learning
models in cancer pathology has grown rapidly over the last few
years. This pace seems likely to continue and perhaps even
increase as more datasets are made publicly available through
cancer consortia and computational challenges like BreastPathQ
(Petrick et al., 2021) or CAMELYON (Litjens et al., 2018). In the
following three sections, we will cover published examples of
machine learning applications and discuss the strengths,
limitations, and considerations of each analysis scale level. We
also summarized the published examples in Table 1.

Image-Level Analysis Methods
One of the immediate applications of deep learning in cancer
research is to generate a cancer diagnosis from WSI analysis.
Zhang et al. (2019) developed an artificial intelligence system to
effectively automate WSI analysis to assist pathologists in cancer
diagnosis. The AI system consists of three main neural networks:
the scanner network (s-net), the diagnose network (d-net) and
the aggregator network (a-net). In brief, the s-net ingests the WSI
as inputs and automatically detects tumor regions in the images.
Convolutional neural networks (CNN) was used in the s-net to
manage tumor detection and cellular-level characterization. Once
the tumor regions were detected, it further segments into ROIs for
diagnostics. The d-net takes the ROI from s-net as inputs, and
further characterizes by extracting pathological features and
showing feature-aware network attention to explain the

FIGURE 1 | Slide-, Region-, and Cell-level analyses on tumor histopathology images and its characteristics.
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network for interpretations. The d-net is developed by using fully
connected recurrent neural networks (RNN). Finally, the a-net
integrates all the characterized features and provides the final
diagnosis. The a-net is implemented as a three-layer fully connected
neural network that takes the features and predict the final labels. The
authors also showed that their model could simultaneously generate

pathological reports from the d-net. The authors trained this method
using 913H&EWSI slides obtained from TCGA Bladder Cancer and
in-house slides. The authors showed that the prediction from the
model matches the diagnoses from 17 pathologists. This study shows
that machine learning/deep learning could be used to assist
pathologists in cancer diagnostic from WSI.

FIGURE 2 | An overview of histology slide preparation and machine learning model construction process.
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Cancer of unknown primary (CUP) represents a group of
cancers in which the primary anatomical site of tumor origin
cannot be determined. Unsurprisingly, CUP poses challenges to
determine the appropriate treatments and clinical care. To
address this challenge, Lu et al. (2021) developed a deep
learning-based algorithm known as Tumor Origin Assessment
via Deep Learning (TOAD), with the goal to predict the tissue of
origin of the primary tumor using routinely acquired histology
images. Histology slides from patients were automatically
segmented and divided into thousands of small image patches
and fed into a convolutional neural network (CNN) with fixed
pretrained parameters. The CNN serves as the encoder to extract
a compact, descriptive feature vector from each image patch.
TOAD uses an attention-based multiple-instance learning

algorithm to learn to rank all of the tissue regions in the WSI
using the feature vectors, and aggregates this information across
the whole slide based on their relative importance, and assigning
more weights to regions perceived to have high diagnostic value.
The authors also included patient’s gender as an additional
feature to further guide the classification of CUP. Based on
this multi-branched network architecture and the multi-task
learning objective, TOAD is able to predict both the tumor
origin and distinguish primary from metastatic tumors. The
authors trained TOAD on 22,833 WSIs spanning across 18
common origins of primary cancer, and tested TOAD on
6,499 WSIs with known primary tumor origins. TOAD
achieved a top-1 accuracy of 0.83 and a top-3 accuracy of
0.96. Further testing TOAD on external test set of 682 samples

TABLE 1 | Selected deep learning-based histopathology image analysis studies.

Publication Input
image
type

Training
annotations

Deep learning
architecture

Prediction output Other functions Training dataset
size

Level

Zhang et al.
(2019)

Tiled
images
from whole
slide (H&E)

Pathologist marking
tumor and normal
areas, input
description text

CNN Probability of being tumor at
Pixel level

Text query of
images using
pathological
terms

913 whole slides WSI

Attention module Attention area
RNN Text description

TOAD Lu et al.
(2021)

Whole slide Tumor of origin CNN Primary or metastatic 22,833 whole slides
from 18 cancer types
+6,499 test slides

WSI
Sex Tumor of origin
Primary or metastatic Attention module Attention areas

Kalra et al.
(2020)

Whole slide
(H&E,
frozen
section)

Primary diagnosis DenseNet Relevant images ranked by
similarity

Images features
extracted as
barcodes

29,120 whole slides
from 32 cancer types
(TCGA)

WSI

HE2RNA
Schmauch
et al. (2020)

Whole slide
images

RNA expression for
training

multilayer perceptron RNA expression Spatial mapping
of gene
expression

8,725 samples from
28 cancer types

WSI

Saltz et al.
(2018)

Whole slide
images
(H&E)

Pathologist marking
regions of
lymphocytes and
necrosis

CNN TIL maps (Computational
Staining)

5,455 images from
13 cancer types
(TCGA)

ROI

Le et al. (2020) Whole slide
images
(H&E)

Pathologist marking
tumor regions, TIL
annotations from Saltz
et al. study

34-layer ResNet, 16-
layer VGG, and
Inception v4

Tumor probability and TIL
probability heatmaps

Cancer detection:
393 breast cancer
images from SEER
and TCGA

ROI

Lymphocyte
detection: 1090
invasive breast
cancer from TCGA

Lockhart et al.
(2021)

Whole slide
images
(H&E)

Pathologist marking
normal vs. tumor
region (grade 1–4)

CNN(ResNet18) Normal lung tissue/airways In house images from
mouse models

ROI
Lung adenocarcinoma of
different grades (1–4)

ConvPath
Wang et al.
(2019)

Whole slide
images
(H&E)

Pathologist labeled
ROI (tumor, stroma,
lymphocytes)

CNN “spatial map” of tumor cells,
stromal cells and
lymphocytes (limited to lung
adenocarcinoma)

TCGA-LUAD(1337) ROI/
Cell
level

NLST(345)
Beijing(102)
SPORE(130)

CRImage
Failmezger
et al. (2020)

Whole slide
images
(H&E)

Single cell
annotations, OS,
omics data

Topological tumor
graphs (TTG),
unsupervised deep
learning framework (CNx)

Cell level classified and
mapped slices for further
analysis and hypothesis
generating

400 SKCM (TCGA) Cell
level
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showed that it achieved top-1 accuracy of 0.80 and a top-3
accuracy of 0.93. Finally, the authors tested TOAD on 317
cases of CUP, and found that their model predicted in
concordance for 61% of cases and a top-3 agreement of 82%.
The authors suggested that this model could be used to assist
pathologists to perform CUP assignment, as well as other difficult
cases of metastatic tumor assignment.

In another study, Kalra et al. (2020) developed a pan-cancer
diagnostic consensus through searching histopathology images
using machine learning (ML) approaches. The authors first
indexed ∼30,000 WSI of 32 cancer types from TCGA using
Yottixel, an image search engine previously developed by the
authors (Kalra et al., 2020b). To index the WSI, the authors
generated “bunch of barcodes” (BoB) index for each WSI instead
of small patches of images. Because the dimensional reduction
from patches of images to BoB, this indexing step accelerate the
retrieval process and overcome the computation and storage of
huge image files. The authors used DenseNet to extract the image
patch and convert into a vector, and the BoB essentially is the
binary form of the deep feature vector representations of each
image patch. The authors illustrated the application of this
machine learning approach on the TCGA WSI data, and
showed that their method could retrieve relevant images with
high accuracy (>90% on several cancer types). This study
demonstrates that an alternative approach to query WSI in a
database to retrieve relevant set of WSIs for potential cancer
diagnosis, and particularly useful for rare cancer types.

Region of Interest-Level Analysis Methods
In addition to classification and searching tasks at whole slide
level, deep learning approaches are also able to provide insights at
more granular level, or give more emphasis to particular regions
of interest (ROI) that are most informative. ROIs may be defined
as geographic regions (e.g., central, marginal areas), or areas that
are biologically divergent (e.g., tumor vs. stromal area, areas of
different tumor grades), or areas that are enriched for specific cell
types such as lymphocytes. A variety of ML tools have been
developed to identify and analyze these ROIs and can provide
unique insights into the biological differences between ROIs.

Spatial patterns of tumor-infiltrating lymphocytes (TILs) have
shown significant value to cancer diagnosis and prognosis,
however manually recognizing of those patterns requires
tremendous efforts. Aiming to reduce the manual efforts and
scale-up analysis capacity, Saltz et al. (2018) constructed a
pipeline that mapped TILs to 5,455 H&E stained images from
13 TCGA tumor types. Their pipeline comprises two CNN
modules (a lymphocyte-infiltrated classification CNN-
lymphocyte CNN-and a necrosis segmentation CNN), that
were trained on pathologist-annotated images of lymphocytes
and necrosis. The training process also involves pathologists’
feedback to improve performance. The CNNs combined outputs
were used to produce TIL probability map that was then subjected
to threshold adjustments to obtain the final TIL map. During
testing, this pipeline achieved 0.95 area under the receiver
operating characteristic curve (AUROC) which outperformed
VGG16 network (0.92). Moreover, the authors compared the
extracted TIL structure patterns with the molecular based

estimation (i.e., CIBERSORT) and found it achieved ∼0.45
correlation coefficient in best performed cancer types (e.g.,
BLCA, SKCM) and ∼0.1–0.2 correlation coefficient in worst
performed cancer types (e.g., UVM, PAAD).

Another group followed up the above-mentioned study and
modified the deep learning architecture to especially focus on
breast cancer cases. 198 high-resolution WSIs from the
Surveillance, Epidemiology, and End Results (SEER) dataset
and 195 annotated TCGA breast cancer WSIs were utilized for
the cancer detection task, and 1,090 breast cancerWSIs annotated
from Saltz study were used for TIL classification task. The authors
adapted and compared three different architectures including 16-
layer VGG (VGG16), the 34-layer ResNet (ResNet34), and the
Inception-v4 network using accuracy, F1 score, and AUC as
performance metrics. Overall, the ResNet34 was the best
performer in both cancer detection task and lymphocyte
detection task, even surpassing the Saltz study’s accuracy in
the case of breast cancer. Using their ResNet34 model, Le
et al. (2020) showed that their estimated TIL infiltration was a
significant survival predictor.

In addition to assessing lymphocyte infiltration, users are also
interested in evaluating tumor progression and heterogeneity
based on the distribution of cancer cells of different grades in
the whole slide. To this end, the Flores laboratory has developed a
deep learning system-Grading of Lung Adenocarcinoma with
Simultaneous Segmentation by an Artificial Intelligence (GLASS-
AI) (Lockhart et al., 2021), based on preclinical lung
adenocarcinoma models. A ResNet18-based CNN was trained
to classify and map the normal lung tissue, normal airways, and
the different grades (1–4) of lung adenocarcinoma in WSI of
mouse lungs. The modal not only achieved a micro-F1 score of
0.81 on a pixel-by-pixel basis, but also uncovered a high degree of
intratumor heterogeneity that was not reported by the
pathologists. We are currently utilizing this pipeline in
conjunction with spatial transcriptomic analysis and IHC to
conduct mechanism investigations to reveal new therapeutic
targets and prognostic markers.

Cell-Level Analysis Methods
Understanding the spatial organization of different cell types in
the tumor microenvironment (TME) provides information on
cancer progression, metastasis, and response to treatment.
Currently, this information could be provided by extensive
immunolabeling of specific cell types or performing spatial
transcriptomics, though this technology is still in its infancy.
To compensate this, researchers have been actively developed
innovative approaches to extract cell-level information from
images.

To provide a deeper understanding about the spatial
information of cells involved in stromal-immune interface,
Failmezger et al. (2020) developed CRImage, a computational
pathology pipeline used to classify cells in the H&E-stained
specimens into stromal, immune or cancer cells. The authors
performed the analysis on 400 melanoma specimens obtained
from TCGA. The authors compared the estimated proportions of
these cell types with independent measures of tumor purity,
estimation of lymphocyte density by expert raters, computed
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immune cell types and pathway analyses. Using a set of
independent single-cell annotations, the authors showed that
the classifier to achieve 84.9% balanced accuracy (81.9% recall,
90.9% precision). By comparing the gene expression profiles of
these samples, the authors demonstrated that samples with high
lymphocyte percentage were enriched for immune-related
pathways, validating the CRImage approach.

In another study, Wang et al. (2020) developed Histology-
based Digital-Staining (HDS), a deep learning-based
computation model, to segment the tumor, stroma,
lymphocyte, macrophage, karyorrhexis, and red blood cell
nuclei from standard H&E-stained pathology images. They
applied HDS in lung adenocarcinoma H&E images to classify
cell nuclei and extracted 48 cell spatial organization-related
features that characterize the TME. Based on these features,
they developed an accurate prognostic model that can predict
high-risk group in the National Lung Screening Trial dataset, and
further validated the model in the TCGA lung adenocarcinoma
dataset. More importantly, they showed that these image-derived
TME features significantly correlated with the gene expression of
biological pathways. For example, transcriptional activation of
both the T-cell receptor and programmed cell death protein 1
pathways positively correlated with the density of detected
lymphocytes in tumor tissues, while expression of the
extracellular matrix organization pathway positively correlated
with the density of stromal cells. Taken together, they
demonstrated that by applying HSD at cell-level analysis in
H&E images, spatial organization of different cell types could
be identified and associated with the gene expression of biological
pathways.

AN OVERVIEW OF GENERATING WEAKLY
CELL-LEVEL ANNOTATION USING IHC
STAINED IMAGES

IHC-Based Cell-Level Annotation
Building a dataset using image-level, or region-level annotation is
comparably easier than cell-level annotation. Unlike image-level
annotation, which is generally reduced to a simple classification
task, both region-level and cell-level annotation require the
addition of a segmentation step alongside classification.
Indeed, the principal difference between region- and cell-level
classification is a matter of scale, though this difference is several
orders of magnitude in size. Considering that a WSI can easily
contain several million cells, completely annotating enough
images to train the classifier is almost impossible even for
experts. The difficulty in producing cell-level annotations for
training data has compelled most groups to use region-level
analysis of WSIs to capture cell-level features, such as presence
of tumor infiltrating lymphocytes (Saltz et al., 2018). These analyses
use region-level annotation and consider that the cells in the
annotated region have the same cell types. These approaches
can still be informative but considering that tumor is very
heterogeneous, and there are multiple types of cells coexists
even in a small single region, labeling all the cells in the same
region will cause many mislabeled cell-level annotations.

As discussed in Histopathology Image Data Preparation for
Training Machine Learning Models of this review, H&E staining
is used frequently for basic examination of tissue and cell
morphology. Immunolabeling may also be performed to
obtain additional information from samples such as cells’
subtypes. For example, pan-cytokeratin staining (PCK) is
commonly used to stain for tumor cells, and some antibodies
such as CD3 (T-cell), CD8 (T-cell), and CD20 (B-cell) are used
for characterizing immune cells in the sample (Figure 3).
Conventional immunohistochemistry (IHC), multiplexed IHC
(mIHC), or multiplexed IF (mIF) images can be used for labeling
multiple cells in histopathology images. When preparing sections
from biopsies or resected tumors, slides will be prepared from a
series of adjacent sections. This allows pathologists to easily
compare regions of a H&E and adjacent immune-stained
slides. Even though the adjacent samples are still showing
similar spatial characteristics, they are not identical to the
other samples. To perform machine learning data analysis and
interpretation, it is critical to align these differently stained
histopathology images together. Most conventional image
analyses software can perform a reasonable job in aligning
these different slices of images and provide a final aligned
image to study tumor heterogeneity and tumor immune
microenvironment.

To train machine learning classifier for cell-level annotation,
images must first be annotated with individual cells’ boundaries
and the cells’ subtypes. As explained earlier, cell-level annotation
process requires a tremendous manual effort. To make this cell-
level annotation more approachable and scalable, we introduce a
semi-automated method of generating cell-level annotation using
adjacent IHC-stained images as the labeled dataset for machine
learning methods. In this example, we are using H&E tumor cell
images with multiple IHC stained images to generate a labeled
training dataset in Common Objects in Context (COCO) format
for Mask R-CNN (He et al., 2017). After training on this
automatically labeled training data, the machine learning
classifier can predict cell types in H&E image without further
IHC or IF stained images with high accuracy. In the following
sections we will provide an explanation of the steps required in
this approach, beginning with acquisition of the WSIs.

Digital Image Acquisition From Prepared
Slides
Once the histology slides have been prepared using H&E or IHC,
they must then be converted to a digital format for analysis by the
machine learning model. While such images can be taken using a
simple brightfield microscope, the quality and characteristics of
the images can vary considerably from one slide to the next.
Computer driven microscopes offer a better solution for
reproducible image acquisition and can even be used to
generate WSIs through stitching of image tiles. However,
unless carefully calibrated the resulting WSI may contain
significant stitching artifacts that can confuse a machine
learning classifier. Instead, it is highly advisable to use a
dedicated slide scanner, such as Leica’s Aperio platform, to
generate WSIs of stained slides. The H&E and mIHC images
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used in our example process were all captured on a Leica Aperio
AT2 digital whole slide scanner at 20x magnification. This
system produces a “.svs” file that contains an image of the
slide label, a macro image of the entire slide, and a multi-
resolution tiled “.tiff” of the WSI. The structure output files will
vary among different slide scanning systems, but most rely on
multi-resolution tiled TIFF files to store the WSI. For easier
image modification and processing, svs files need to be
converted to tiff or png formats.

While the example provided here relies on IHC stained slides,
immunofluorescent (IF) labeling can also be used to generate cell-
labeled slides. Most of the considerations described above for IHC
apply to these approaches, but IF can generally provide a higher
number of labels on a single slide. Systems like the Akoya Vectra
or the Leica Aperio Versa are capable of scanning whole slides
with up to 7-plex labeling. Spectral overlap of the fluorescent
reporters presents a unique challenge in multiplexed IF, which
was recently reviewed by Shakya et al. (2020). The plexity of both
IHC and IF can be increased by sequential staining/de-staining
for target proteins. Higher numbers of simultaneous labels (40+)
can be achieved by newer techniques such as the Akoya CODEX
or multiplexed ion beam imaging (MIBI) that use oligo- or metal-
isotope-labeled antibodies, though these techniques require
additional components or a specialized secondary ion mass
spectroscopy system, respectively. It is also possible to label
cells of interest by nucleic acid in situ hybridization (ISH).
ISH and its fluorescent counterpart (FISH) are generally more
laborious than immunolabeling and may not perform well on
older samples due to the more sensitive nature of nucleic acids

compared to proteins, but image acquisition is performed in the
same manner as IHC or IF.

Image Registration and Normalization
After WSI images are stained with different antibodies are
captured, a number of preprocessing steps should be followed
to ensure optimal performance of the machine learning classifier,
including stain normalization and slide registration. The
adherence to a defined protocol for H&E and IHC staining is
crucial to minimize the variability between batches of slides, but
some level of variability will still occur due to imperfections in
tissue sectioning or changes in tissue composition. Staining
variability can be compensated for after image acquisition by
normalization to a standard using several suggested methods
(Macenko et al., 2009; Khan et al., 2014; Bejnordi et al., 2016;
Alsubaie et al., 2017; Roy et al., 2018; Anghel et al., 2019). Stain
normalization is especially important when incorporating
external datasets due to potential differences in staining
protocols and image capture systems.

Depending on what sampling/staining method is used,
different steps of preprocessing are needed to generate aligned
or registered image dataset. Conventional IHC uses adjacent
slices of the samples for each staining, and they are not
identical. Also, during the sampling, placing, staining, and
processing, each section might be moved, rotated, mirrored, or
simply imperfectly placed onto the slide whichmay causes images
to be poorly registered (Wang et al., 2014). Since mIHC is stained
for the same identical sample for multiple times, the images are
comparably more aligned compared to conventional IHC

FIGURE 3 | Example of the IHC-stained histopathology images with different antibodies.
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datasets. However, during the staining-washing-placing steps in
each repetitive staining, the samples can be slightly displaced or
even washed off. Because of that, mIHC images may still not
perfectly align and should be registered as well. mIF datasets, in
contrast, does not require repetitive washing and staining steps
and should therefore be easier to register to adjacent slides.

Image registration is common step in image processing using
multiple images especially in biomedical image analysis such as
radiology. It is a process of overlaying two or more images from
different sources or different time of the same object to align
geometrically (Zitová and Flusser 2003). In radiology, this
method is used for overlaying images from different sensors,
different equipment, or different time (Fox et al., 2008; Tohka and
Toga, 2015). This image registration is sometimes done manually
using image viewer software when there are not many images, but
for multiple image files, automated methods can be used. ImageJ
(Rueden et al., 2017) and Fiji (Schindelin et al., 2012) have
multiple registration plug-ins such as “Feature Extraction
SIFT/MOPS”, or “TrakEM2”. MatLab also has several
applications including “Registration Estimator App” and
“Intensity-Based Automatic Image Registration”. SimpleITK
(Lowekamp et al., 2013) is an open-source image analysis
toolkit that supports multiple platform such as Python, R,
Java, C#, C++, and Ruby that provides powerful machine
learning-based registration options for image registration
process. In most of the automated methods, images are
aligned globally, which means at a smaller scale parts of the
images might be not very well aligned. In this case, additional
registration steps can be done after deciding ROIs or split the
samples in smaller patches.

Cell Boundary Detection and IHC Intensity
Level Acquisition
For the cell boundary information, many (semi-)automated cell
boundary recognition programs can be used. CellProfiler is one of
the most well-known histopathology image analysis program
(McQuin et al., 2018). CellProfiler supports multiple types of
histopathology images as input, and users can build their own
pre/post-processing pipeline of the image quantification. Using
CellProfiler, cell boundaries can be segmented by setting up some
simple parameters such as the typical diameters of the nuclei (or
cells), segmentation thresholding methods (e.g., Otsu, Minimum
Cross-entropy), smoothing thresholds etc.

No cell segmentation program is perfectly accurate, and
depending on the image dataset that are used for this process,
the parameters may need to be modified. For example, the cell
sizes in the images can vary depending on the zoom level of
images, the sampled tissue parts of the organs and species.
Finding good parameters to detect the cells with higher
accuracy is an important step. For example, the cell smoothing
threshold parameter is too high, multiple different cells can be
recognized in a single cell. However, if the threshold is too low, a
single cell is seldom recognized as multiple cells. These
parameters are required to be optimized based on the target
image dataset. This might be repetitive and time-consuming part
of the image processing, however, finding optimal parameters for

each input dataset are important for accurately finding the cell
boundaries from the image. When the cell boundaries are
detected, CellProfiler outputs the results in a mask image file.
This mask image file is showing the detected cells in different
colors, and the background as black.

CellProfiler also has the tools to measure staining intensities of
each recognized cells from multiple aligned IHC images. For
example, after CellProfiler detects cells boundaries in the main
input image (e.g., H&E), the staining intensities of the same
location are extracted from other IHC images (e.g., PCK, CD14).
The intensities in aligned IHC images are obtained in a table with
csv format. This table contains the x/y coordinates of the detected
cells, and their cell marker intensities obtained from different
IHC images. After semi-automated image processing steps, the
information of the detected cell boundaries and the IHC
intensities of the cells could be saved in mask image files and
a csv file, respectively.

Combine the CellProfiler Information and
Decide Cell Class Subtypes
The cell boundary information, and the intensities of each
markers in the cells are obtained as two different types of files
from the previous step. In this step, the intensity levels need to be
converted to cell class labels. Depending on a prior knowledge of
domain experts, the rule for cell class labeling can be made. For
example, a cell with a high intensity level in PCK stained image
will be labeled as a tumor cell. During this labeling rule
generation, some markers will require a threshold values to
divide positive and negative class cells. Many of the marker
values can be shown bimodal distribution in histograms. The
local minimum value in between the twomodes can be used as the
cutoff point for detecting positive/negative staining intensities
(usually this cutoff point resides between 0.3 and 0.5). Some of the
staining markers may not have bimodal distributions, but have
different distributions (e.g., unimodal or multi-modal). In these
cases, additional steps may require to establish a biologically-
informed decision process based on the advice of domain experts.
Following the application of the cell class decision rules, each cell
in the csv files will be mapped to a single class label (e.g., tumor
cell, immune cell, stromal cell).

Reformatting the Annotation Dataset Into
Common Objects in Context challenge
Format
After the cell subtypes are decided, the cell mask image (cell
boundary information) and the csv information (cell subtype
information) need to be combined and reformatted. The most
commonly used annotation file format is called COCO format,
which is used in Microsoft’s Common Objects in Context
challenge (COCO)1 (Lin, Maire et al., 2014). The COCO
dataset is one of the most popular object detection datasets
with multiple different objects’ images and their annotations.

1https://cocodataset.org
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The annotation file format contains image names, object
boundary locations, objects’ class name, and the objects’ class
label of all the detected objects. Most of the current machine
learning-based object detection methods2,3,4 are using COCO
format as the input of the annotation information, and there are
multiple publicly available tools for generating, loading and
modifying such as COCO API and FiftyOne.

Since the output of CellProfiler is not in COCO format but the
mask images, the files cannot be used directly by most of the
known image analysis methods. To convert the CellProfiler
outputs to COCO format JSON file, the following processing
steps are needed. First, the cell mask images must be converted
into the list of x/y coordinates that represents the boundary of
each cell. FiftyOne which is a Python open-source tool for image
dataset building supports the input of mask images and can
convert them into coordinates in the image. After the cells’
boundaries are mapped to cell subtype classes, this
information needs to be saved as COCO JSON format.

Through this step, the cell mask image and cell class
information are converted to a single JSON format that
includes cell boundary coordinates, cell classes, and the input
image file information.

Divide Images Into Patches/Train + Test
Dataset Generation
Now, the input images with cell-level annotation dataset are ready
for use. However, depending on the input image size, the images
need to be split into smaller patches or tiles. Most of the deep
learning-based image segmentation methods require GPUs with
high memory because of the amount of computations in the
complex neural network structure. Depending on the available
GPU memories of the machine, the size of the input images
needs to be modified. Most of the popular deep learning
methods take images from 128X128 pixels to 1024X1024 pixels,
depending on the parameter settings of the code or GPUmemory of
themachine.WSI images are several orders ofmagnitude larger than
an individual image patch, and evenmost of the ROI sections are still
bigger than this range. Splitting images is easily accomplished using
many of publicly available tools such as Pillow in Python; however,
COCO annotation file needs to be re-generated by calculating the
new coordinates of the cell boundaries in the split images. Since the
cells on the edge of the image are not easily segmented by machine
learning methods, it is recommended that the image splitting allows
some overlaps between the image patches.

Also, as it is common in machine learning and data science field,
before training the dataset with machine learning methods, the
dataset needs to be separated into training, testing, and sometimes
validating datasets. It is important that the training/testing data
separation needs to be done in WSI level, not patch level–which
means the patches from the same WSI must not co-exist in both
train/test dataset. Adjacent patches from the same WSI can be

overlapped, or shares many properties such as shapes, colors, and
patterns, which can cause a boosted accuracy scores in the test
dataset because the machine learning classifier already have seen
very similar (adjacent or overlapped) cells or tissues.

Training Machine Learning Classifier
Once the dataset is ready, it is time to train a machine learning
classifier. There are many machine learning classifiers5,6,7

designed for image segmentation and classification for the
COCO challenge, and by changing some parameter settings
most of them can be used for this histopathology cell subtype
segmentation task.

Deep learning-based machine learning classifiers usually
require a large amount of training dataset. If the training
dataset is not big enough, a “warm-start” method (pre-
training/fine tuning) is highly recommended. For the popular
machine learning models, there are pre-trained weights that are
trained with big datasets are publicly available. For example,
Wang et al. used a pre-trained Mask R-CNN model with COCO
dataset and public balloon image dataset, and fine-tuned with
their histopathology image dataset for cell segmentation task
(Wang et al., 2020). This fine-tuning method (pre-train with big
dataset/fine-tune with final dataset) is widely used to overcome
the limitation of the lack of training dataset, especially for deep
learning model training that requires big training dataset. For
Mask R-CNN method, several pretrained weights are publicly
available.8,9

As the goal of the tasks are not the same between balloon
detection and cell segmentation, many of the parameters in Mask
R-CNN codes needs to be updated to optimize the machine
learning classifier to detect cells more accurately before training
with the target dataset. For example, in histopathology images
there are almost certainly a higher number of the target objects
per image (e.g., nuclei or cells) than in other image sets.
Therefore, the maximum detection threshold needs to be
changed to higher number and the target sizes should be set
to smaller, respectively. Also, target objects are taking up much
more space in the histopathology images compared to other
segmentation tasks, so changing ROI positive ratio will be helpful.

For cell-type detection, class imbalance problem is a known
issue in the histopathology analysis. For example, in tumor
sample slides, most of the cells are tumors, but only a limited
number of cells are immune cells. As class imbalance is a well-
known problem in machine learning field, there are several
suggestions to solve this problem including over/under
sampling, using different cost/weight schema during the
training, (Almeida et al., 2014; Johnson and Khoshgoftaar
2019). If an insufficient number of images are included in the
training dataset, image augmentation can be employed to

2https://github.com/matterport/Mask_RCNN
3https://github.com/facebookresearch/Detectron
4https://github.com/endernewton/tf-faster-rcnn

5https://github.com/matterport/Mask_RCNN
6https://github.com/facebookresearch/Detectron
7https://github.com/endernewton/tf-faster-rcnn
8https://github.com/matterport/Mask_RCNN/releases/download/v2.0/mask_
rcnn_coco.h5
9https://github.com/matterport/Mask_RCNN/releases/download/v2.1/mask_
rcnn_balloon.h5
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synthetically increase the dataset size. Image augmentation
generates more images for training dataset by image alteration
(e.g., rotation, flip, blur, crop, pad, or adding noise) and is widely
used for deep learning methods (Shorten and Khoshgoftaar
2019). In the case of Mask R-CNN, an image augmentation
step is built into the pipeline.

In histopathology image method training, there are several
things to consider for getting good accuracy of cell segmentation
and subtype prediction. Since deep learning methods require very
high number of calculation and high memory during training the
classifier, it is almost impossible to train classifiers without high
performance hardware with GPUs and high memory. Depending
on the performance of the hardware and time limitations, the
training parameters (such as learning rates, epochs, the layers to
be fine-tuned, etc.) require tuning to optimize the performance.

Evaluation of the Results
After obtaining the prediction results in the test dataset, the
results need to be evaluated. To evaluate how accurately the
machine learning classifier can find cells’ boundaries and their
subtypes, the Intersection over Union (IoU) metric, also known
as Jaccard index can be used (Girshick 2015; Ren et al., 2015; He
et al., 2017). For each class of subtypes, the intersection of the
ground truth area and the predicted area (Rezatofighi et al., 2019).
Usually, IoU is calculated based on the bounding box of the
segmentation. When IoU is calculated in an image-level, it can be
calculated for each class and averaged to see the final image
segmentation accuracy for all the classes. This score is called
mean-IoU (mIoU). When IoU is used for binary decision of a

single object detection, if the IoU is higher than 0.5–0.7, it is
considered that the object is correctly detected.

IoU � #TP
#TP + #FP + #FN

� Area of Ground Truth∩Area of Predicted
Area of Ground Truth∪Area of Predicted

. (1)

Ultimately, validation and verification of the prediction by a
pathologist remains the gold-standard for histopathology image
analysis.

Visualization and Obtaining Biological
Insights
As prediction of the cell subtypes are performed on the image
patches, the predictions need to be stitched and rebuilt into the
original image. As the classifier predicts the cell boundaries and
subtypes, it is possible to overlap the predicted cell segments on
the original images with different colors depending on the class.
(Figure 4). This can give clinicians the information of tumor
heterogeneity or immune infiltration in the sample.

There are several methods to quantify the tumor heterogeneity
in the output image. Ripley’s K function (Ripley 1988) that is a
function of calculating spatial point pattern by finding number of
other points within a circle of radius, is used for several
histopathology image analysis (Mattfeldt et al., 2009; Yuan
et al., 2012; Carstens et al., 2017). The Shannon diversity
index (Shannon 1948) is also widely used for calculating the
diversity of molecules or distribution of species. Graf and

FIGURE 4 | An example of the deep learning-based cell subtype prediction results.
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Zavodszky suggested a method for calculating molecular entropy
and heterogeneity diversity metrics based on the Shannon
diversity index for quantifying tumor heterogeneity (Graf and
Zavodszky 2017). These methods can be calculated at the patch-
level or for image-level analysis using sliding window.

Pros and Cons of IHC-Based Weakly
Cell-Level Annotation
Using registered H&E and IHC slides can provide a good
alternative to cell-level manual annotations. This technique
allows for easy production of a large dataset of “weakly labeled”
images with a much better annotation resolution than single class
region annotation for cell-level machine learning classifiers.
Indeed, for applications with rare or non-contiguous
organization, such as identification of immune cell types within
tumours, region-level annotations are unlikely to produce a usable
training set. However, cell-level registration has its own limitations
on the accuracy of the resulting labels. In the simplest case, cell-
level registration with a single marker on each slide from typical
IHC, it may be necessary to register multiple slides of various
distances to a single H&E image. It stands to reason that the greater
the distance between the two registered slides, the less accurate the
registration will be. Multiplexed or sequential immunolabeling,
such as the mIHC approach used in our example, can mitigate this
loss of accuracy. If only a few labels are needed to construct the
training dataset it would be possible to generate a nearly perfect
cell-level registration by digitizing the H&E slide, de-staining, and
then re-staining using IHC (Hinton et al., 2019).

There are several other difficulties to consider while designing
the machine learning models. Cell-level histopathology analysis
can be prone to cell class imbalance problem, because some of the
specific types of cells might be very rare compared to the other
tumor or normal cells. There are several methods to handle class
imbalance in machine learning (Johnson and Khoshgoftaar 2019),
however, manually checking the distribution of the class labels are
recommended. Manual validation process is also recommended to
remove some low-quality images or images with noises. For
example, sometimes during the staining or washing step of the
sample preparation, some samples are missing, or air bubble can be
formed in the image. These noises can cause bias in the training
steps, and manual validation of images is recommended to remove
these low-quality samples.

FUTURE DIRECTION OF THE
HISTOPATHOLOGY IMAGE ANALYSIS AT
SINGLE-CELL LEVEL WITH DEEP
LEARNING

As shown in several publications, deep learning-based
histopathology analysis is becoming a useful tool for tumor
image data analysis. Most of the publication are focusing on
classification of the sample in image, region or cell level, however,
this deep learning-based histopathology techniques can be
expanded into more broad topics of research.

Machine learning-based image analysis can be used to predict
transcriptomics information from the image. Schmauch et al.
(2020) demonstrated a machine learning model trained with bulk
RNAseq data to predict spatial gene expression from H&E WSI
images. With the recent development of spatial transcriptomics
techniques such as LCM-seq or 10X Visium Spatial Gene
Expression, it is possible to obtain the gene expression of the small
region in the sample with the histopathology image together. These
spatial transcriptomics data with paired histopathology images can be
a great training dataset for gene expression prediction from
histopathology image of the sample. With this dataset of spatial
gene expression and images with deep learning methods make it
available to predict gene expression of the specific region from its
histopathology image. He et al. (2020) used spatial genomics dataset of
23 breast cancer patients to predict gene expression from the
histopathology of small regions. The results are promising though
limited because of the small size of the dataset. After collecting more
dataset from these spatial genomics datasets with images, the gene
expression prediction will certainly be improved. The scope of these
prediction will be eventually combined with single cell RNA-seq
dataset for cell-level prediction. Currently, the technical and cost
limitation of single cell technology, it is almost impossible to
generate enough dataset for cell-level annotations for deep learning
dataset, however, in the future after the limitation is removed, cell-level
expression prediction will be possible.

As histopathology images include a lot of information, and it
can be used for predicting further information. Histopathology
images may include rich information such as tumor grade, tumor
subtype, immune infiltration, and so on. This informationmay give
clinicians some idea for finding the personalized treatment for each
patient. As an example, Wang et al. (2020) predicted overall
survival of the patients of the samples using deep learning-method.

As explained earlier, small training dataset problem can be
mitigated by training machine learning models with a big dataset
that is similar to the target dataset followed by fine tuning with the
target dataset. For this purpose of pretraining deep learningmethods,
public dataset of histopathology images will be very helpful for
researchers who are having lack of training dataset issues. Komura
et al. introduced several WSI datasets that are publicly available
(Komura and Ishikawa 2018), and The Cancer Image Archive
(TCIA) is also a good place to find the similar image datasets to
pretrain the model. One major problem of these publicly available
image dataset is that the images are generated and processed in many
ways, which makes it harder for combining them to construct a big
training dataset. Some standardized steps of generating and pre-
processing image datasets will make the public image dataset more
valuable and easier to use for machine learning model training.

In conclusion, building a machine learning model for histology
image analysis requires a significant investment of time and effort
on both the computational and the biological side. A basic
understanding of the biological and data science principles that
underpin these methods is key to establishing a productive multi-
disciplinary team of researchers for this promising and rapidly
growing field. In addition, as the amount of WSIs and associated
molecular data becoming widely available to researchers, the
development and application of computational approaches will
becomemore robust and reproducible.We are optimistic that these
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computational approaches will play an important role to uncover
the insights contained in these histopathology image datasets.
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