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According to the National Academies, a week long forecast of velocity, vertical structure,

and duration of the Loop Current (LC) and its eddies at a given location is a critical

step toward understanding their effects on the gulf ecosystems as well as toward

anticipating and mitigating the outcomes of anthropogenic and natural disasters in the

Gulf of Mexico (GoM). However, creating such a forecast has remained a challenging

problem since LC behavior is dominated by dynamic processes across multiple

time and spatial scales not resolved at once by conventional numerical models. In

this paper, building on the foundation of spatiotemporal predictive learning in video

prediction, we develop a physics informed deep learning based prediction model

called—Physics-informed Tensor-train ConvLSTM (PITT-ConvLSTM)—for forecasting 3D

geo-spatiotemporal sequences. Specifically, we propose (1) a novel 4D higher-order

recurrent neural network with empirical orthogonal function analysis to capture the hidden

uncorrelated patterns of each hierarchy, (2) a convolutional tensor-train decomposition

to capture higher-order space-time correlations, and (3) a mechanism that incorporates

prior physics from domain experts by informing the learning in latent space. The

advantage of our proposed approach is clear: constrained by the law of physics, the

prediction model simultaneously learns good representations for frame dependencies

(both short-term and long-term high-level dependency) and inter-hierarchical relations

within each time frame. Experiments on geo-spatiotemporal data collected from the GoM

demonstrate that the PITT-ConvLSTM model can successfully forecast the volumetric

velocity of the LC and its eddies for a period greater than 1 week.

Keywords: physics-informed deep learning, time series forecasting, spatiotemporal predictive modeling, loop

current, ocean current modeling, volumetric velocity prediction

1. INTRODUCTION

As part of the North Atlantic western boundary current system, the Loop Current (LC) originates
as the Yucatan Current, flows northward into the Gulf of Mexico (GoM), and veers east to exit
through the Straits of Florida where it becomes the Florida Current, which then transitions into the
Gulf Stream system. The LC dynamics is characterized by the shedding of clockwise (anticyclonic)
rotating eddies that move westward further into the GoM. The LC and its eddies together are
called the Loop Current System (LCS). On April 20, 2010, the oil drilling rig Deepwater Horizon,
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operating in the Macondo Prospect in the GoM, exploded and
sank, resulting in 4 million barrels of oil gushing uncontrolled
into the Gulf over an 87-day period, before it was finally capped
on July 15, 2010 (The Commission, 2011). This disaster, also
known as the GoM Oil Spill, threatened livelihoods, precious
habitats, and even a unique way of life in the GoM region. Since
the disaster, a large amount of research reported in the literature
has improved scientific understanding and forecasting of the LC
with aspirations for alleviating impacts on ecosystems and for
future oil-spill prevention. The ability to predict the LC evolution
is critical and fundamental to almost all aspects of the GoM
community, including (1) anthropogenic and natural disaster
response, (2) the prediction of short-term weather anomalies,
and hurricane intensity and trajectories, (3) national security and
safety, and (4) ecosystem services (Walker et al., 2009). Due to a
reinforcing interaction between seasonal hurricanes and the LCS,
long-term prediction of the LCS states is of particular interest
and becoming increasingly relevant for mitigating potential
environmental and ecological threats.

Modeling and forecasting the dynamics of the LC in the GoM
remains an open scientific problem. The National Academies of
Science, Engineering and Medicine (NASEM) published a report
(National Academies Press, 2018) specifically calling for the
development of models that are capable of forecasting (a) current
speed, vertical structure, and duration of the LC and its eddies
at a given location one week in advance, (b) LC propagation one
month ahead, and (c) eddy shedding events up to 13 weeks ahead.
Current prediction models fall mostly into one category which
consists of numerical model-based methods. They primarily use
finite-differences or finite-element techniques to discretize partial
differential equations (PDEs) of momentum and tracer transport,
and conservation. Although the various models used differ in
their details, features such as the LC eddy shedding periods,
eddy propagation, flow transport, and vertical structure in the
LC and the formation of LC frontal cyclonic eddies are relatively
similar. Some of these models use data assimilation techniques to
constrain their model solution with remote sensing and in-situ
observations (see Wang et al., 2019, 2021 for a literature review
of the models). However, despite the data constraint the reliable
prediction window for surface and subsurface currents of the LCS
is from a few hours to 2 days at most (Wang et al., 2021).

Therefore, the long-term forecasting of the volumetric velocity
has remained an unattainable goal despite the large amount of
research focused on the LC dynamics. The major challenges of
the LC velocity field prediction are found in the nature of the LC
current dynamics which is dominated by instabilities and multi-
scale interactions in the temporal, spatial and frequency domain
(Yang et al., 2020). These interactions occur not only in the
horizontal but also in the vertical dimension, and are controlled
by the vertical discretization scheme chosen in the numerical
ocean model. The choice of the vertical coordinate system has
a significant impact of the physics and processes resolved by
the model, which results in diverging solution between models,
among other factors (Halliwell, 2004; Bruciaferri et al., 2018).

In this paper, we develop a novel technique to predict
the evolution of this type of geophysical dynamical system,
named the Physics-informed Tensor-train ConvLSTM

(PITT-ConvLSTM) model, that enables 4D spatiotemporal
LC prediction, namely the prediction of a continuous sequence
of 3D flow fields (see section 4.1). We address the problem of
modeling the LCS based on convolutional Long Short Term
Memory (LSTM) networks (ConvLSTM) by incorporating
prior domain knowledge described as non-linear differential
dynamic equations. Our PITT-ConvLSTM model can leverage
required physics explicitly, and learn implicit patterns from
data. Moreover, unlike most of the first-order ConvLSTM-
based approaches, we propose a higher-order generalization to
ConvLSTM with convolutional tensor-train decomposition (Su
et al., 2020) to effectively learn the long-term spatiotemporal
structure in the LCS.

The remainder of this paper is organized as follow. In section
2, we discuss the motivation of proposing physics informed
neural network for LC forecasting. Section 3 presents a gallery
of related works. Section 4 describes the dataset and its pre-
processing method. Section 5 describes the proposed framework
and our main results including the baselines are presented in
section 6. Finally, concluding remarks are made in section 7.

2. MOTIVATION

In the past decades, tremendous progress has been made
in understanding multiscale physics in diverse geophysics
applications, by numerically solving partial differential equations
(PDEs) using finite differences, finite elements, spectral, etc.
Such numerical model-based approaches still cannot seamlessly
incorporate noisy data into existing algorithms, mesh generation
remains complex, and high-dimensional problems governed
by parameterized PDEs cannot be tackled (Karniadakis et al.,
2021), showing limitation in solving real-world physical problem.
Machine learning has emerged as a promising alternative. They
are purposed to discover complex patterns from large volumes
of data. However, training deep neural networks requires big
data, while the volume of useful experimental/real-world data for
complex physical systems is limited. For instance, in our case,
gaps remain in oceanographic observations necessary to further
understanding and prediction of the LCS, as the volumetric
velocity data of the LCS is inadequate compare to other data
domains (Hamilton et al., 2016).

Most machine-learning-based approaches are currently
unable to extract interpretable information and knowledge
from data. Moreover, machine-learning-based approaches, as a
purely data-driven method in nature, are easy to be overfitting.
Predictions may be physically inconsistent or implausible, owing
to extrapolation or observational biases that may lead to poor
generalization performance (Karniadakis et al., 2021). While
numerical model-based approaches are generally limited by
their high complexity and incompleteness, they do not require
large amounts of data and retain interpretation. To this end,
incorporating prior physics knowledge into machine learning
can help enhance generalization and interpretability, and reduce
the need for massive amounts of training data. In general, physics
can be used as “teachers” to guide the discovery of meaningful
and explainable machine learning models. It is hypothesized
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that the combination of machine learning and physics could
lead to performance gains by leveraging the advantages of
both sides.

Machine learning models can be trained from additional
information obtained by enforcing the law of physics (Raissi et al.,
2019). By doing so, such physics-informed neural networks can
(1) provide theoretical guidance that the model is required to
follow and thus, facilitate the model training with fewer labeled
data; and (2) improve the model robustness for unseen data
and prevent over-fitting. Considering the difficulty in identifying
which observations are following the physics explicitly and how
much in accordance to it, the law of physics will not be directly
applied to the raw observations, but rather to the latent space for
representation learning (e.g., the hidden states of the deep neural
networks). Therefore, the neural networks would remain flexible
to extract unknown patterns as well, instead of being strictly
constrained to the knowledge of physics.

3. RELATED WORK

3.1. Physics-Informed Neural Networks
Physics is one of the fundamental pillars that can explain how
nature behaves. Because it is unable to describe all the rules
governing real-world events, machine learning is desired to
bridge the known physics and real-world observations. Physics-
informed machine learning integrates data and mathematical
models, even in partially understood, uncertain, and high-
dimensional contexts (Karniadakis et al., 2021). In addition,
(Raissi et al., 2017; Raissi, 2018; Raissi and Karniadakis, 2018)
demonstrated that neural networks are capable of finding
solutions to partial differential equations (PDEs), which enables
us to obtain fully differentiable physics-informed models
with respect to all input coordinates and free parameters.
(de Bezenac et al., 2019) demonstrated how fluid physics could
be incorporated for forecasting sea surface temperature, and
such a method not only captures the dominant physics but
also infers unknown patterns by CNNs. Further, a number
of physics-informed models were developed, assuming that
neural networks can learn complex dynamic interactions and
simulate unseen dynamics based on current states (Kipf et al.,
2018; Sanchez-Gonzalez et al., 2018). Unlike those works that
implicitly extract latent patterns from data only, the physics-
informed graph networks proposed in Seo and Liu (2019) allow
incorporating known physics and simultaneously extracting
latent patterns in data that is unable to be captured by numerical
model-based approaches.

3.2. Recurrent Neural Network With
Tensor-Train Decomposition
Tensor-train decomposition (TTD) factorizes model parameters
into smaller tensors (Oseledets, 2011) in order to reduce the
space dimension. This decomposition is especially beneficial
in multi-relational data analysis, and has been widely used
in machine learning, including CNNs (Su et al., 2018, 2020;
Kolbeinsson et al., 2019), RNNs (Yang et al., 2017; Su et al.,
2020), and transformers (Ma et al., 2019). A multiplicative

RNN with factorized (weights) tensors was proposed for input-
state interactions (Sutskever et al., 2011). Further, (Yang et al.,
2017) factorized the input-to-hidden weights within each cell by
TTD, and showed improvement in video classification. Different
from the first-order RNNs mentioned above, higher-order RNNs
(Soltani and Jiang, 2016) require many more parameters since
they introduce connections across multiple previous time steps
for better long-term dynamics learning. This was improved by
TTD-RNNs (Yu et al., 2018), whose higher-order structures
within each cell were compressed by TTD, which was shown to
improve the model performance in video classification. Recently,
(Su et al., 2020) introduced a new convolutional TTD and
constructed Convolutional Tensor-Train LSTM that was able to
capture higher-order spatiotemporal correlations.

4. DATASET

4.1. Data Description
The dataset used in this study was produced by a funded
observational program called "Dynamics of the Loop Current
in US Waters Study" (Hamilton et al., 2016) and consisted of
a high-density array of moored instruments over a two-and-
a-half-year period, beginning in April 2009. The observational
array (Figure 1A) collected LC velocity and density structure
over the region where the LC extended northward and, more
importantly, where eddy shedding events occurred most often.
This sensor array consisted of nine tall-moorings, seven short-
moorings, 25 pressure-equipped inverted echo sounders (PIES),
and remote sensors. Each of the nine tall-moorings recorded
water velocities using an upward facing 75 kHz acoustic Doppler
current profiler (ADCP) deployed at an approximate depth of
450 m. Additionally, point current meters were attached to each
tall mooring at five depths ranging from around 600 to 3,000 m.
Collectively, these instruments provided high resolution water
velocity data from about 60 to 440 m depths and at much
lower resolution below this. Each of the seven short-moorings
provided near bottom water velocity data using a single point
current sensor deployed 100 m above the sea floor. PIES sensors
measured both pressure and acoustic round trip travel times
from the sea floor to the sea surface. Vertical profiles of density,
salinity, and temperature were created from these data. The PIES
pressure records were also combined with estimated horizontal
density gradients to calculate geostrophic water velocities. The
complete procedure for producing these mapped velocity fields
was described in Donohue et al. (2016b) and Hamilton et al.
(2016).

The utilized dataset, summarized in Table 1, contains velocity
data gathered from April 2009 to June 2011. The southwest edge
of this array was just to the US side of the exclusive economic
zone (EEZ) from 25◦50.2′N; 88◦24.5′W to 24◦59.2′N; 85◦56.8′W,
with the northeast edge of this array ∼160 km to the US side
of the EEZ. The horizontal separation between moorings was
around 50−80 km and between the PIES sensors was around 40−
50 km. Sampling frequency from themultiple sensors varied from
minutes to hours. In this study, we utilize a time series which was
processed with a fourth order Butterworth filter and sub-sampled
at 12-h intervals. Consequently, the dataset contains a total of
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FIGURE 1 | (A) Locations of moorings and PIES deployed in the U.S. and Mexican sectors in the eastern Gulf of Mexico (Hamilton et al., 2016). (B) Visualization of a

time slice Xt at 10 (×20 m) depth intervals.

TABLE 1 | Statistics of ocean current dataset.

Time

range

Sampling

rate

Spatial

range

Dimensions

Depth Length Width Channel Steps (T)

April

2009

to

June

2011

12 h 25◦50.2′N,

88◦24.5′W

to

24◦59.2′N,

85◦56.8′W

30 (D) 29 (H) 36 (W) 2 (C) 1810 (T)

1,810 records, covering 905 days. At each time step t, as shown
in Figure 1B, the data Xt were formatted as Xt ⊆ R

D×H×W×C,
where each dimension represents Depth (30), Longitude (29),
Latitude (36), and Channel (2), respectively. Channel stands for
the geostrophic velocity vector (u, v). The first 80% (June 2009 to
December 2010) of the dataset was reserved for training and the
remaining 20% (January 2011 to June 2011) for prediction and
validation (Shi et al., 2010).

4.2. Data Preprocessing
Empirical Orthogonal Function (EOF) analysis has been
extensively used in oceanic and atmospheric sciences. In
addition to its ability to decompose a time series into its
temporal and spatial components, EOF can drastically reduce the
dimension while preserving data integrity. Considering the non-
linear dynamics and high dimension characteristics of oceanic
phenomena in this work, the EOF analysis is employed to
represent spatial patterns (EOFs) and temporal components
(Principal Components, PCs) of the LCS in the GoM region.
Specifically, the EOF analysis was conducted to extract the PCs
of zonal and meridional velocity of ocean current. The PCs
may contain otherwise hidden and medium-term uncorrelated

patterns (Navarra and Simoncini, 2010). Further, PCs are used to
train the PITT-ConvLSTM prediction model, with details given
in section 5.

Singular Value Decomposition (SVD) is a mathematical tool
to determine both the EOFs and PCs simultaneously. For the
convenience of ocean modeling, the ocean is sliced into layers
in the depth direction. Here, SVD is applied to each depth slice
S to obtain two unitary orthogonal matrices (U and V) and
one diagonal eigenvalue matrix 6. Consequently, U6 represents
the temporal PCs and VT the spatial EOFs. Thus, S can be
represented as:

S = U6VT

↔






s1,1 · · · s1,m
...

. . .
...

sn,1 · · · sn,m






︸ ︷︷ ︸

S

=






p1,1 · · · p1,m
...

. . .
...

pn,1 · · · pn,m






︸ ︷︷ ︸

PCs






e1,1 · · · e1,m
...

. . .
...

em,1 · · · em,m






︸ ︷︷ ︸

EOFs

(1)

After the EOF analysis, we concatenate the flattened PCs
along the depth dimension. In this way, the raw data X ⊆
R
T×D×H×W×C is compressed to X ′ ⊆ R

T×D×P×C, where P is
the number of selected elements in PCs (we utilized the first 50
PCs that contained over 95% of the energy). The 3D volume
sequence prediction {X (t)}Tt=1, in consequence, is compressed

to a 2D matrix sequence prediction {X ′(t)}Tt=1. Each row of the

2D matrix X ′(t)(i, :) (flattened PCs) represents a depth slice of
the original 3D volume X (t)(i, :, :). The model in section 5 will
be trained to predict future PCs, which could also be used to
reconstruct predicted 3D volume by simply multiplying them by
the known EOFs (constant) as shown in Equation (1).
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FIGURE 2 | Schematic of ϕ{T ,H} within the PITT-ConvLSTM cell.

FIGURE 3 | Illustration of the recurrent network architecture of 12-layer.

5. METHOD

5.1. Method Overview
Convolutional LSTM network (ConvLSTM), a basic building
block for sequence-to-sequence prediction, demonstrated
promising performance in video forecasting. In ConvLSTM,
the spatial information is encoded explicitly as tensors in
the LSTM cells, where each cell is a first-order Markovian
model (i.e., the hidden states are updated based on their
adjacent step). Since ConvLSTM is successful in modeling
complex behaviors and extracting abstract features through
real-world data (Xingjian et al., 2015), it is natural to explore
how such a predictive model can be used to solve practical
problems in geo-spatiotemporal modeling domains with
higher-order dynamics.

In this paper, we propose a novel model Physics-
informed Tensor-train ConvLSTM (PITT-ConvLSTM),
a ConvLSTM network under physics constraints. The
ConvLSTM is integrated with convolutional tensor-
train to model higher-order spatiotemporal correlations
explicitly, with its hidden states incorporated with
prior physics. The proposed model is illustrated in
Figures 2, 3.

5.2. ConvLSTM With Convolutional
Tensor-Train Decomposition
Different from the conventional LSTM, the ConvLSTM
introduces convolution tensor operation into input-to-state and
state-to-state transitions within each recurrent cell (Xingjian
et al., 2015). In ConvLSTM, all features are encoded as third-
order tensors with dimensions (H × W × C). At each time step
t, a ConvLSTM cell updates its hidden states H(t) based on the
previousH(t−1) and the current input X (t):

[

I
(t),F (t), C̃(t),O(t)

]

= σ

(

Winput ∗ X
(t) + Thidden ∗H

(t−1)
)

(2)
where σ (·) applies sigmoid on the input gate I(t), forget gate
F (t), and output gate O(t), and tanh(·) on memory cell C̃(t).
The I(t),F (t),O(t), C̃(t) ⊆ R

H×W×C, and the parameters are
characterized by two 4th order tensorsWinput ⊆ R

K×K×S×4C and
Thidden ⊆ R

K×K×C×4C, whereK is the kernel size, and S andC are
the numbers of channels of X andH separately.

To capture multi-steps spatiotemporal correlations in
ConvLSTM, we introduce a higher-order recurrent unit, where
the hidden state H(t) is updated based on the current input
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FIGURE 4 | The tensor diagrams of convolutional tensor-train (Su et al., 2020) for spatial-temporal modeling. U1 is first interacted with T 1, then the resulting

intermediate tensor is further interacted with T 2 and U2. The process repeats until all tensors are merged into one.

X (t) and its n previous steps
{

H(t−l)
}n

l=1
with an m-order

convolutional tensor-train decomposition ϕ(
{

T (l)
}m

l=1
, ·)

as follows:
{

H̃
(t,o)

}

= f
(

J
(o),K(o),

{

H
(t−l)

}n

l=1

)

,∀o ⊆ [m] (3)

[

I
(t),F (t), C̃(t),O(t)

]

= σ

(

Winput ∗ X
(t) + ϕ

{{

T
(o)

}m

o=1
,

{

H̃
(t,o)

}m

o=1

})

(4)

where them-order convolutional tensor-train ϕ(
{

T (l)
}m

l=1
, ·) are

parameterized by m core tensors
{

T (l)
}m

l=1
. Considering the

consistency constraint, the previous n steps are mapped into m
intermediate tensors H̃(t,o) by f (J ,K, ·) in Equation (3) at first,
whereK andJ are 3D convolutional kernels. Note that f (J ,K, ·)
is a mapping function with dynamic physics constraints, which
will be discussed in section 5.3.

The convolutional tensor-train decomposition, first proposed
by Su et al. (2020), is a counterpart of tensor-train decomposition
(TTD) which aims to represent a higher-order tensor T ⊆
R
I1×···×Im in a set of smaller and lower-order core tensors

{T (l)}m
l=1

with T (l) ⊆ R
Il×Rl×Rl−1 . The ranks {R(l)}m

l=1
here

control the number of parameters in the tensor-train format.
In this way, the original T of size

∏m
l=1 Il is compressed to

∑m
l=1 IlRl−1Rl, i.e., the complexity only grows linearly with the

order m (assuming Rl’s are constants). Similar to TTD, ϕ is
designed to significantly reduce both parameters and operations
of higher-order spatio-temporal recurrent models by factorizing
a large convolutional kernel into a chain of smaller kernels.
The details of convolutional tensor-train decomposition T =
CT T D

{

T (l)
}m

l=1
is formulated as:

T:,r1 ,rm+1 ,

R2∑

r2=1

· · ·
Rm∑

rm=1

T:,r1 ,r2 ∗ · · · ∗ T
m
:,rm,rm+1

(5)

and the convolutional tensor-train for spatiotemporal
modeling (Figure 4) can be equivalently
stated as:

V
l+1
:,rl+1

=
Rl∑

rl=1

T
l
:,rl ,rl+1

∗ (V l
:,rl

+ U
l
:,rl
) (6)

where U is the input feature corresponding to H̃.
{

V l
}m

l=1
are

intermediate results, in which V l ⊆ R
H×W×Rl for l > 1, and

V1 ⊆ R
H×W×Rm is initialized as all zeros and final prediction is

returned as V = Vm+1.
Proof of Equation (6) The concrete mathematical expression

of convolutional tensor-train decomposition CT T D

{

T (l)
}m

l=1
is formulated in Equation (5) and illustrated in Figure 4.
Consider a model that predicts a feature V ∈ R

Im×Rm+1

based on inputs U . Rl is the number of channel in U l. The
proof is inspired by the work of Su et al. (2020). Since V1

is initialized as an all zero tensor, the Equation (6) can be
rewritten as:

V:,rm+1 (7a)

=
m

∑

l=1

Rl∑

rl=1

CT T D
(

{T }mt=l

)

:,rl ,rm+1
∗ U

l
:,rl

+
R1∑

rl=1

CT T D
(

{T }mt=1

)

:,r1 ,rm+1
∗ V

1
:,r1

(7b)

=
m

∑

l=2

Rl∑

rl=1

CT T D
(

{T }mt=l

)

:,rl ,rm+1
∗ U

l
:,rl

+
R1∑

rl=1

CT T D
(

{T }mt=1

)

:,r1 ,rm+1
∗

(

U
1
:,r1

+ V
1
:,r1

)

(7c)
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where,

R1∑

rl=1

CT T D
(

{T }mt=1

)

:,r1 ,rm+1
∗

(

U
1
:,r1

+ V
1
:,r1

)

(8a)

=
R1∑

r1=1





R2∑

r2=1

· · ·
Rm∑

rm=1

T
1
:,r1,r2

∗ · · · ∗ T
m
:,rm,rm+1





∗
(

U
1
:,r1

+ V
1
:,r1

)

(8b)

=
R2∑

r2=1





R3∑

r3=1

· · ·
Rm∑

rm=1

T
1
:,r2,r3
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R2∑
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∗ V

2
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(8d)

and by plugging Equation (8d) into Equation (7c), we reduce
Equation (7c) back to the form of Equation (6), which completes
the induction:

V:,rm+1 =
m

∑

l=2

Rl∑

rl=1

CT T D
(

{T }mt=l

)

:,rl ,rm+1

∗ U
l
:,rl

+
R2∑

r2=1

CT T D
(

{T }m−1
l=2

)

:,r2,rm+1
∗ V

2
:,r2

(9)

5.3. Physics Constraints
In this section, we provide how the law of physics that describes
the physical processes (e.g., the LCS) can be incorporated into the
deep learning framework.

5.3.1. Physics Equations

Physical processes are often modeled by a set of nonlinear
partial differential equations (PDEs), which describe how a
physical quantity is changed in a given region over time. Such
dynamic equations are usually written as a relation between time
derivatives and spatial derivatives such as:

P
∑

i=1

bi(u, t)
∂ iu

∂ti
=

Q
∑

i=1

ci(u, x)
∂ iu

∂xi
(10)

where u is a physical quantity, say, velocity, and x is its spatial
coordinate. Furthermore, coefficients bi, ci are functions of u and
x. Finally, P and Q denote the highest order of time derivatives
and spatial derivatives, respectively.

There are multiple ways to incorporate the law of physics
into deep neural networks. In this paper, inspired by Seo
and Liu (2019), we modeled the law of physics by replacing
the updating functions in neural networks with corresponding
operators. Considering the characteristics of ocean current,
we adopt two dynamic equations, i.e., the diffusion equation
and the wave equation, shown in Table 2. The diffusion

TABLE 2 | Ocean current related dynamic equations.

Updating function Dynamic equation

v′i = vi + α(△v)i Diffusion: u̇ = α ▽2 u

v′′i = 2v′i − vi + c2(△v′)i Wave: ü = c2 ▽2 u

equation describes the behavior of continuous physical quantities
(macroscopic behavior of many micro-particles in Brownian
motion or turbulence in oceanic flows) resulting from the
random movement. The wave equation is a second-order PDE
for the description of waves (e.g., water, sound, or seismic waves),
which are present in the current signal of the LCS through the
propagation of wide range of perturbations (Donohue et al.,
2016a,b).

As an illustrative example, let us consider time derivatives of
the following liner wave equation:

∂2u(x, t)

∂t2
= c2

∂2u(x, t)

∂x2
(11)

A discrete analog of this equation is usually considered in
the form of a second order finite difference equation, which
is consistent with the updating function v′′i − 2v′i + vi in
Table 2. In the continualization method (Tarasov, 2017), it is
assumed that the continuous displacement u(x, t) equals the
lattice displacement un(t) at particle n by un(t) = u(nh, t), where
the particle spacing is denoted by h. Thus, Equation (11) can then
be written as:

∂2un(t)

∂t2
= c2

h2

(

un+1(t)− 2un(t)+ un−1(t).
)

(12)

This can be shown as follows. Applying the Fourier series

transform f̂ (k) =
∑+∞

n=−∞ f [n]e−iknh = Fh,1{f [n]} to Equation
(12) gives:

∂2ûn(k, t)

∂t2
= −2c2

h2

+∞
∑

m=1

(−1)m

(2m)!
(kh)2mû(k, t) (13)

and applying the inverse Fourier integral transform f (x) =
1
2π

∫ +∞
−∞ dkf̂ (k)eikx = F−1{f̂ (k)} to the latter gives:

∂2u(x, t)

∂t2
= 2c2

h2

+∞
∑

m=1

(h)2m

(2m)!

∂2mu(x, t)

∂x2m
(14)

Equation (14) becomes the wave Equation (11) in the limit h →
0, since,

lim
h→0

2

h2

+∞
∑

m=1

(h)2m

(2m)!

∂2mu(x, t)

∂x2m
= ∂2u(x, t)

∂x2
(15)

As a result, the discrete Equation (12) can be considered as an
approximation of the wave Equation (11).
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5.3.2. Physics-Informed Learning

In Equation (3), a sliding window strategy was adopted. As
shown in Figure 2, sliding subsets of {Hl} were concatenated
and then transformed into m (i.e., the number of core tensors
in ϕ) intermediate hidden tensors {H(t,o)}. The concrete process
is as follows:

H
(t,o) = K

o ∗
[

H
(t−n+m−l); · · · ;H(t−l)

]

(16)

where n is the sliding window size. The {H}n
l=1

were
first concatenated into m tensors {Hcat}ml=1

(Hcat ⊆
R
H×W×(n−m+1)×C) along the time axis, which were thereafter

mapped to H(t,o) ⊆ R
H×W×R by the 3D convolutional kernel

Ko ⊆ R
K×K×(n−m+1)×R. Then, the intermediate hidden tensor

{H(t,o)} was updated to {H̃(t,o)} with physics constraints.
It is hardly practical to simulate a complicated real-world

system with the operators alone unless all physics equations
governing the observed phenomena are explicitly known. To
date, the LCS is not fully understood, making it almost infeasible
to employ all related fluid equations to model the LC and its
eddies. Consequently, it is necessary to utilize the learn-able
parameters in neural networks to extract latent representations
H in LC observations, which is then further incorporated
with domain physics (i.e., constrained by physics equations).
The physics-informed part within each PITT-ConvLSTM cell is
shown in Algorithm 1.

Finally, the sequentially updated intermediate hidden tensors
were transformed to the output space by convolutional tensor-
train decomposition described in section 5.2. It is notable that the
law of physics is not directly constrained by the raw observations,
but rather by the latent representations (i.e., the hidden states
of the ConvLSTM in this work). This is a desired configuration
considering the difficulty in identifying which observations
are following the law of physics explicitly and how much in
accordance. Consequently, instead of individually applying the
equation to each observation, we found that it is more efficient to
introduce the constraints on the latent representations.

Specifically, as illustrated in Figure 2, J is the learn-able
parameter vector while the orange blocks (“Physics Equations”)
are objective functions related to physics constraints. First, we
defined the physics constraints between the previous and updated
states based on the known/assumed knowledge as:

L
(t,o)
dp

= g
(

H
(t,o), H̃(t,o)

)

(17)

where g is case-specific. In particular, if we are aware/assume that
the observations should have a diffusive property, the diffusion
equation can be used as the physics-informed constraint as:

gdif =
∥
∥v′ − v− α ▽2 v

∥
∥
2

(18)

where v (or v′) is the corresponding element ofH (or H̃). Finally,
the physics-informed objective function of the total sequence is
defined as:

Ldp =
T

∑

t

m
∑

o=1

g
(

H
(t,o), H̃(t,o)

)

(19)

Algorithm 1: Intermediate Hidden Tensor Updating with
Physics Constraints

Input : Hidden tensor {H(t,o)}mo=0

Output: Updated hidden tensor {H̃(t,o)}mo=0, physics loss Ldp

Initialize

Physics equation pde= wave (or diffusion);

Convolutional Kernel J (o);
Initial statesHinit ;
Coefficient coef ;

Time derivatives 1t = [ ]; Spatial derivatives 1x = [ ];
Current statesHcur = Hinit ; Previous statesHpre = None;
Physics loss Ldp = [ ];

forH(t,o) in {H(t,o)}mo=0 do

Hnext = J ∗
[

H(t,o)
⊕

Hcurr

]

;

if pde= wave then
1t = Hnext − 2Hcur +Hprev;

else
1t = Hnext −Hcur ;

end

1x = −coef ·
[

▽2Hcur

]

;
Hpre = Hcur ;
Hcur = Hnext ;

H̃(t,o) = Hcur ;

Ldp.append
(

(1t − 1x)2
)

;

end

and the overall objective function is the sum of the supervised
loss and physical loss:

L = L1 + L2 + λLdp (20)

whereL1 is themean absolute error,L2 is themean squared error,
and λ controls the importance of the physics term.

6. RESULTS AND DISCUSSION

6.1. Model Implementation
All experiments, shown in Figure 3, used a stack of 4 blocks (3
stacked layers of TT-ConvLSTM or PITT-ConvLSTM per block)
and two skip connections added between the 1st and 3rd, 2rd
and 4th blocks that perform concatenation over channels (Byeon
et al., 2018). The channels are set to 32 for the 1st and 4th blocks
and 48 for the middle blocks. A convolutional layer is applied on
top of all the recurrent layers to compute the predicted frames.
The PITT-ConvLSTM is of order 3, sliding window step size 3,
rank 8 (the hyper-parameter tuning is based on the validation
dataset. we considered an order of the decomposition from [1, 2,
3, 5], tensor ranks from [4, 8, 16] and number of hidden states
in sliding window from [1, 3, 5] Su et al., 2020). All models
were trained with the ADAM optimizer (Kingma and Ba, 2014)
with objective function in Equation (20). Once the model did not
improve after 20 epochs (in terms of validation loss), scheduled
sampling (Bengio et al., 2015) was then activated to ease the
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TABLE 3 | Comparisons of 10, 20, and 30 time-steps prediction (equal to 5, 10, and 15 days ahead forecast), where lower MSE (in 10−3 magnitude) or higher SSIM

indicates better model performance.

Methods 10 → 10 10 → 20 10 → 30
Parms

MSE SSIM MSE SSIM MSE SSIM

ConvLSTM (Xingjian et al., 2015) 9.257 0.623 18.584 0.465 26.725 0.374 4.94 m

PredRNN (Wang et al., 2017) 8.752 0.648 19.229 0.490 27.512 0.351 8.84 m

TT-ConvLSTM (Su et al., 2020) 8.575 0.656 17.445 0.498 23.802 0.420 0.97 m

PITT-ConvLSTM (diffusion) 7.429 0.686 15.835 0.527 22.426 0.439 0.99 m

PITT-ConvLSTM (wave) 6.971 0.687 14.097 0.543 19.638 0.463 0.99 m

FIGURE 5 | Frame-wise comparison in MSE (×m.s−1 × 10−3), Standard deviation of MSE (×m.s−1 × 10−2), and SSIM.

training with linearly decreased sampling ratio from 1 to 0.
Learning rate decay was further activated if the loss did not drop
after 20 epochs, and the rate was decreased exponentially by 0.98
every 5 epochs. The initial learning rate is set to 10−4. All models
were trained to predict 10, 20, 30 frames given 10 input frames,
where we use the teacher forcing mechanism (Su et al., 2020;
Zhuang and Ibrahim, 2021), when a step is within the number of
input steps, it’s direct multi-step forecast strategy, when the step
exceeds the number of input steps, it adopts recursive multi-step
forecast strategy. These baseline models are listed below:

1. ConvLSTM is first proposed by Xingjian et al. (2015) for
precipitation nowcasting by extending the fully connected
LSTM (FC-LSTM) to have convolutional structures in both
the input-to-state and state-to-state transitions. The spatio-
temporal information is encoded in each cell.

2. PredRNN proposed in Wang et al. (2017), is a recurrent
network for spatiotemporal predictive learning. The core
of PredRNN is a new Spatio-temporal LSTM unit that
extracts and memorizes spatial and temporal representations
simultaneously.

3. TT-ConvLSTM in Su et al. (2020) is a higher-order
generalization to ConvLSTM, which is able to learn long-term
spatio-temporal structure in videos.

6.2. Results
Two metrics were adopted to evaluate the performance and
provide frame-wise quantitative comparisons. Specifically, the
mean squared error (MSE) was used for element-wise differences,
while the structural similarity indexmeasure (SSIM) (Wang et al.,

2004), which ranges between –1 and 1, was used for perceptual
similarity. Here, we report the averaged MSE and SSIM over 10,
20, 30 predict horizons.

The average evaluation statistics, i.e., MSE and SSIM scores,
over 10, 20, and 30 frames prediction is given in Table 3. Figure 5
shows the comparisons of the predictions by ConvLSTM,
PredRNN, TT-ConvLSTM and proposed PITT-ConvLSTM
informed by wave and diffusion equations. The ConvLSTM
model generates blurred future frames (lowest SSIM), since it
fails to memorize the detailed spatial representations. The reason
lies in that the ConvLSTM is a first-order Morkovian model
in nature, which means the hidden state is updated based on
its previous step. Thus, it can not efficiently capture higher-
order temporal correlations. ConvLSTM is more effective in
short-term forecasting, focusing on next or first few frames
prediction. By contrast, as shown in Table 3 the methods
using convolutional tensor-train decomposition, TT-ConvLSTM
and PITT-ConvLSTM, achieve better performance in long-term
prediction with fewer parameters.

The proposed PITT-ConvLSTM models showed superior
skills for both measures over the other models. It validates
that the convolutional tensor-train, combined with physics
constraints, is capable of modeling higher-order spatio-temporal
correlations. The results showed how the physics constraints
helped improve the volumetric velocity prediction of the LCS.
Among the convolutional tensor-train decomposition (CCTD)
based models, PITT-ConvLSTM realized the smallest MSEs and
highest SSIMs. It validates the effectiveness of incorporating
physical rules in latent representation learning, since knowing
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FIGURE 6 | Left: The visualization of LCS prediction in 2D space. Every 10 (×12 h) steps ahead prediction with every 10 (×20 m) depth slices for each model are

illustrated. The color map indicates log-based LC velocity magnitude, i.e., lg
√
u2 + v2. Right: The visualization of ground truth LCS in 3D space.

physics-constrained neighboring information is helpful to infer
its own states. Specifically, the wave-informed PITT-ConvLSTM
consistently outperformed all baseline models and showed a
superior predicting capability both spatially and temporally. The
LC prediction comparison among ConvLSTM, PredRNN, and
TT-ConvLSTM is visualized in Figure 6.

7. CONCLUSION

Understanding the dynamics of the LCS is fundamental to
understanding the Gulf of Mexico’s full oceanographic system,
and vice versa. Hurricane intensity, offshore safety, oil spill
response, fisheries, and the Gulf Coast economy are all affected
by the position, strength, and structure of the LC and associated
eddies. The LC’s position varies greatly from its retracted state
in the Yucatan Channel, directly east of the Florida Straits, to
its extended state into the far northern and western Gulf. Of
particular interest to the modeling community is the prediction
of the velocity field and the duration of the LC circulation at a
given location.

In this paper, we proposed a physics-informed tensor-train
ConvLSTM that is capable of effectively capturing long-term
spatiotemporal correlations in a temporal sequence of volumetric

data. Within the PITT-ConvLSTM cell, a large convolutional
kernel was factorized into a set of smaller core tensors through
convolutional tensor-train decomposition. In the learnt latent
space, physical domain knowledge in the form of PDEs over
time and space were incorporated to facilitate learning. The
performance of our proposed PITT-ConvLSTM model was
demonstrated on volumetric velocity forecasting of the LCS in
the GoM, and the results verified that our model can produce
superior results compared to published state-of-the-art deep
learning models, including ConvLSTM, PredRNN, and TT-
ConvLSTM. The results of this study suggest that it is now
possible to create reliable current forecasts for a period longer
than 5 days. The MSE of the PITT-ConvLSTM was less than
0.03(m.s−1) 15 days ahead, which is a significant improvement
over the current state of the art ocean numerical models
(Cooper et al., 2016). Note that although the proposed model
is a sequence-to-sequence prediction, a sequence of arbitrary
length can be generated in a recursive manner. In a future
study, we aim to design an effective prediction model that can
capture simultaneously both fast changing local patterns and
slow varying global trends. Furthermore, as suggested in Zhang
et al. (2018), multiple complex factors should be considered or
integrated in modeling, including spatial correlation (nearby and
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distant), various types of temporal correlation (closeness, period,
trend), and external conditions (e.g., weather).
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