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This paper uses Long Short Term Memory Recurrent Neural Networks to extract

information from the intraday high-frequency returns to forecast daily volatility. Applied to

the IBM stock, we find significant improvements in the forecasting performance of models

that use this extracted information compared to the forecasts of models that omit the

extracted information and some of the most popular alternative models. Furthermore, we

find that extracting the information through Long Short Term Memory Recurrent Neural

Networks is superior to two Mixed Data Sampling alternatives.
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1. INTRODUCTION

The volatility, the time-varying centered second moment of a financial asset, is crucial to measure,
forecast, and evaluate financial risk. There exist many ways of modeling and forecasting volatility
separable into two main groups: Models based on (squared) daily returns and models based
on the Realized Volatility (RV) estimator. In the first group, volatility is treated as a latent
variable and estimated from the model. Famous examples in this regard are, on the one hand,
(G)ARCHmodels (Engle, 1982; Bollerslev, 1986) and their various extensions that treat volatility as
conditionally observable. On the other hand, Stochastic Volatility models (Taylor, 1986; Ruiz, 1994)
treat conditional volatility as random variables and rely on filtering techniques for estimation and
forecasting. While the vast models in this group capture stylized properties of financial data such as
volatility clustering, long-memory, and asymmetric reactions of volatility to positive and negative
shocks, they generally perform worse in forecasting volatility compared to the models of the second
group (Andersen et al., 2004; Sizova, 2011).

The availability of high-frequency (HF), intraday returns and the introduction of RV as an
estimator of integrated volatility over a day (Andersen et al., 2001a,b; Barndorff-Nielsen and
Shephard, 2002a,b) lead to the second group of models. Since the RV ex-post gives a consistent
volatility estimate, the main focus of models in the second group is forecasting. Andersen et al.
(2001a,b), and Barndorff-Nielsen and Shephard (2002a) find that RV and the logarithm of RV
exhibit long memory. Their autocorrelation functions show a hyperbolic decay, meaning that
past shocks have a very long influence on the system of RV. Therefore, the authors propose
forecasting volatility via fractional integrated autoregressive moving average (ARFIMA) models
to account for the long memory. The most prominent alternative to ARFIMA models for
forecasting volatility based on RV is the Heterogeneous Autoregressive Model (HAR) by Corsi
(2009). The HAR model approximates the long memory in the data through RV’s daily, weekly,
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and monthly averages. These averages are used in a linear model
as explanatory variables to predict volatility. Corsi (2009) finds
that the HAR model performs better than the ARFIMA models
in forecasting volatility. The HAR model is popular because of
its good performance and ease of implementation (the HAR
can be estimated by simple OLS regression). There exist many
extensions of the HAR model in the literature, such as the HAR
with jumps model of Andersen et al. (2007), the Semivariance
HAR of Patton and Sheppard (2015), or the HARQ of Bollerslev
et al. (2016). However, the standard HAR model, both for the
level and the logarithm of RV, still is a challenging benchmark
to beat in applications on real financial data.

Artificial Neural Networks (ANNs) have become more and
more popular over the last decade, and various fields apply
them for classification, prediction, and modeling tasks. Cybenko
(1989) and Hornik et al. (1989) show the capability of Feed
Forward Neural Networks (FNNs), fully connected ANNs with
one hidden layer, to approximate any continuous function
on a compact set arbitrarily well. Furthermore, Schäfer and
Zimmermann (2006) show that Recurrent Neural Networks
(RNNs) can approximate any open, dynamic system arbitrarily
well. The popularity of ANNs is, on the one hand, due to
these theoretical results. On the other hand, ANNs have been
among the winning algorithms for various classification and
forecasting competitions over the past years. RNNs combine the
ability of ANNs to capture complex non-linear dependencies
in the data with capturing temporal relationships. Long Short
Term Memory (LSTM) RNNs (Hochreiter and Schmidhuber,
1997) are a type of RNN specifically designed to capture long
memory in data. Their capacity to capture non-linear, long-term
dependencies in the data make them the perfect candidates for
modeling volatility.

This paper aims to use LSTMs to non-linearly transform the
HF returns of a financial asset, observed within a day, into a
daily, scalar variable and to use this variable to forecast volatility.
Non-linear transformations of the HF returns are not novel
since the RV estimator (the sum of the squared HF returns
of a day) is also a non-linear transformation, but a particular
one.We investigate whether volatility forecasts solely constructed
from the ANN-based transformation of the HF returns are
different from forecasts obtained through the past RVs. While
the ANN transformation is very flexible in the functional form,
the resulting sequence might not capture the long persistence in
the volatility, as the RV estimator does. However, the flexibility
of the functional form might capture other information that is
useful to predict volatility and that the RV estimator does not
take into account. Examples of such information are the sign of
the HF returns or patterns of HF returns occurring over a day.
We thus combine the two approaches and investigate whether
the resulting model exhibits a superior forecasting performance
compared to the models that rely on each measure alone.

An alternative approach to transforming the HF returns is the
Mixed Data Sampling (MIDAS) approach of Ghysels et al. (2004).
In MIDAS, the transformation happens through a weighted sum
of the HF returns. The weights are obtained non-linearly, e.g.,
by an Almon or a Beta Lag Polynomial (Ghysels et al., 2004).
We introduce a novel type of MIDAS model that obtains those

weights through an LSTM cell. In MIDAS applications, however,
the construction of the transformed HF measure is linear.

Though, as mentioned earlier, the RV estimator is also a
transformation of the HF returns, throughout the paper, we will
use the term transformed HF returns or transformed measure
to refer to the scalar variable obtained through either the ANN
transformation or the MIDAS transformation.

We compare the forecasting performance of models that use
either one of the transformed measures to forecast volatility with
each other and with models that construct the forecasts relying
solely on information from past RV, such as the HAR model.
We can thus answer whether the transformation can extract at
least the same information as the past RV. We further compare
these models’ forecasts with those obtained from models that
combine the RV information with the transformed measures,
allowing us to investigate whether the transformed measures
contain information supplementary to the RV. Lastly, we can
compare the different transformation methods to determine
whether the non-linearity introduced through ANNs performs
differently from the MIDAS approaches.

The remainder of this paper is structured as follows: section
2 gives an overview of the literature in volatility forecasting
with ANNs. Section 3 introduces the LSTM RNN, and section
4 explains the different transformations of the HF returns. It
first describes the non-linear transformation through LSTMs and
then shows the two MIDAS approaches. Section 5 elaborates
on using the transformed HF returns to generate volatility
forecasts. We further introduce the benchmark models to which
we compare our proposed methodology. Finally, we present the
results of our empirical application in section 6, and section
7 concludes.

2. LITERATURE REVIEW

A vast area of finance applies ANNs. For example, White
(1988), among others, uses ANNs to predict stock returns while
Gu et al. (2020) use ANNs for asset pricing and Sadhwani
et al. (2021) apply ANNs for mortgage risk evaluation. ANNs
are further applied to model and forecast financial risk. The
literature in this field reflects the two main branches of volatility
modeling and forecasting mentioned in section 1: models
based on daily (squared) returns and models based on realized
measures estimated from the HF returns. An early contribution
to the literature of volatility modeling and forecasting through
daily squared returns is Donaldson and Kamstra (1997). The
authors introduce a semi nonparametric non-linear GARCH
model based on ANNs and show superior performance to other
GARCH type alternatives. Franke and Diagne (2006) show
that ANNs yield non-parametric estimators of the conditional
variance function of an asset when trained with daily returns
as inputs and squared returns as targets. Their results have
been applied by Giordano et al. (2012) and generalized for
the Multi-Layer-Perceptron (MLP), fully connected ANNs with
multiple hidden layers, by Franke et al. (2019). Arnerić et al.
(2014) exploit the non-linear Autoregressive Moving Average
(ARMA) structure of a Jordan type RNN (Jordan, 1997) and
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the ARMA representation of the GARCH model to introduce
the Jordan GARCH(1,1) model. Their model shows superior
performance in out-of-sample root mean squared error (RMSE).
Alternative approaches use the output of GARCH models,
potentially combined with other explanatory variables, as inputs
to an MLP (see e.g., Hajizadeh et al., 2012; Kristjanpoller et al.,
2014).

The literature on forecasting volatility via ANNs through
realized measures consists of two main fields. The first field
uses ANNs to relax the linearity of the HAR model by feeding
the lagged daily, weekly, and monthly averages of RV to MLPs.
The evidence in this branch is mixed. Rosa et al. (2014) find
improvements in the forecasting performance of the non-linear
HAR model, while Vortelinos (2017) concludes that the ANN
HAR model is not predicting volatility better than the linear
HAR. He argues that the MLP cannot capture the long-term
dependencies in the RV. Baruník and Křehlík (2016) find mixed
evidence of the ANN HAR model for the volatility of energy
market prices. Their ANN-based model produces more accurate
forecasts than the linear model for some forecasting horizons
and some markets. Arnerić et al. (2018) find that an MLP fitted
to the HAR inputs can outperform the linear benchmark. In
addition, they find that including jump measures in the analysis
further improves the forecasting performance. Christensen et al.
(2021) find superior forecasting performance of their MLP
HAR model over the linear HAR. Further, they find that the
model’s performance improves when additional firm-specific
and macroeconomic indicators are added. Li and Tang (2021)
apply an MLP to a large set of variables such as realized and
MIDAS measures and option Implied Variances. They find that
the resulting model outperforms the linear benchmark. The
performance improves further through an ensemble learning
algorithm that combines the outputs of other linear and non-
linear machine learning techniques, such as penalized regression
and random forests, with the output from the ANNmodel.

The second field in the literature utilizes RNNs to capture, in
addition to non-linearity, long-term dependencies in the data.
Miura et al. (2019) examine the volatility of cryptocurrencies
finding that a ridge regression yields the best out of sample
forecasting results, followed by LSTMRNNs. Baştürk et al. (2021)
apply LSTM RNNs to the past measure of RV and the negative
part of past daily returns to jointly forecast the volatility and the
Value at Risk (VaR) of a financial asset. The authors find superior
forecasting performance of the LSTM network for the VaR
forecasts. However, their approach cannot produce improved
volatility forecasts compared to the linear alternatives.

A recent contribution to both branches of this literature
is Bucci (2020), who compares the forecasting performance
of various ANN structures to standard benchmarks from
the financial econometrics literature such as the HAR model
and ARFIMA models. He further investigates how adding
macroeconomic and financial indicators as exogenous
explanatory variables improves the model’s forecasting
performance. The target variable in his analysis is the
monthly log square root of the RV. He finds that the long
memory type ANNs such as the LSTM network outperform the
financial econometrics literature’s classical models. Furthermore,

these models outperform the ANNs that do not account
for long memory in the data. This result holds for various
forecasting horizons.

Finally, Rahimikia and Poon (2020a) and Rahimikia and Poon
(2020b) propose a HARmodel augmented by an ANN applied to
HF limited order book information and news sentiment data. In
both papers, the authors find a superior forecasting performance
of their model compared to the HAR benchmark. Their approach
of augmenting the HARmodel by transformed HF data is similar
to the idea of this paper. In parts of our application, we augment
models for LF measures such as the HAR with transformed HF
information. The difference is that we consider the HF returns
and not other auxiliary HF information. Further, we also consider
models that use only the information from the transformed HF
returns for the forecast.

3. LONG SHORT TERM MEMORY

LSTM RNNs are a specific type of RNN structures that overcome
the problem that classical RNNs face. Specifically, the limited
capacity of such networks to learn long-term relationships due
to vanishing or exponentially increasing gradients (Hochreiter,
1991; Bengio et al., 1994). The cornerstone of LSTMs is the
long memory cell denoted by Cτ . A candidate value of which,
C̃τ is a non-linear transformation (using the hyperbolic tangent
activation function tanh1) of a linear combination of the τ -th
periods’ input vector values vτ and the previous periods’ output
value yτ−1 plus an intercept

C̃τ = tanh(2C[yτ−1, vτ ]+ cC). (1)

Next, the values of the forget fτ and the input iτ gate are
computed. These are obtained by applying the sigmoid activation
function σ (·)2 to a linear combination of the input vector values
vτ and the previous periods’ output value yτ−1 plus an intercept.

fτ = σ (2f [yτ−1, vτ ]+ cf ) (2)

iτ = σ (2i[yτ−1, vτ ]+ ci) (3)

(4)

The memory cell value is computed by

Cτ = fτCτ−1 + iτ C̃τ , (5)

i.e., it combines the previous periods’ cell value and the current
periods’ candidate cell value. Since the sigmoid function returns
values on the interval (0, 1), fτ denotes the share to be “forgotten”
from the previous cell state and iτ the share of the proposal state
to be added to the new cell state. The output of the LSTM cell
yτ is generated by applying the tanh function to the memory
cell values and multiplying the result by the value of the output
gate oτ

yτ = oτψ(Cτ ), (6)

1The hyperbolic tangent function applied to value x is tanh(x) = [exp (x) −
exp (−x)]/[exp (x) + exp (−x)]. It is a sigmoid function rescaled to the interval

(−1, 1).
2The sigmoid function applied to value x is defined as σ (x) = 1/[1− exp (−x)].
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where the latter is obtained in the same manner as the values of
fτ and iτ

oτ = σ (2o[yτ−1, vτ ]+ co). (7)

The output gate gives the share of the activated cell values to
return as the output of the memory cell. LSTM cells thus are
dynamic systemswherein interacting layers drive the hidden state
dynamics. This interaction enables the LSTM cell to account
for a high degree of non-linearity and to capture long-term
dependencies in the data.

4. TRANSFORMATION OF THE
HIGH-FREQUENCY RETURNS

Denote by rt,j the t-th days’ j-th log-return. We have j = 1, . . . ,M
equidistantly sampled returns within day t. The increments
between two intraday returns determine the number of intraday
observations. For returns sampled every 5 minutes within a
normal trading day at the New York Stock Exchange, we obtain
78 intraday high-frequency returns. We will denote the vector
of the intraday returns on day t by rt,1 :M . We aim to apply a
transformation to rt,1 :M that returns a scalar value x̃t(θ

HF) which
we will refer to as the transformed measure. The transformation
depends on parameter vector θHF . We present three different
methods to obtain the transformed measure in the following.

4.1. Non-linear Transformation
The LSTM architecture described earlier can be used for a non-
linear transformation of the HF returns. In its’ simplest form,
we use the sequence of the M intraday returns as input to the
LSTM cell, and the output of the cell at time M, yt,M , as the
transformed value. We thus iterate through the LSTM equations
over the j = 1, . . . ,M intraday returns at day t

C̃t,j = tanh(2C[yt,j−1, rt,j]+ cC) (8)

ft,j = σ (2f [yt,j−1, rt,j]+ cf ) (9)

it,j = σ (2i[yt,j−1, rt,j]+ ci) (10)

Ct,j = ft,jCt,j−1 + it,jC̃t,j (11)

ot,j = σ (2o[yt,j−1, rt,j]+ co) (12)

yt,j = ot,jψ(Ct,j), (13)

and set x̃t(θ
HF) = yt,M , where θHF contains the LSTM cell

weights and intercepts. Through the interaction of the three gates
and the non-linear activation of the proposal state and the actual
state, the LSTM cell allows for a high degree of non-linearity
while also capturing long memory in the data. Both the cell input
(rt,j) and output (yt,j) at within day lag j are scalars. The parameter
vector θHF of the model using one LSTM cell thus contains 12
parameters: Four 2 × 1 weight vectors and four intercepts. To
increase the degree of non-linearity, we further use a network that
consists of one hidden layer of LSTM cells and use the outputs of
these cells as inputs to another LSTM cell returning a scalar value.

4.2. MIDAS Transformations
Denote by ωj(θ

HF) the weights associated with the j-th intraday
return on day t. The weights are determined by the elements of

θHF . While the weights may be obtained in a non-linear manner,
the resulting transformed measure

x̃t(θ
HF) =

M∑

j=1

wj(θ
HF)rt,j (14)

is a weighted sum and thus linear.
In a Beta Lag MIDAS model (labeled Beta MIDAS hereafter),

the weight associated with the j-th lag is obtained by

ωj(ϕ1,ϕ2) =
B

(
j
M ,ϕ1,ϕ2

)

M∑
j=1

B
(

j
M ,ϕ1,ϕ2

) (15)

where B(· j
M ,ϕ1,ϕ2) is the probability density function (pdf) of

the Beta distribution. In this case, the parameter vector θHF =
(ϕ1,ϕ2)

′ contains the Beta distribution parameters. While only
depending on two parameters, the weights obtained from the
normalized Beta pdf are capable to capture complex non-linear
functional forms.

An alternative way to obtain the weights associated with the
j-th observation is to use the lag values as inputs to an LSTM
cell. In this case, the input to the LSTM cell is rj = j with
j = 1, 2, . . . ,M. The corresponding output (yj) lies on the interval
between (−1, 1). Note that in this case, rj and yj do not depend
on t since they only vary within the day but not over the days.
To transform the output at within day lag j (yj) into a weight, we
apply the exponential function and normalize the values, i.e.,

wj =
exp (yj)

M∑
j=1

exp (yj)

, (16)

yielding weights that lie in the interval (0, 1) and sum up to one.
This transformation is similar to the Beta MIDAS, where the Beta
pdf values associated with j/M are normalized such that they sum
up to one. Same as above, the parameter vector θHF of the LSTM
MIDAS model contains 12 parameters.

5. VOLATILITY FORECASTING

This paper aims to forecast the daily volatility of a financial asset.
Consider the price process of a financial asset Pt , determined by
the stochastic differential equation

d ln (Pt) = µtdt + σtdWt (17)

where µt and σt denote the drift and the instantaneous or spot
volatility process, respectively, and Wt is a standard Brownian
motion. The integrated variance from day t − 1 to t is then
defined as

IVt =
t∫

t−1

σ 2
s ds. (18)
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The integrated variance yields a direct measure of the discrete
time return volatility (Andersen et al., 2004), but the series
is latent, and we can not observe it directly. However, we
can estimate the integrated variance ex-post through the RV
estimator defined as

RVt =
M∑

j=1

r2t,j, (19)

i.e., the sum of the M squared intraday HF returns. Our goal
is to assess how the information obtained from applying the
different transformations of the HF returns explained earlier
helps predict one step ahead volatility. To answer this, we
consider different scenarios.

First, we vary the input variables used to predict volatility,
considering three different settings. We start by combining the
transformed measure x̃t (for readability, we omit the dependence
of the transformed measure on θHF from here on) with past
information on the RV. Next, we assess how this combination
fares compared to using each stream of information on itself, i.e.,
using only the information obtained from the transformation and
using only the past information on RV. Finally, when using the
information on the transformed measure, we again differentiate
between two settings: In the first, we only use the most recent
(the past days) value of the transformed measure. In the second,
we account for dynamics in the transformed measure and use the
values of multiple past days. The contributions of Andersen et al.
(2001a) and Andersen et al. (2001b) as well as models like the
HAR and the work by, e.g., Audrino and Knaus (2016), show that
it is necessary to account for the long memory in the volatility. In
the setting where we use multiple past values of the transformed
measure, we therefore apply an LSTM cell to the sequence of
transformed measures. This means that for τ = 1, . . . , t, we
iterate over

C̃τ = tanh(2C[yτ−1, x̃τ ]+ cC) (20)

fτ = σ (2f [yτ−1, x̃τ ]+ cf ) (21)

iτ = σ (2i[yτ−1, x̃τ ]+ ci) (22)

Cτ = fτCτ−1 + iτ C̃τ (23)

oτ = σ (2o[yτ−1, x̃τ ]+ co) (24)

yτ = oτψ(Cτ ). (25)

and set ỹt(θ̃
LF) = yt , where θ̃

LF contains the corresponding
LSTM cell weights and intercepts. Using an LSTM cell
circumvents the problem of lag order selection through either
information criteria or shrinkage methods. The LSTM cell
takes into account the whole sequence of x̃1 : t by storing the
necessary information in the memory cell. Figure 1 depicts the
underlying idea.

We then linearly combine the output ỹt (for readability, we
omit the dependence of ỹt on θ̃

LF from here on) with the other
LF measures under consideration. This results in the following,
case dependent, transformed HF information input variable

νHFt =
{
x̃t only recent HF information

ỹt all HF information.
(26)

FIGURE 1 | Method depicted. The HF returns are transformed in the vertical

direction, meaning that for each day 1, . . . , t the same type of transformation is

applied to the HF returns of that day. The result is a sequence of τ=1, . . . , t

transformed measures x̃τ to which an LSTM cell is horizontally applied.

We consider two settings, where we linearly combine the
information from the past RV with that of the transformed HF
returns and add an intercept. Herein, in resemblance to the
classical HARmodel, we first use past, daily, weekly, andmonthly
averages of the natural logarithm of RV (referred to as log RV
hereafter). Denote the logarithm of RV at day t by lnRV t i.e.,

lnRV t = ln (RVt). (27)

Weekly and monthly averages of log RV are then defined by

lnRV
w

t = 1

5

5∑

i=1

lnRV t−(i−1) (28)

and

lnRV
m

t = 1

22

22∑

i=1

lnRV t−(i−1). (29)

Second, we use the output of an LSTM cell applied to the
sequence of the past log RVs.

This results in the, case dependent, low frequency information
input variable νLFt and

νLFt =
{
(lnRV t , lnRV

w

t , lnRV
m

t )
′

LSTM(lnRV1 : t , θ
LF)

. (30)

The HAR model is the most commonly used benchmark in
volatility forecasting. However, its’ implicit lag order selection
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(it is a restricted AR(22) model) is not necessarily validated in
real data applications (Audrino and Knaus, 2016). As mentioned
earlier, we circumvent the trouble of lag order selection since
we apply an LSTM cell to the LF inputs. The LSTM cell can
capture the long-term dynamics. Alternatively, one could fit an
autoregressive model of order p on the RV, add the lags of
the transformed measure as additional explanatory variables,
and perform lag order selection via Information Criteria or
shrinkage methods. However, we leave these two alternatives for
further research.

We take the exponential of these linear combinations to
guarantee the positiveness of the generated forecast. The output
of the model thus is generated by

yt(θ) = exp
(
c+ (νLFt )′βLF + βHFνHFt

)
(31)

where θ is a vector collecting all parameters. βLF contains
either the parameters associated with the daily, weekly, and
monthly averages of log RV or the parameters associated with
the output of the LSTM cell applied to the sequence of log RV.
βHF is the parameter of the scalar measure obtained from the
transformation of the HF returns, and c is an intercept. The
model that only uses the transformed HF returns for the forecast
corresponds to restricting βLF = 0. This comparison allows for
a very detailed analysis of the source of potential gains in the
forecasting performance:

1. We can assess whether there are significant differences in
the forecasting performances of the models that only use the
transformed measure as inputs to those that combine them
with the LF variables. It is thus possible to inspect whether
or not the sequence of transformed HF returns captures the
information included in the past RV.

2. We can investigate whether it is necessary to consider the
entire information in the transformed measure or whether the
most recent information suffices.

3. We can compare the different transformation methods,
assessing the differences between the linear MIDAS type
transformations and the non-linear transformations.

4. We can examine whether using the classical HAR inputs with
a fixed lag order of 22 is enough or whether using an LSTM
cell on the past RV values, which is less restrictive in terms of
the lag order selection, is fruitful.

5.1. Benchmark Models
We apply a variety of benchmark models, four models of
the HAR family and an ARFIMA(p,d,q) model. Our proposed
methodology ensures the positiveness of the volatility predictions
by construction (see Equation 31). However, when fitting the
benchmark models to the level of RV, the forecasts are not
guaranteed to be positive. We thus implement each benchmark
model once for the level of RV and once for the log of RV to
allow for a fair comparison. In the latter case, the forecasts are
bias corrected (Granger and Newbold, 1976), i.e.,

R̂V t+1 = exp

(
l̂nRV t+1 +

1

2
σ 2
ε

)
(32)

where σ 2
ε is the forecast error variance estimated from the

residuals.
Following the suggestion of Andersen et al. (2003), we start by

fitting an ARFIMA model

(1−8(L))(1− L)dxt = 2(L)εt , with 0 < |d| < 0.5 (33)

for xt = RVt and xt = lnRV t , where εt is a Gaussian white
noise with zero mean and variance σ 2. 8(L) and 2(L) are lag
polynomials of degrees p and q, respectively whose roots lie
outside the unit circle.

Next, we implement benchmarkmodels from the HAR family,
starting with the classical HAR model (Corsi, 2009) in levels

RVt+1 = β0 + β1RVt + β2RVw
t + β3RVm

t + εt+1 (34)

and in logs

lnRV t+1 = β0+β1 lnRV t+β2lnRV
w

t +β3lnRV
m

t +εt+1. (35)

For all HAR family models, the error term εt is assumed to
be a white noise process with E[εt] = 0 and V[εt] = σ 2

ε .
Following Andersen et al. (2007), we include the CHARmodel as
the second benchmark. The CHAR model is based on the jump
robust Bi-Power Variation (BPV) measure of Barndorff-Nielsen
and Shephard (2004), defined as

BPVt =
1

µ1

M−1∑

j=1

∣∣rt,j
∣∣ ∣∣rt,j+1

∣∣ (36)

where µ1 = √
2/π is the expectation of the absolute value

of a standard normal random variable. The CHAR model then
replaces the daily, weekly, and monthly averages of RV on the
right hand side of the HAR model with the corresponding
averages of BPV, i.e., for levels

RVt+1 = β0 + β1BPVt + β2BPVw
t + β3BPVm

t + εt+1 (37)

and for logs

lnRV t+1 = β0 + β1 lnBPV t + β2lnBPV
w

t + β3lnBPV
m

t + εt+1.
(38)

An alternative model that accounts for jumps is the HAR with
jumps (HAR-J) model (Andersen et al., 2007). The HAR-J model
adds the jump measure Jt = max (RVt − BPVt , 0) or, when
modeling log RV, ln (1+ Jt), as an additional explanatory variable
to the HAR model. However, in our application, the HAR-J
model in levels produces negative volatility predictions in two
cases. For the log case the average losses of the HAR-J model
are very similar to those from the HAR model. We thus omit
the results from the HAR-J model, though the differences are
statistically significant. They are available from the authors upon
request. The next benchmark model is the Semivariance-HAR
(SHAR) model by Patton and Sheppard (2015), which builds on
the semi-variation measure of Barndorff-Nielsen et al. (2010)
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differentiating between variation associated with positive and
negative intraday returns. The estimators are defined as

RS+t =
M∑

j=1

r2t,jIrt,j>0 (39)

and

RS−t =
M∑

j=1

r2t,jIrt,j<0, (40)

where I is the indicator function and RVt = RS+t + RS−t . The
SHAR model uses this decomposition of RVt such that for levels

RVt+1 = β0+β+1 RS+t +β−1 RS−t +β2RVm
t +β3RVm

t +εt+1 (41)

and for logs

lnRV t+1 = β0 + β+1 lnRS+t + β−1 lnRS−t + β2lnRV
w

t

+ β3lnRV
m

t + εt+1. (42)

The last benchmark from the HAR family is the HARQ model
of Bollerslev et al. (2016). The HARQ model uses the Realized
Quarticity (RQ) estimator of Barndorff-Nielsen and Shephard
(2002a) to correct for measurement error in the RV estimator.
The HARQ model for levels is

RVt+1 = β0 +β1RVt +β1QRQ1/2
t RVt +β2RVm

t +β3RVm
t + εt+1

(43)
and for logs.

lnRV t+1 = β0 + β1 lnRV t + β1Q lnRQt lnRV t + β2lnRV
w

t

+ β3lnRV
m

t + εt+1. (44)

6. APPLICATION

We use the 5 minutes log-returns (M = 78 intraday observations
per trading day) of IBM from January, 02, 2001 till December
28, 2018 (T = 4, 482 days). We use the first 80% of the data
(till May 27, 2015) as the in-sample data and the last 20% as the
out-of-sample data. In order to obtain forecasts from each model
introduced earlier, the QLIKE loss (Patton, 2011) between the
forecast yt(θ) and the next periods RV, RVt+1 is minimized, i.e.,
the objective is to find

θ̂ = argminθ QLIKE
(
yt(θ),RVt+1

)
, (45)

where the QLIKE loss function is defined as

QLIKE(RVt+1, yt(θ)) =
RVt+1

yt(θ)
− ln

(
RVt+1

yt(θ)

)
− 1. (46)

The QLIKE is a better choice when forecasting volatility than
the mean squared error since it considers that the variable
of interest is positive. We implement all models (except the
benchmark models) in Python using Keras (Chollet, 2015) with

the TensorFlow (Abadi et al., 2015) backend. This workflow
comes with a comprehensive set of functions, allowing custom
types of neural networks. We implement, e.g., the Beta MIDAS
model as a specific case of an MLP that takes a 2 × 1 vector of
ones as inputs and has a diagonal weight matrix coinciding with
the parameters ϕ1 and ϕ2 of the Beta pdf. The layer then returns
an M × 1 vector of weights associated with the standardized
Beta pdf as described earlier. We estimate the parameters of all
models under consideration (except the Benchmark models) by
Stochastic Gradient Descent (SGD). Since SGD introduces an
implicit regularization of the parameters (Soudry et al., 2018)
this methodology should allow for a fair comparison of the
forecasting results of the different models.

We train by Adaptive Moments SGD (ADAM, Kingma and
Ba, 2014) with a batch size (length of a randomly selected
sample selected for one SGD parameter update) of 128. Keras
computes the gradient of RNNs by Truncated Back Propagation
Through Time (Rumelhart et al., 1986); truncated in the manner
that the computation of the gradient considers only a limited
amount of past lags. The horizon of truncation is referred
to as lookback and does not change the fact that the RNN
considers the whole sequence of inputs when producing the
forecast after training. We set the lookback equal to 128. We
standardize the input data and divide the target data (the
one step ahead RV) by its’ standard deviation. We do not
demean the target data to ensure positivity. We store the
standard deviations to re-scale the resulting predictions in each
forecasting step.

We use an expanding window scheme for forecasting: We
start training for 1,000 epochs (one epoch means the algorithm
went through the whole sample once) on the first 80% of the data
and use the trained network and the newly available information
to make a one step ahead prediction. Then, the model is re-
trained for another 100 epochs for each one step ahead prediction
with the previous iterations parameter values as starting values,
resulting in 897 out of sample forecasts. To make training more
feasible, we employ early stopping criteria. These interrupt the
training before the target number of epochs is hit, given that there
was no improvement of the training error over several specified
past epochs. The term patience refers to this specified number of
epochs.We set the minimum, absolute change of the training loss
to be considered an improvement to 10−6, the initial training
step patience to 500, and the patience in the re-training steps
to 50. The code runs on an NVIDIA Tesla V100 GPU on the
bwHPC Cluster.

We estimate the HAR family benchmark models by OLS
and the ARFIMA models using R’s fracdiff (Maechler, 2020)
and forecast (Hyndman and Khandakar, 2008) packages. On the
in-sample data, an ARFIMA(5,d,2) model provides the best fit
for the level of RV and an ARFIMA (0,d,1) for the logarithm
of RV.

6.1. Forecast Evaluation
We compare the forecasting performance of our presentedmodel
with varying inputs and the benchmark models for both levels
and logs using different loss measures. First, we compare the
average QLIKE loss of the different models. Next, we report the
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square root of the average squared error loss (RVt − R̂V t)
2 (the

RMSE). We further compute Value at Risk (VaR) and Expected
Shortfall (ES) forecasts based on the volatility forecasts. The VaR
is the p-th quantile of the return distribution and the ES is the
expected value of the return, given that the return is smaller than
the VaR. We compute the daily log returns rt as the sum of the
intraday returns of day t, which is equivalent to the log return
based on the difference between the log closing and opening
prices. Table 1 reports descriptive statistics of the daily returns
(rt), the RV estimated from 5 minutes log-returns (RVt), and the
standardized returns zt = rt/

√
RVt for the whole sample, the in-

and the out-of-sample period.
After standardizing the daily returns, their skewness and

kurtosis are close to those of a standard normal distribution.
For the out-of-sample period, we can not reject the H0 of
a Kolmogorov-Smirnov test that the standardized returns are
standard normally distributed (p-value = 0.646). For the whole
sample (p-value = 0.018) and the in-sample period (p-value =
0.011) we reject this hypothesis at the 5% level. These results are
reasonable since the out-of-sample period does not contain the
financial crisis. We thus use the normal distribution to compute
forecasts of VaR and ES. We also compute forecasts of VaR
and ES using the standardized Student-t distribution, where,
similar to Brownlees and Gallo (2010), for each iteration in the
expanding window, we estimate the degrees of freedom based on
the information available up to time t. All estimated degrees of
freedom are larger than 100, indicating no need to account for
fat tails. Further, the statistical analysis results and the ranking of
the models do not change compared to the case of the normal
distribution. We thus do not report the Student-t distribution
results here. They are available from the authors on request.

To evaluate the performance of the models in forecasting VaR
and ES, we use the asymmetric piece-wise linear loss function
of Gneiting (2011) for the VaR and the zero-homogeneous loss
function of Fissler and Ziegel (2016) for the VaR and the ES
jointly.3 Using the short notation r = rt , V̂aR = V̂aRt,p and
ÊS = ÊSt,p, these loss functions are

SVaRp (V̂aR, r) =
(
r − V̂aR

) (
p− I{r≤V̂aR}

)
(47)

and.

SVaRESp (V̂aR, ÊS, r) = −
(V̂aR− r)I{r≤V̂aR}

pÊS
+ V̂aR

ÊS
+ ln (−ÊS)−1.

(48)

6.2. Results
Table 2 reports the results of the out-of-sample losses introduced
above for the different models. It further shows which models
are in the Model Confidence Set (MCS) of Hansen et al.
(2011) at the 10% level. We use the arch library of Sheppard
et al. (2021) to compute the MCS p-values. In addition, we
report the results of Binomial tests,4 where we test each model

3There exists no strictly consistent loss function for the ES alone (Gneiting, 2011).
4The Binomial test tests whether positive and negative sign changes in the loss

differential of two models are equally likely. It is also known as the Diebold

Mariano Sign test.

TABLE 1 | Descriptive statistics.

Min Max Mean Median Std Skewness Kurtosis

Whole-sample period

rt −11.1695 11.6993 0.0053 0.0120 1.4997 0.1136 10.5653

RVt 0.219 130.5922 2.3877 1.0188 5.7425 10.0287 153.5745

zt −2.9571 3.2444 0.0308 0.0142 0.9554 0.0833 2.6061

In-sample period

rt −11.1695 11.6993 0.0236 0.0148 1.5545 0.2314 10.1870

RVt 0.1325 130.5922 2.6083 1.1267 6.0041 9.9336 151.2284

zt −2.9571 3.2444 0.0408 0.0147 0.9514 0.0910 2.6362

Out-of-sample period

rt −7.9331 8.5542 −0.0679 0.0000 1.2548 −0.8824 11.5016

RVt 0.1219 63.4346 1.5063 0.6800 4.4410 9.7437 113.8447

zt −2.5287 2.7506 −0.0092 0.0000 0.9703 0.0594 2.4857

For the descriptive statistics, rt is scaled by 10
2 and RVt by 10

4.

against the other models in Supplementary Figures 1–6. The
table consists of two main blocks, again consisting of multiple
blocks as indicated by the horizontal lines. The first main
block contains the results for the ANN models, where the first
two rows show the results for the models that do not use
the transformed measure as additional input (indicated by the
superscript O), i.e., the models corresponding to the restriction
βHF = 0. The first model is a non-linear HAR estimated
by SGD. Non-linear since we use the exponential of a linear
combination of daily, weekly, and monthly averages of log RV
on the right-hand side. The second row shows the results of
modeling the long memory in RV not via the restricted AR(22)
character of the HAR model but an LSTM cell applied to the
log RV.

Next, follow the models that use the information from the
transformed measure. The superscript indicates the type of
transformation: The superscript O indicates no transformation,
the superscripts M-B and M-L indicate the Beta and LSTM
MIDAS transformation, respectively, and the superscript
LSTM plus a number indicates the non-linear, LSTM based
transformation. The number indicates the number of LSTM cells
in the hidden layer in this case.

The model’s name indicates the type of low-frequency
information: HAR refers to the daily, weekly, and monthly
averages, and LSTM refers to an LSTM cell applied to
the sequence of log RV. They reflect choosing νLFt =
(lnRV t , lnRV

w

t , lnRV
m

t )
′ and νLFt = LSTM(lnRV1 : t , θ

LF)
respectively. The name O refers to only using the information
from the transformed measure, i.e., it corresponds to the
restriction βLF = 0. Here we have two blocks again. The first
reporting models that apply an LSTM cell to the sequence of
the transformed measure. These models thus take into account
the full information in the sequence of the transformed measure,
indicated by -F in the model name. The second block refers to
models that only use the most recent value of the transformed
measure. The two blocks thus correspond to the choice of
νHFt = x̃t and ν

HF
t = ỹt , respectively. The last block shows the

results of the benchmark models, where we differentiate between
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TABLE 2 | Out of sample losses.

Model QLIKE RMSE VaR1% VaR ES1% VaR2.5% VaR ES2.5%

A
N
N

m
o
d
e
ls

HARO 0.6012† 0.4401 0.6598† −2.2635† 1.0444† −3.0502†

LSTMO 0.5683† 0.4356† 0.6687† −2.1732† 1.0497† −3.0029†

HARM−B-F 0.5995† 0.4407† 0.6580† −2.2793† 1.0374† −3.0671†

HARM−L-F 0.5655†∗ 0.4380†∗ 0.6397† −2.3329† 1.0167† −3.1032†

HARLSTM1-F 0.5990†∗ 0.4347†∗ 0.6446†∗ −2.2779†∗ 1.0278†∗ −3.0626†∗

HARLSTM8-F 0.5976† 0.4400 0.6576† −2.2711† 1.0420† −3.0545†

HARLSTM64-F 0.5992† 0.4400 0.6579† −2.2731† 1.0420† −3.0559†

LSTMM−B-F 0.5813† 0.4361† 0.6616†∗ −2.2074†∗ 1.0462†∗ −3.0209†∗

LSTMM−L-F 0.5458† 0.4354† 0.6617† −2.2360† 1.0378† −3.0464†

LSTMLSTM1-F 0.5779† 0.4406† 0.6668†∗ −2.1577†∗ 1.0513†∗ −2.9970†∗

LSTMLSTM8-F 0.5701† 0.4356† 0.6688† −2.1669† 1.0508†∗ −3.0011†∗

LSTMLSTM64-F 0.5693† 0.4356† 0.6626†∗ −2.2115†∗ 1.0479†∗ −3.0200†∗

OM−B-F 0.7923∗ 0.5205†∗ 0.6666†∗ −2.5151†∗ 1.1599†∗ −3.0053†∗

OM−L-F 0.7035†∗ 0.4499†∗ 0.7301†∗ −2.1101†∗ 1.1650†∗ −2.8801†∗

OLSTM1-F 0.7468∗ 0.4514∗ 0.6772†∗ −2.4570†∗ 1.1580∗ −2.9845†∗

OLSTM8-F 0.7536∗ 0.4517∗ 0.6695†∗ −2.4596†∗ 1.1496∗ −2.9898†∗

OLSTM64-F 0.7458∗ 0.4516∗ 0.6525†∗ −2.5659†∗ 1.1448†∗ −3.0239†∗

HARM−B 0.6108 0.4403 0.6613† −2.2538† 1.0485† −3.0407†

HARM−L 0.5764† 0.4406† 0.6620† −2.2263† 1.0456† −3.0356†

HARLSTM1 0.5453†∗ 0.4339†∗ 0.6224†∗ −2.4520†∗ 0.9901†∗ −3.1643†∗

HARLSTM8 0.6029 0.4400 0.6576† −2.2768† 1.0401† −3.0606†

HARLSTM64 0.5989† 0.4400 0.6594† −2.2576† 1.0448† −3.0472†

LSTMM−B 0.5764†∗ 0.4356†∗ 0.6627†∗ −2.2073†∗ 1.0508†∗ −3.0143∗

LSTMM−L 0.5567† 0.4350† 0.6648† −2.1684† 1.0413† −3.0117†

LSTMLSTM1 0.5371†∗ 0.4316†∗ 0.6193†∗ −2.4187†∗ 0.9993†∗ −3.1350†∗

LSTMLSTM8 0.5755† 0.4352† 0.6631† −2.1964† 1.0445† −3.0176†

LSTMLSTM64 0.5712†∗ 0.4361†∗ 0.6656†∗ −2.2058†∗ 1.0504†∗ −3.0169†∗

OM−B 0.7463∗ 0.4525∗ 0.6494†∗ −2.5692†∗ 1.1381†∗ −3.0315†∗

OM−L 0.7480∗ 0.4529∗ 0.6515†∗ −2.5576†∗ 1.1389†∗ −3.0276†∗

OLSTM1 0.6701†∗ 0.4466∗ 0.6333†∗ −2.5970†∗ 1.0973†∗ −3.0812†∗

OLSTM8 0.7413∗ 0.4517∗ 0.6519†∗ −2.5700†∗ 1.1396∗ −3.0323†∗

OLSTM64 0.7457∗ 0.4516∗ 0.6525†∗ −2.5681†∗ 1.1456†∗ −3.0240†∗

B
e
n
c
h
m
a
rk

m
o
d
e
ls

ARFIMA 0.6947∗ 0.4538∗ 0.6906†∗ −2.1262†∗ 1.0833†∗ −2.9677†∗

HAR 0.6758∗ 0.4532∗ 0.6975†∗ −2.1380∗ 1.0925†∗ −2.9620†∗

CHAR 0.5665†∗ 0.4384†∗ 0.6462†∗ −2.3974†∗ 1.0455†∗ −3.0830†∗

SHAR 0.6785∗ 0.4548∗ 0.6976†∗ −2.1348∗ 1.0928†∗ −2.9613†∗

HARQ 0.6632∗ 0.4525∗ 0.6827†∗ −2.1610∗ 1.0736†∗ −2.9881†∗

ARFIMA-ln 0.6656∗ 0.4394†∗ 0.7095†∗ −1.9656∗ 1.0812†∗ −2.9242†∗

HAR-ln 0.6751∗ 0.4396†∗ 0.7020†∗ −2.0047†∗ 1.0703†∗ −2.9496†∗

CHAR-ln 0.6141∗ 0.4373†∗ 0.6773†∗ −2.1527†∗ 1.0503†∗ −3.0169†∗

SHAR-ln 0.6549∗ 0.4389†∗ 0.6922†∗ −2.0547†∗ 1.0615†∗ −2.9743†∗

HARQ-ln 0.6413∗ 0.4403†∗ 0.6930†∗ −2.0982†∗ 1.0660†∗ −2.9873†∗

The RMSE and VaR losses are scaled by 103. Bold face numbers indicate the lowest out of sample loss. ∗Denotes models for which the H0 of equal forecasting performance of a

Binomial test with HARO model as benchmark is rejected at the 5% level and †denotes models that are in the Model Confidence set at the 10% level.

them being applied for the level of RV and to the logarithm of RV
(indicated by -ln in the model name). We transform the forecasts
using the bias correction mentioned earlier for the latter case.

We first consider whether using only the transformedmeasure
for forecasting volatility is fruitful. Table 2 clearly shows that the

models that only rely on the transformed measure (labeled O
plus the superscript corresponding to the transformation used)
are the worst-performing models within their respective blocks
in terms of the QLIKE and the squared error loss. These models
perform comparably or worse than the alternatives for the VaR
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A B

C D

FIGURE 2 | Results for a Binomial test of equal forecasting performance between the models that use only the transformed measure and their counterpart that use it

in combination. (A) HAR-F vs. O-F. (B) HAR vs. O. (C) LSTM-F vs. O-F. (D) LSTM vs. O.

loss and the joint loss of VaR and ES. The only exception is
when jointly evaluating forecasts of VaR and ES at p = 1%. In
this case, these models are the best performing ones, and among

them, the model that uses the non-linear transformation via
one LSTM cell performs best. The differences in the forecasting
performance of the only transformed measure models to those
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FIGURE 3 | Results for a Binomial test of equal forecasting performance between the full information (ỹt ) and the recent information (x̃t ) models.

that also use the information on past RV (HAR and LSTM
plus superscript) are significant in terms of a binomial test for
equal forecasting performance at the 1% level, as Figure 2 shows.
Figure 2A of the figure displays the test decision when comparing
the models that combine the HAR inputs with ỹt against the
model that only uses ỹt (O plus superscript). The x-axis labels
specify the type of transformation used to obtain the transformed
measure. Figure 2B shows the results for only using the most
recent information in the transformed measure, i.e., combining
the HAR inputs with x̃t vs. solely using x̃t . Figures 2C,D show
the results for the case where the HAR inputs are replaced by
the output of an LSTM cell applied to the sequence of log RV.
All p-values are smaller than 0.01 in all cases. For the QLIKE
and the squared error loss, we can conclude that none of the
transformations can extract enough information from the HF
returns to replace the information on past RV for forecasting
volatility. When forecasting the VaR and ES, these models yield
results comparable to those of the othermodels. They outperform
the alternativemodels only for the joint evaluation of the VaR and
the ES at the 1% level.

Next, we address whether the -F models (the models that
use the output of an LSTM cell applied to the sequence of the
transformed measure) yield any differences in the forecasting
performance compared to the models that only use the most
recent information from the transformation. Figure 3 shows
the testing results for differences between a model that only
uses the most recent information in the transformed measure

against its’ -F counterpart. At the 5% level, regardless of the LF
input they are combined with, we see no significant differences
in the forecasting performance of the MIDAS Beta, the LSTM8,
and the LSTM64 transformation models compared to their -F
counterparts. However, these differences are significant for the
LSTM MIDAS and the LSTM1 transformation. When we only
use the transformed measure, the LSTM MIDAS transformation
model with full information produces lower average OLIKE and
squared error losses. In contrast, the model that only uses the
most recent information produces lower average losses when
jointly evaluating VaR and ES. For the LSTM1 transformation,
the model that only uses the most recent information yields
the lower average loss for all loss functions. Combining the
transformed measure with other LF information yields the
following pattern: For the LSTM MIDAS transformation,
where the differences are significant, the -F model gives
the lower average losses. For the LSTM1 transformation,
using only the most recent information yields lower
average losses.

Whether there are significant differences in the forecasting
performance between the models that use ỹt and the models
that use x̃t is thus case dependent. There are no significant
differences for most models and transformations. For the LSTM
MIDAS, it depends on whether it is used alone or in combination.
In the former case, the -F models produce lower losses when
the differences are significant. Using the -F models yields the
lower QLIKE and squared error in the latter case. However,
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using x̃t produces lower VaR and ES losses. For the non-
linear transformation through one LSTM cell, only applying
the transformation to the most recent HF returns yields lower
average losses. It seems that, in this case, the more distant
information in the HF returns gets accounted for by the RV.
However, the most recent HF returns contain information that
the lagged RV does not yet capture.

When we use the LSTM MIDAS transformation, it is
necessary to use the sequential information in the transformed
measure. An alternative explanation for this could be that the -F
model introduces additional non-linearity into the transformed
measure by applying an LSTM cell to its’ sequence. While x̃t in
the LSTMMIDAS case is constructed linearly as a weighted sum,
ỹt is a non-linear transformation of the sequence of that linear
measure. So the better forecasting performance of the model that
uses ỹt for the LSTMMIDAS transformation could be due to that
non-linearity. However, the transformation of the HF returns
through one LSTM cell is already the output of a non-linear
function. Since only the most recent transformed measure is
informative for this transformation, it appears that there are no
gains from introducing more non-linearity through an LSTM
cell on the sequence of transformed measures. Comparing these
two against each other, we see that models that use only the
most recent non-linear transformed measure produce lower
losses than the models that use the LSTM cell applied to the
LSTM MIDAS transformation. These differences are significant
at the 1% level for all losses (see Supplementary Figures 1–6).
Thus, the non-linearity within the transformed measure seems to
produce more helpful information for forecasting volatility than
introducing non-linearity to the transformed measure obtained
from the linear method.

Next, we address whether combining the transformed
measure with the other LF inputs yields significant gains in
forecasting compared to only using the LF inputs. Figure 4
displays the test results. Figures 4A,B show the test results for
combining theHARmodel inputs with the transformedmeasures
against the model that does not use the transformation. The x-
axis labels again indicate the type of transformation. Figure 4A
shows the results for the -F models and Figure 4B for the models
that only use the most recent information. The lower part of
the figure, Figures 4C,D, display the corresponding results when
replacing theHAR inputs with the output of an LSTM cell applied
to the sequence of log RV. Combining any of the LF inputs with
the LSTM1 transformation yields statistically different forecasts
to the models that omit the transformed measure, in any case,
and for all losses. In the case of the HAR model inputs, the
combined model yields lower losses in both cases. For the LSTM
input, the -F model performs worse, whereas the model that
only uses the most recent HF information yields lower losses.
For the other transformations, the results are case-dependent.
When combined with the HAR inputs, the LSTMMIDAS model
yields significantly different QLIKE and RMSE losses in the full
information case. The HARM−L-F model yields the lower QLIKE
and RMSE losses in these two cases. The differences are not
statistically different at the 5% level in the remaining cases. The
non-linear transformation with 64 LSTM cells yields statically
different results for all losses but the QLIKE and the squared

error loss in the full information case. Its’ losses are lower than
the comparison model in these cases. When using the recent
information only the non-linear transformation with 64 LSTM
cells does not deliver significantly different results. However, in
the full information case, the Beta MIDAS transformation for
the VaR and ES for p = 1% and p = 2.5% yields losses
significantly different from the comparison model’s (at the 5%
level). In these cases, the Beta MIDAS transformation model
yields slightly better results.

Next, we consider whether there are differences in the
forecasting performances of the models depending on whether
we use the HAR inputs or the output of an LSTM cell applied
to past log RV. Table 2 reports a rejection of the H0 of the
Binomial test for equal forecasting performance concerning the
HARO model at the 5% level with an asterisk. From the table,
we see that for the LSTMO model, we can not reject the H0 for
any of the loss measures. Thus there are no significant differences
between the ANN model that only uses the HAR model inputs
and the ANN model that uses an LSTM cell on past log RVs.
One difference is that the LSTMO model is in the MCS at the
10% level for all losses, whereas the HARO model is not in the
10% MCS for the squared error loss. For the remaining models
that use the transformed measure, the test results are displayed
in Figure 5.

According to the figure, we can not reject the H0 at the 5%
level for the QLIKE and the squared error loss. For the VaR and
ES losses, we reject the H0 at the 5% level for the Beta MIDAS,
the LSTM8, and the LSTM64 transformations when using ỹt . In
this case, the models that use the HAR inputs perform better
than those using the LSTM input. When using x̃t , we reject for
the Beta and LSTM MIDAS models and the LSTM64 models
considering the VaR and ES losses. In all except one case, the
models that use theHAR inputs yield the lower out of sample loss.
The only exception is the LSTM MIDAS model for the VaR2.5%.
In this case, the LSTM inputs are performing marginally better.
Overall, it appears that the HAR model inputs can approximate
the long memory in the data to an extent comparable to that
of an LSTM cell. However, we want to stress that we did not
hunt for an optimal LSTM network architecture for this task.
The purpose of the LSTM cell in this application is simply to
circumvent the implicit lag order selection of the HAR model.
A network of LSTM cells applied to the sequence of log RV as
in Bucci (2020) might yield more consistent improvements in
the forecasting performance than the HAR model inputs. It is
interesting to see that the daily, weekly, and monthly averages
used in the HAR model are not only comparable to ARFIMA
models in the extent they account for long memory (Corsi, 2009),
but also to an LSTM cell.

Among the benchmark models, the CHAR model is
performing best. It produces the lowest out of sample loss
among the benchmark models for the level and the log of RV.
Furthermore, it produces lower losses for all except the RMSE
loss in levels than in logs. It is the only benchmark model
in the 10% MCS for all losses and it produces lower QLIKE
and RMSE losses than the HARO model, i.e., the HAR model
estimated by SGD. These differences are significant at the 5%
level. Also, for the other losses except for the VaR2.5%, it yields
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A B

C D

FIGURE 4 | Results for a Binomial test of equal forecasting performance between the models combine the transformed measure and their counterpart that does not

use the transformed measure. (A) HAR-F vs. HARO. (B) HAR vs. HARO. (C) LSTM-F vs. LSTMO. (D) LSTM vs. LSTMO.

lower losses than the HARO. This is in line with Rahimikia
and Poon (2020a), who also find that the CHAR is performing
best among the HAR family models. Apart from the CHAR

model, the remaining benchmark models cannot perform better
than any of the ANN models except those that only use the
transformed measure.
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A B

FIGURE 5 | Results for a Binomial test of equal forecasting performance between the models that combine the transformed measure with the HAR inputs and their

counterpart that uses the LSTM cell applied to log RV. (A) HAR-F vs LSTM-F. (B) HAR vs LSTM.

We come to a short intermediate conclusion:

1. We found that using only the transformed measure to forecast
RV results in higher out-of-sample forecast losses thanmodels
that combine the transformed measure with information on
past log RV. This holds especially true for the QLIKE and
the RMSE error loss. The only exception is the loss of jointly
evaluating the VaR and ES at p = 1%.

2. We found that when using linear means to construct the
transformed measure, it is crucial to consider the sequential
information in the transformed measure. However, this might
be due to non-linearity induced through the LSTM cell that
we apply to the transformedmeasure. Therefore, it is sufficient
only to use themost recent information when constructing the
transformed measure non-linearly. In most cases, this yields
better forecasting performance.

3. The non-linear transformation through one LSTM cell
seems superior to the other transformations throughout the
statistical analysis. The models performing best are those that
use this transformation. Further, we have the most statistical
evidence for differences in the forecasting performance for
these models. We will further investigate this in the following.

4. For the QLIKE and the RMSE loss, there are no statistical
differences in the performance of the models that use
the HAR inputs and the models that use an LSTM cell
applied to log RV. The daily, weekly, and monthly averages
of log RV appear to be sufficient to account for the
long memory in the data. Especially when combined with

the LSTM1 transformed measure, this also holds for all
other losses.

This short wrap-up leads to two hypotheses. First, the non-
linear transformation through one LSTM cell is superior to all
other transformations. Second, the models that combine the
transformed measure from such a non-linear transformation
with the information on past log RV perform better than all other
models. These two models are the two best ranked models for
each loss measure, except the joint evaluation of VaR1% and ES1%.
We cannot reject that these two models perform equally well for
any of the losses (see Supplementary Figures 1–6).

Investigating these hypotheses results in non-pairwise
comparisons of the models. Further, the hypotheses are uni-
directional, i.e., we are interested in whether these models
perform better than the competitors. Thus we can not use a
Binomial Test for equal forecasting performance but instead
use the test for superior predictive ability (SPA test) of Hansen
(2005). We use the arch library of Sheppard et al. (2021) to
perform the SPA test. When computing the p-values, we use a
block bootstrap with the number of bootstrap resamplings set to
1000 and the block length set to 5. The results are not sensitive to
the choice of these two values. We also computed the p-values
with resamplings set to 3,000, 5,000, 7,000, 9,000 and block
lengths of 10, 15, 20, . . . , 95, 100. The results did not change by
much. The SPA test tests whether the expected loss difference
between the loss of a candidate and a set of alternative models is
smaller or equal to zero. A rejection of the null hypothesis thus
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TABLE 3 | p-values of SPA tests for the LSTM1 against the alternative

transformations.

QLIKE RMSE VaR1% VaR ES1% VaR2.5% VaR ES2.5%

HARLSTM1-F 0.182 0.870 0.542 0.385 0.365 0.232

LSTMLSTM1-F 0.124 0.135 0.456 0.156 0.162 0.086

OLSTM1-F 0.233 0.724 0.405 0.431 0.603 0.517

HARLSTM1 0.823 0.937 0.580 0.567 0.543 0.546

LSTMLSTM1 0.707 0.967 0.607 0.578 0.548 0.591

OLSTM1 0.543 0.593 0.906 0.789 0.601 0.975

TABLE 4 | p-values of SPA tests for HARLSTM1 and LSTMLSTM1 against the

remaining models.

QLIKE RMSE VaR1% VaR ES1% VaR2.5% VaR ES2.5%

HARLSTM1 0.726 0.952 0.975 0.527 0.955 0.996

LSTMLSTM1 0.794 0.993 0.970 0.408 0.928 0.973

means that there is a model among the alternatives performing
significantly better than the candidate model.

We start by reporting the p-values of a sequence of SPA tests

where we use the LSTM1 transformation models as candidates
against the models that use the other transformations. The p-

values displayed in Table 3 show that, at the 5% level, we can not
reject the H0 of the SPA test in any case. Thus, at the 5% level,

the non-linear transformation by one LSTM cell gives forecasting
losses smaller or equal to those of all alternative transformations
used. This holds for any loss function. At the more conservative

10% level, for the models that use the full information on the
transformed measure (upper part of the table) and the joint loss
of VaR and ES at 2.5%, we reject the H0. Thus, for this loss, at least
one transformation works better. Overall, however, this evidence
supports the first hypothesis of the non-linear transformation
through one LSTM cell performing best.

To assess the second hypothesis, we use all models excluding

the HARLSTM1 and LSTMLSTM1 as the set of alternatives. We then

apply the SPA test for each of these two models as candidates.
Table 4 displays the p-values of those tests. Again, we see that the

null hypothesis that no alternative model performs better than

any of the twomodels under consideration can not be rejected for

any loss function. Among the considered models, including the
benchmarks for logs and levels, no model performs significantly
better than the HARLSTM1 and the LSTMLSTM1.

7. CONCLUSION

This paper aims to forecast the daily volatility utilizing
information extracted from the intraday high-frequency (HF)
returns through Long Short Term Memory (LSTM) Recurrent
Neural Networks (RNN). These structures are flexible in
the degree of non-linearity they allow for and capture long
persistence in the data. Our method extracts a non-linear, scalar
transformation of the HF returns (referred to as transformed
HF measure). We use this measure to make one step ahead

predictions of the daily volatility. We vary the degree of non-
linearity by testing different numbers of LSTM cells in the RNN
and find no merits in using more than one LSTM cell for
the non-linear transformation. For comparison, we implement
two Mixed Data Sampling (MIDAS) approaches to construct
the transformation of the HF returns. The MIDAS models
obtain weights associated with the HF return and build the
transformation as a weighted sum. The first MIDAS model
generates weights associated with the lag of an intraday return
through an LSTM cell (LSTM MIDAS). The second is an
Artificial Neural Network (ANN) implementation of the Beta Lag
Polynomial MIDAS (Beta MIDAS) (Ghysels et al., 2004).

To account for dynamics and long memory in the volatility
series, we apply an LSTM cell to the sequence of transformed
measures. However, we also compare settings where we only use
the most recent information from the transformed measure. The
reason is that the information from the HF returns might only
be “new” for a short time. Further in the past, it is probably
incorporated by the RV estimator. We compare the forecasting
performance of models solely based on the transformed HF
measure to those of models that only use the information from
the past Realized Volatility (RV). Namely, the HAR model and
a model that applies an LSTM cell to the sequence of past
RVs. The HAR model is one of the most popular models to
approximate long memory in the volatility series. LSTM RNNs
can account for complex non-linear dependencies in the data
and capture long-term dependencies. Our comparison assesses
whether the proposed transformation can extract the same or
more information from the HF returns than the RV estimator.
Finally, we combine the information from the transformed
measure and the information from the RV for the forecast.
We can thus investigate whether our proposed transformations
extract information from the HF returns that is supplementary to
the RV information when forecasting volatility.

In an expanding window forecasting exercise on data on
the IBM stock, we compare the performance of the models in
forecasting out-of-sample volatility. We further compute Value
at Risk (VaR) and Expected Shortfall (ES) forecasts based on the
volatility forecast. We perform a thorough statistical analysis to
identify the source of the improved forecasting performance. Our
results on the data set under consideration are four-fold:

First, they show that making volatility forecasts based solely
on the transformed HF measure is not fruitful. Neither of the
transformations can produce a measure that accounts for the
long persistence in the volatility. This result is independent of
whether we account for dynamics in the transformed measure
or only take the most recent value for the forecast. Interestingly,
when jointly evaluating the VaR1% and ES1% forecasts based
on the volatility forecasts, those models perform better than
the alternatives. However, for the 2.5% VaR and ES, their
performance is again worse or comparable to the alternatives.
When forecasting volatility, the transformations we propose are
thus unable to extract the same information from the high-
frequency returns as the RV estimator. Since the RV estimator ex-
post is a consistent estimator of the volatility of a day, it is crucial
to take this information into account for the forecasting task.
Maybe more complex non-linear ANN structures could extract
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the same amount of information from the HF returns. However,
in our eyes, it is more fruitful to facilitate the forecasting task for
the method by using the RV information.

Second, there is no difference in using the sequence of the
transformed measure or only the most recent value for most
cases. There are significant differences only for the LSTMMIDAS
transformation and the non-linear transformation based on one
LSTM cell. The LSTM MIDAS transformation excels when we
account for dynamics in the transformed measure. In contrast,
the non-linear transformation excels when only using the most
recent information. Though puzzling at first, this finding is quite
intuitive. The LSTMMIDAS builds the transformed measure as a
weighted sum. The transformation is thus linear. However, the
linearity is insufficient to extract additional information from
the HF returns. Therefore the model that only uses the most
recent transformed measure, in this case, performs no different
than the model that does not use the information. However, we
account for dynamics in the sequence of transformed measures
by applying an LSTM cell to it. While this circumvents the
trouble of lag order selection, it introduces non-linearity in
the transformed measure, which likely results in better models’
better performance. When we use an LSTM cell to transform
the HF returns non-linearly, there are no additional gains
from accounting for dynamics in the measure. Accounting for
dynamics leads to worse forecasting performance in some cases.
We thus conclude that the transformed measure must be non-
linear for the transformation to extract additional information
from the HF returns. However, allowing for dynamics in the
non-linearly obtained transformed measure does not add any
additional gains. This coincides with our previous findings
indicating that the additional information in the HF returns
gets picked up by the RV estimator further in the past. In the
short run, though, this information is helpful for the prediction
of volatility.

Third, we add to the literature by finding another prove for
the improved forecasting performance of ANNmodels compared
to the linear HAR model benchmark. Our models that do
not include the transformed measure, i.e., only use either the
HAR model inputs or apply an LSTM cell to the sequence
of RV, perform significantly differently from the classical HAR
model, both estimated in logs and levels. The simple non-
linearity we induce through modeling the exponential of the
linear combination of past daily, weekly, and monthly averages
of the logarithm of RV already is sufficient to outperform the
classical linear HAR for both logs and levels. Our results thus
add to the evidence provided by, e.g., Rosa et al. (2014) and
Arnerić et al. (2018). We also apply an LSTM cell to the sequence
of the logarithm of RV as an alternative to the HAR inputs.
The LSTM cell allows for a high degree of non-linearity, and
it captures long memory in the data. We find no significant
differences between the LSTM and the HAR input models when
predicting volatility in most cases. Our findings thus indicate
that, for the simple structures we use, the HAR inputs capture
the long persistence in the volatility series equally well as the
LSTM cell on the data set under consideration. To some extent,
this contradicts the findings of Bucci (2020) who finds that gated
recurrent ANNs such as LSTM RNNs outperform ANNs that do

not account for long memory in the data. However, the author
forecasts the logarithm of the square root of monthly RV and not,
as in this case, the level of daily RV. When constructing VaR and
ES forecasts based on the volatility forecasts, we find significant
differences in the performance of the HAR and the LSTM input
models, where for these quantities, the HAR input models show
better performance.

Fourth, the statistical analysis of the forecasting results
pointed toward two hypotheses. First, the non-linear
transformation through one LSTM cell is superior to all
alternative transformations that we suggest, especially when only
accounting for the most recent information in the transformed
measure. Through a sequence of tests for superior predictive
ability (SPA tests), we find that the non-linear transformation
through one LSTM cell outperforms the alternatives. When
only considering the most recent HF information, this result
holds under conservative choices for the significance level.
However, this result only holds for less conservative choices
for the significance level (5%) for the setting where we account
for dynamics in the transformed measure. So the non-linear
transformation through one LSTM cell outperforms the MIDAS
alternatives and the alternatives that allow for higher degrees
of non-linearity by using a network of LSTM cells. This is very
convenient since it circumvents the challenging task of finding
the optimal network architecture for the transformation. Second,
combining this transformed measure with the information
on the past RV yields superior forecasting performance to all
other models under consideration. Another sequence of SPA
tests shows that the models that augment the information
from the log RV with the most recent transformation from
one LSTM cell significantly outperform all alternative models,
including the benchmarks. When augmented by the most recent
transformation from one LSTM cell, there are no significant
differences between the model that uses an LSTM on past log
RV and the model that uses the HAR. So also in this case, the
HAR models’ lagged daily, weekly, and monthly averages are
approximating the long persistence in the volatility equally well
as the LSTM cell.

Our analysis thus directs to a new type of HAR model that
augments the classical HAR by a non-linear transformation of
the HF returns within a day. These results are in line with
the findings of Rahimikia and Poon (2020a), who also find
that their proposed HAR model augmented by HF limited
order book and news sentiment data shows superior forecasting
performance. However, the information we utilize for the
augmentation does not stem from an auxiliary source such as
news feeds but from the same information used to construct
the RV estimator. Our resulting models can outperform some
of the most popular benchmark models in the literature, such
as ARFIMA models, the HAR, the CHAR, and the HARQ
model. A natural extension of the presented work would be
to use Bi-Power Variation and Realized Quarticity measures
as additional inputs for the forecasting task. One could then
assess, whether in this case, there are also gains in the
forecasting performance through augmenting this model with
the non-linear transformation of the HF returns through one
LSTM cell.

Frontiers in Artificial Intelligence | www.frontiersin.org 16 February 2022 | Volume 4 | Article 787534

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Mücher Volatility Forecasting

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

CM contributed to the conceptualization of the idea,
implemented the code, and wrote the manuscript.

ACKNOWLEDGMENTS

We want to thank Gerhard Fechteler, Eric Ghysels, Lyudmila
Grigoryeva, Roxana Halbleib, Ekaterina Kazak, Ingmar Nolte,

Winfried Pohlmeier, the members of the Chair of Econometrics
at the Department of Economics at the University of Konstanz,
Germany, and two anonymous referees, for helpful comments.
All remaining errors are ours. We acknowledge support by
the state of Baden-Württemberg through bwHPC. The author
acknowledges financial support from the German federal state of
Baden-Württemberg through a Landesgraduiertenstipendium.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/frai.2021.
787534/full#supplementary-material

REFERENCES

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., et al. (2015).

TensorFlow: Large-Scale Machine Learning on Heterogeneous Systems. Available

online at: tensorflow.org.

Andersen, T. G., Bollerslev, T., and Diebold, F. X. (2007). Roughing it up: including

jump components in the measurement, modeling, and forecasting of return

volatility. Rev. Econ. Stat. 89, 701–720. doi: 10.1162/rest.89.4.701

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Ebens, H. (2001a). The

distribution of realized stock return volatility. J. Finan. Econ. 61, 43–76.

doi: 10.1016/S0304-405X(01)00055-1

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2001b). The

distribution of realized exchange rate volatility. J. Am. Stat. Assoc. 96, 42–55.

doi: 10.1198/016214501750332965

Andersen, T. G., Bollerslev, T., Diebold, F. X., and Labys, P. (2003).

Modeling and forecasting realized volatility. Econometrica 71, 579–625.

doi: 10.1111/1468-0262.00418

Andersen, T. G., Bollerslev, T., and Meddahi, N. (2004). Analytical

evaluation of volatility forecasts. Int. Econ. Rev. 45, 1079–1110.

doi: 10.1111/j.0020-6598.2004.00298.x
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