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In this paper we give an overview of the field of patient simulators and provide qualitative
and quantitative comparison of different modeling and simulation approaches. Simulators
can be used to train human caregivers but also to develop and optimize algorithms for
clinical decision support applications and test and validate interventions. In this paper we
introduce three novel patient simulators with different levels of representational accuracy:
HeartPole, a simplistic transparent rule-based system, GraphSim, a graph-based model
trained on intensive care data, and Auto-ALS—an adjusted version of an educational
software package used for training junior healthcare professionals. We provide a qualitative
and quantitative comparison of the previously existing as well as proposed simulators.
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1 INTRODUCTION

Patient simulators have been applied extensively in nursing education (Wendy et al., 2001; Nehring
and Lashley, 2004; McFetrich, 2006), both as physical mannequins and as digital patient simulation
software (Lee et al., 2020). However, patient simulators have another important application: they can
be used to predict how patients’ health would respond to various treatments and thus evaluate
proposals for novel treatment strategies. And now, with the advent of artificial intelligence, one can
use reinforcement learning (Yu et al., 2019), genetic programming (Koza, 1994; Niazkar and Niazkar,
2020) or both (Liventsev et al., 2021) to generate treatment strategies that lead to the best outcomes
for the patient according to a certain simulator. In this paper we review the field of interactive patient
simulators and evaluate their potential to be used for automated treatment discovery.

The contributions of this paper are as follows:

• A systematic review of patient simulators in Healthcare Informatics
• Auto-ALS—a learning aid for junior healthcare professionals adapted to reinforcement learning
• HeartPole—a novel simple and transparent pseudosimulator designed to be a convenient
benchmark

• GraphSim—a data-driven graph-based simulator based on MIMIC-IV dataset (Johnson et al.,
2021) for maximal accuracy

1.1 Scope of This Survey
This survey only includes interactive patient simulators where a (human or software) agent
communicates its clinical intervention decisions to the simulator and the simulator, in turn,

1) Predicts future patient state given current patient state and clinical interventions.
2) Rewards or punishes (negatively rewards) that judges if the result of the treatment is positive or

negative. The model can be as simple as just negatively rewarding patient deaths or as complex as
using the predictions of the prediction model to help the agent recognize during the episode
whether they are on the right track to a positive outcome.
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Any interactive simulator with a prediction model and a
reward model (and thus, all simulators in this paper) can be
represented as Episodic Partially Observable Markov Decision
Process (EPOMDP) as described in (Liventsev et al., 2021):

M � Snt,St,A,O, po o|s, a( ), ps snext|sprev, a( ), pr r|s, a( ), pinit s( )( )

(1)

Here, Snt is the set of non-terminal patient states. St is the set
of terminal patient states (death, discharge from hospital or end of
outpatient treatment) such that getting to one of these states
signifies the end of an episode. A is the set of actions that the
learning agent can perform, andO is the set of observations about
the current state that the agent can make. Distributions po, ps, and
pinit represent the simulator’s prediction model, while pr
represents the reward model.

Markov Decision Processes are a standard formalism in the
field of Reinforcement Learning (Sutton and Barto, 2018), so
standard RL algorithms can be used in conjunction with any
simulator from this paper for treatment discovery.

There are 2 notable examples of systems that can be referred to
as patient simulators, but do not make it easy to evaluate
treatment strategies and fall outside the scope of this survey:

1) prediction models without a reward model
2) synthetic data generators (Chen et al., 2021)

They former are tools like HumMod (Hester et al., 2011) that
help predict how change in one variable of patient health can
affect another, for instance, how digoxin intake affects blood
pressure. A reward model is absolutely necessary for the
application area that we focus on in this paper—development
and validation of treatment strategies. Developing it is also a non-
trivial problem in its own right—which health outcomes are
considered good depends on severity of the patient’s condition
(alive is a sufficiently successful outcome for the most severe
conditions, but not for others) as well as the patient’s own
preferences (Street et al., 2012; MühlbacherMühlbacher and
Juhnke, 2013). Thus, we view prediction models as
components that can be used to develop a full simulator in
the future.

The latter simulate clinical scenarios by generating samples of
clinical histories. They provide a privacy-preserving way to
generate a lot of training data for treatment discovery (James
et al., 2018; Gong et al., 2020; Rankin et al., 2020; Wang et al.,
2021), however, they don’t model counterfactuals. That is, they
don’t answer questions of the sort “How would the patient’s
health respond to decision X”? For example, Synthea (Cavalcante
et al., 2016) is a framework for generation of entire synthetic
Electronic Health Records, EHRs, of patients, from the first to the
last patient encounter, but the system does not provide ways to
test alternative interventions on patients.

1.2 Simulators as Models
What makes an effective patient simulator? We argue that there
are two use cases for a patient simulator: modeling and
benchmarking, with divergent effectiveness criteria.

Firstly, a simulator can be used as a patient model aiming to
represent the real world evolution of patient health in response to
various treatments as closely as possible. The effectiveness
criterion for a patient model is simple—accuracy. Accuracy
can be measured by comparing the simulator’s predictions
against a dataset of clinical histories. One metric in particular
that has been used for simulator validation is mean predictive
error over dynamic transitions (Summers et al., 2009). If the
simulator was obtained with machine learning, the data also has
to be different from the training data: a different dataset or a
holdout set can be used for that purpose.

The trust graph (see Figure 1) for a model is equally simple: if
the data used for development of the simulator is a representative
sample of the true distribution of the patients and the
methodology used to turn build an interactive simulator based
on these data is sound, the simulator is an accurate representation
of a real world patient. And if the training algorithm used to
discover the optimal treatment under this simulator is sound, the
resulting treatment strategy can be trusted as well. Unfortunately,
these conditions often hold only partially, or do not hold at all.

1.3 Common Biases
One type of bias, present in most data-driven healthcare
simulators is sampling bias. If patient data is used to develop a
simulator, this data is a sample (and, potentially, a biased sample)
of the patient population that may or may not represent the
population accurately. This problem is exacerbated by a profound
shortage of healthcare datasets available to the research
community. The biggest currently available dataset is MIMIC-
IV (Johnson et al., 2021)—a large database of electronic health
records in intensive care. However, MIMIC-IV was collected in
one hospital in Boston and thus represents a demographically
biased sample of the population. This bias is likely to percolate
into any simulator developed based on MIMIC-IV.

But the most crippling type of simulator bias that makes many
simulators completely unsuitable to serve as patient models is
confirmation bias. Confirmation bias occurs when the developers
of a simulator are aware of state of the art clinical practices and,
intentionally or unintentionally, develop a simulator that rewards
them and punishes alternatives. In didactic simulators used for
education of clinical professionals, confirmation bias exists by
design: students are, after all, trained to follow established clinical
protocols. For a particular example of intentional confirmation
bias in simulator design see Virtu-ALS (section 2.3). In this
simulator, a decision that violates the existing emergence care
protocol will be registered as a mistake, explained as such to the
student, and not actually implemented.

1.4 Simulators as Benchmarks
Heavily biased and otherwise inaccurate simulators should not be
used as patient models and should not be used as a basis for
treatment recommendations. However, they can make a great
benchmarks for learning algorithms. A benchmark is used not to
develop a novel treatment strategy and apply it in the real world,
but to compare different machine learning algorithms for
healthcare against each other. Simulators that exhibit
confirmation bias are a good fit for this, since they are similar
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to true patient models, but unlike in a true patient model, treatments
that these simulators evaluate as optimal are known beforehand. One
can test a learning algorithm by applying it to a biased simulator and
checking that the resulting strategy is equivalent to the strategy that
simulator developers had in mind, as displayed on the trust graph in
Figure 2.

A crucial metric for effective benchmarks is their difficulty. A
difficult simulator is one where most learning algorithms fail to
discover an effective treatment strategy, i.e. a strategy that leads to
positive health outcomes. A benchmarks’s purpose is separating
stronger learning algorithms from weaker ones, hence a good
benchmark has to be not too difficult and not too easy. To get a
grasp on simulator difficulty we train a baseline reinforcement
learning model on each, see section 4.

Another desideratum for benchmarks is transparency. When a
learning algorithm fails to discover an effective treatment strategy, it is
very useful to understand what went wrong in detail. Any
information output by the simulator other than its predictions as
well as having easy access to its internal logic can be useful for
developers.

Didactic simulators can be particularly good benchmarks
(Liventsev, 2021a), but synthetic games akin to CartPole
(Barto et al., 1983) and MountainCar (Moore, 1990)
(commonly used as benchmarks for Reinforcement Learning
algorithms) that aim to mimic only certain aspects of real life
healthcare tasks can also be used. A particularly illustrative
example is Healing MNIST (Krishnan et al., 2015)—a modified
version of the industry standard MNIST Handwritten Digits (Li
Deng, 2012) dataset to which rotations and random noise have
been added. The authors argue that this dataset reflects important
properties of healthcare tasks: rotations represent evolution of

patient state over time, while the randomised “squares within the
sequences are intended to be analogous to seasonal flu or other
ailments that a patient could exhibit that are independent of the
actions and which last several timesteps.” Due to the data
shortage in Healthcare many proposals for data-driven clinical
decision support systems are tested on such relatively unrealistic
benchmarks with the assumption that the system can be retrained
on real patient data and simulators shall they arrive in the future.

2 EXISTING SIMULATORS

2.1 Simglucose
UVA/Padova (Man et al., 2014) is a set of equations used to
model type 1 diabetes. The equations, outlined on Figure 3, were
developed by clinical experts and validated on a dataset of 32
people aged 38 ± 12 years. It is widely used inHealthcare and even
approved in the United States as a replacement for clinical trials.
It provides po (o|s, a) and ps (snext|sprev, a) (see section 1.1), so to
be a full-fledged Markov Decision Process it only need pr (r|s, a).
(Xie, 2018). solves exactly that by adding a reward function based
on diabetes risk index as defined in (Clarke and Kovatchev, 2009)
to the UVA/Padova simulator, providing a Reinforcement
Learning environment for type 1 diabetes.

2.2 GYMIC
2.2.1 Scope
GYMIC (Kiani et al., 2019) is, unlike the previous examples, a
fully data-driven simulator. It harnesses a subset of MIMIC
(Johnson et al., 2021) dataset to address on one of the most
challenging problems in emergency care—sepsis. The authors

FIGURE 1 | Trust graph of simulator as a model.

FIGURE 2 | Trust graph of simulator as a benchmark.
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intentionally limit their scope to just sepsis in order to simplify the
modelling task as well as because sepsis prevention has been identified
as an area where doctors would particularly benefit from electronic
decision support (Raghu et al., 2017; Walonoski et al., 2018).

2.2.2 Prediction Model
The prediction model of GYMIC simulator is defined as a
solution to the following autoregression task:

1) A clinical history is a sequence of (s, a) tuples
2) a ∈ 0, . . .24 is one of 25 possible vasopressor or intravenous

fluid interventions—a cartensian product of five types of
interventions and five dosage quantiles.

3) s ∈ R46 is the patient’s state at the moment this intervention
was administered.

4) Predict the conditional state distribution ps (st, at|st−1,
st−2, . . ., s1)

FIGURE 3 | UVA/PADOVA equations, visualised.
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The dataset of clinical histories is produced by a preprocessing
algorithm combining together all clinical records from MIMIC
that relate to sepsis patients.

Autoregressive tasks of this nature arise in many fields like
stock market prediction (Cavalcante et al., 2016; Jiang, 2021) or
language modelling (Jozefowicz et al., 2016) where state of the art
solutions can be found. The authors of GYMIC solve it with an
LSTM (Hochreiter and Schmidhuber, 1997) neural network with
two additional dense layers attached, see Figure 4 for the
diagram. Faced with some of the mode collapse issues
described in section 2.2.4 the authors also experimented with
semi-supervised learning [? ]: they trained a variational
autoencoder [? ] on all patient states to replace the 46-vector
representations of patient state s with learned representations
from the latent space of the VAE encoder(s). The issues persisted.

2.2.3 Reward Model
Highlighting the gravity of contracting sepsis, GYMIC has only
two outcomes: patient is discharged from intensive care or patient
dies. Its reward model reflects that, giving the agent a large
positive or negative reward at the end of the episode,
depending on the outcome. However, in order to lower the
difficulty of the simulator (delayed gratification makes training
significantly harder (Mischel and EbbesenEbbesen, 1970;
Gulwani et al., 2017)) an additional reward is provided during
the episode, based on the evolution of the patient’s SOFA score
(Lambden et al., 2019)—a commonly used measure of sepsis
severity:

r st, st+1( ) � C01 sSOFAt+1 � sSOFAt &sSOFAt+1 > 0( )+
+C1 sSOFAt+1 − sSOFAt( ) + C2 tanh sLactatet+1 − sLactatet( )

(2)

A third reward component is proposed to negatively reinforce
action severity and encourage the agent to use low doses of drugs -
an instance of confirmation bias as discussed in section 1.3, but a
necessary step given the issues in section 2.2.4.

2.2.4 Results and Issues
Unfortunately, the experiments performed by the authors of
GYMIC indicate extreme overfitting. Due to sampling bias and
simply inadequate size of the dataset there are treatments that
have only occurred a few times in the training data and have
always resulted in a positive health outcome. In GYMIC these
treatments are silver bullets that guarantee a successful outcome
while in real life they are risky and potentially very harmful.

2.3 Virtu-ALS
Virtu-ALS is a didactic emergency care simulator mainly targeted
at students and junior healthcare professionals, although its
application as a reinforcement learning benchmark was
anticipated and accounted for by the authors (Brisk et al.,
2018). Its most prominent feature is its visual nature
(Figure 5): the user has access to a 3D-rendered virtual copy
of a hospital room, view the monitor, press buttons on a
defibrillator, etc. However, the visual modality means that its
observation space

O ⊂ R307200 (3)

Such a high dimensionality of the observation space makes it
an extremely challenging reinforcement learning task. Tasks from
this family have been solved with deep neural networks (Mnih
et al., 2013), however not only does it require a long and expensive
training process, it also means that resulting treatment strategies
are black box neural networks that no clinical expert understands.
This approach to decision making is extremely hard to introduce
into clinical practice (Price, 2018; Watson et al., 2019).

Like most didactic simulators, Virtu-ALS exhibits considerable
confirmation bias—any decision that’s not supported by the
standard emergency care protocol (American Heart
Association Staff, 2006; Thim et al., 2012) is considered a
mistake and rewarded negatively.

3 PROPOSED SIMULATORS

3.1 Auto-ALS
As our first model, we propose a low-dimensional version of
Virtu-ALS.Auto-ALS is a modification of Virtu-ALS that removes
all the complexity of dealing with a visual 3D environment while
retaining all the complexity of dealing with a patient that requires
emergency care. This is achieved by attaching an event listener to
Virtu-ALS that registers all observable events that can occure in
the simulator in response to the user’s actions. The events are
listed in Table 1, organized by which agent action can trigger
which event. Tick is a special event that occurs every time the
simulator is advanced a timestep, and is negatively reinforced,
which when used with reinforcement learning algorithms
discourages clinicaly unnecessary actions.

FIGURE 4 | Neural architecture of GYMIC.
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MeasuredHeartRate, MeasuredRespRate,
MeasuredCapillaryGlucose, MeasuredTemperature, MeasuredMAP,
MeasuredSats, and MeasuredResps are measurements, events that
have a value (− ∞; + ∞) associated with them.

The events in Table 1 only get registered if the agent has learnt
some piece of information, meaning that, for example, AirwayVomit
will only occur if the patient has vomit in their airway and the agent
checked the airway (which is part of the standard protocol (Thim
et al., 2012)). Assessment skills (knowing where to look and how to
establish the patient’s state) are crucial for patient resuscitation, hence

revealing all known health variables to the agent would jeopardize the
simulation.

The observation vector in Auto-ALS is based on all
observations that have occurred between the beginning of the
episode and current time. However, more recent observations are
more likely to still be relevant and should be given priority. This
is done with the following formula proposed in (Liventsev,
2021b):

o+ � 〈o1 ∈ O1, exp t1 − t( ), . . . , on ∈ On, exp tn − t( ), 〉 (4)

FIGURE 5 | Virtu-ALS.

TABLE 1 | All actions and observations of Auto-ALS.

Agent actions Patient reactions Rewards

AssessResponse ResponseVerbal, ResponseGroan, ResponseNone 0
AssessAirway AirwayClear, AirwayVomit, AirwayBlood, AirwayTongue
AssessBreathing BreathingNone, BreathingSnoring, BreathingSeeSaw,

BreathingEqualChestExpansion, BreathingBibasalCrepitations,
BreathingWheeze, BreathingCoarseCrepitationsAtBase,
BreathingPneumothoraxSymptoms, VentilationResistance,
MeasuredRespRate

AssessCirculation RadialPulsePalpable, RadialPulseNonPalpable, MeasuredHeartRate
AssessDisability AVPU_A, AVPU_U, AVPU_V, PupilsPinpoint, PupilsNormal,

MeasuredCapillaryGlucose
AssessExposure ExposureRash, ExposurePeripherallyShutdown, ExposureStainedUnderwear,

MeasuredTemperature
AssessDefibrillator
AssessMonitor HeartRhythm0, HeartRhythm1, HeartRhythm2, HeartRhythm3, HeartRhythm4,

MeasuredHeartRate, MeasuredMAP, MeasuredSats, MeasuredResps
DoNothing

ABG, AirwayManoeuvres, GiveAtropine, GiveAdenosine, GiveAdrenaline,
GiveAmiodarone, GiveMidazolam, Venflon, Yankeur, DrawBloods,
BPCuffOn, BVM, Guedel, NRBMask, DefibOn, DefibAttachPads,
DefibShock, DefibCharge, DefibChangePaceCurrentDown,
DefibChangePaceCurrent, DefibEnergyDown, DefibEnergyUp,
DefibChangePaceRateDown, DefibChangePaceRateUp, DefibPace

Blunder rblunder

Finish Failure −1

Success 1
— Tick rtick

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 7986596

Liventsev et al. Towards Effective Patient Simulators

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


where Oi is the value of the observation and t is current time and ti is
time when observation i (for i � 5, ResponseGroan) has last occurred
and exp (ti − t) represents its decaying relevance. For measurements,
theOi equals the magnitude of the measurement, however, for binary
obsevations Oi would always be equal to one. For memory efficiency,
for all i that correspond to binary observations,Oi is skipped from the
o+ vector and the actual observation vector o has size 36 + 7p2� 50, as
opposed to (36 + 7)p2 � 86.

See source code and documentation at (Liventsev, 2021c).

3.2 HeartPole
HeartPole focuses on simplicity and transparency at the expense of
realism—it is based on a familiar scenario and a simple set of rules so
that when a treatment performs badly it is easy to explore what
exactly goes wrong.HeartPole simulates a creative professional trying
to become more productive. However, many decisions that would
help in the short term (not sleeping, consuming coffee and alcohol)
can create long-term health issues that negate all short term gains.

In HeartPole state s consists of alertness salertt , hypertension
shypert, intoxication stox time since slept stawake, total time elapsed
sttotal and total work done sdone.

Over these parameters, we define productivity function
η(salertt , stoxt ) presented graphically on Figure 6 and heart
attack probability r(shypertt ) � sigmoid(shypertt )

2 . The agent receives
small positive rewards for productivity and a very large
negative reward if a heart attack occurs.

As shown on Figure 7, every half an hour awake, the agent
observes st and picks an action at from discrete action space of just
work, drink coffee (increases salert and shypert), drink beer
(decreases salert, increases shypert and stoxt ) and go to bed (sleep
takes a lot of time, but reduces shypert and stoxt and without it
alertness starts to fall very fast).

See source code and documentation at (Härmä et al., 2021).

3.3 GraphSim
Our last model is trained on MIMIC (Johnson et al., 2021) to
maximise accuracy. MIMIC can be represented as a set of patients

where every patient is an oriented graph, its nodes are patient
states, each state is a vector of various clinical measurements, such
as blood pressure and oxygen saturation, whereas arcs that
connect the patient states are doctors actions, each action a
vector of administered drug doses. These oriented graphs can
also be viewed as disjoint clusters in one graph of all possible
patient states, a sequence of patient states connected by doctor
agents.

G � 〈sbefore, a, safter〉{ } (5)

Some states in this oriented graph are very similar, it is
reasonable to assume that two different patients have been in
the same state at some point. Our algorithm is based on the idea
that if two patients have been in the same state, their clinical
histories represent two possible timelines of events after the state
and the choice of timeline depends on doctor’s actions.

We find all state pairs 〈sA, sB〉 below a similarity threshold

cos sA, sB( )< cmin (6)

and merge each into a single state, replacing occurences of
sA and sB in G with sA+sB

2 . The resulting oriented graph becomes
the backbone of out simulator. The simulated patient is
initialized in state s0 equal to one of the initial states of
real patients in MIMIC. When at timestep t the agent picks
action at, transition to the next state depends on euclidean
distance between the action in the graph and at via the softmax
function:

p st+1|st, at( ) � ∑G
〈sbefore ,a,safter〉I sbefore � st[ ]I safter � st+1[ ]e|at−a|22

∑G
〈sbefore ,a,safter〉I sbefore � st[ ]e|at−a|22 (7)

where I is the indicator function. See Figure 8 for a diagram of the
resulting simulator.

The simulator’s source code will be published soon.

4 EFFECTIVENESS

How do these simulators fare with respect to accuracy criteria we
set out in the introduction? The factors that contribute to a

FIGURE 6 | Productivity function in HeartPole.

FIGURE 7 | An example episode in HeartPole.
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simulator’s accuracy are reviewed in Table 2. GYMIC and
GraphSim are the only simulators trained on a large dataset
and GYMIC’s accurracy has known overfitting issues. GraphSim
is thus the most accurate of the simulators.

The most transparent simulator is clearly HeartPole. It does not
aim to model any real clinical scenario accurately, but it can be a
useful development tool to help scrutinize reinforcement learning
algorithms.

As far as difficulty is concerned, HeartPole (Härmä et al.,
2021), simglucose (Zhu et al., 2021), and GYMIC (Kiani et al.,
2019) are known to be solvable with relatively small models
and standard reinforcement learning algorithms like DQN (Mnih
et al., 2015). Thus, the only simulators difficult enough to be
benchmarks for novel approaches are Virtu-ALS and Auto-ALS
and Auto-ALS is the more accessible of the two.

Table 3 reviews the structural complexity of the simulators,
a factor that directly contributes to difficulty. Note that Virtu-
ALS is an unusually high-dimensional environment. As such,

FIGURE 8 | GraphSim.

TABLE 2 | Summary of each simulator: trust view.

Simulator Scope Data source Sample
size

Learning algorithm Known biases

simglucose (Xie, 2018) type 1 diabetes original study 32 expert model validated on data
behavior cloning

Overfitting confirmation bias confirmation
bias no factual basisGYMIC (Kiani et al.,

2019)
sepsis in intensive
care

MIMIC (Johnson et al.,
2021)

40 ,000

Virtu-ALS (Brisk et al.,
2018)

emergency care

Auto-ALS emergency care
HeartPole healthy lifestyle
GraphSim intensive care MIMIC (Johnson et al.,

2021)
40 ,000 graph compression

TABLE 3 | Summary of each simulator: POMDP view.

Simulator O A pr (r = 0|s) ≠ 1

simglucose [0;+∞) [0; 35] Snt ∪ St

GYMIC [0; 24]46 0, . . . , 24 Snt ∪ St

Virtu-ALS [0; 256]307 200 1, . . . , 307 200 Snt ∪ St

Auto-ALS [0;+∞)36 1, . . . , 34 Snt ∪ St

HeartPole R6 1, . . . , 4 Snt ∪ St

GraphSim (−∞;+∞)26 [0; 1]317 St
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solving it is likely to require more parameters and longer
training times. GraphSim is the only simulator that doesn’t
provide non-zero rewards in non-terminal states Snt, making it
harder for the agent to attribute the results of the episode to
particular actions. GYMIC (see section 2.2) solves this
problem with an additional metric (SOFA score), but unlike
GYMIC GraphSim covers a wide range of clinical conditions
and there is no single health metric applicable to each.

5 CONCLUSION

Automatic discovery of clinical strategies is a nascent field of
research that has a potential to considerably improve patient
outcomes and become a new modus operandi in healthcare
research. The goal of this paper is to provide a solid
foundation for further development of this field with better
patient simulators and better understanding thereof. We have
reviewed the state of the art in patient simulators, identified some
of the problems the field is facing and proposed novel simulators
to address them. We believe that HeartPole and Auto-ALS can
become new standard benchmarks for reinforcement learning in
healthcare, while GraphSim can become a stepping stone to
improved patient outcomes in intensive care.
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