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Driven by massive datasets that comprise biomarkers from both blood and magnetic
resonance imaging (MRI), the need for advanced learning algorithms and accelerator
architectures, such as GPUs and FPGAs has increased. Machine learning (ML) methods
have delivered remarkable prediction for the early diagnosis of Alzheimer’s disease (AD).
Although ML has improved accuracy of AD prediction, the requirement for the complexity
of algorithms in ML increases, for example, hyperparameters tuning, which in turn,
increases its computational complexity. Thus, accelerating high performance ML for
AD is an important research challenge facing these fields. This work reports a
multicore high performance support vector machine (SVM) hyperparameter tuning
workflow with 100 times repeated 5-fold cross-validation for speeding up ML for AD.
For demonstration and evaluation purposes, the high performance hyperparameter tuning
model was applied to public MRI data for AD and included demographic factors such as
age, sex and education. Results showed that computational efficiency increased by 96%,
which helped to shed light on future diagnostic AD biomarker applications. The high
performance hyperparameter tuning model can also be applied to other ML algorithms
such as random forest, logistic regression, xgboost, etc.

Keywords: machine learning, hyperparameter tuning, alzheimer’s disease, high performance computing, support
vector machine

INTRODUCTION

Alzheimer’s disease (AD) is the most common form of dementia. In 2020, as many as 5.8 million
Americans were living with AD. This number is projected to nearly triple by 2060 (Prevention, 2021).
Machine Learning (ML) methods for AD and AD Related Dementias (ADRDs) is growing faster
than ever before (Waring et al., 2008; Magnin et al., 2009; O’Bryant et al., 2011a; O’Bryant et al.,
2011b; O’Bryant et al., 2013; O’Bryant et al., 2014; Weiner et al., 2015; O’Bryant et al., 2016; O’Bryant
et al., 2017; Grassi et al., 2018; Hampel et al., 2018; O’Bryant et al., 2018; Stamate et al., 2019;
Zetterberg and Burnham, 2019; Zhang and Sejdić, 2019; Franzmeier et al., 2020; O’Bryant et al., 2020;
Rodriguez et al., 2021). A PubMed search using keywords of AD and ML showed that the number of
publications related to ML for AD has increased by 146 percent from just two in 2006 to 294 in 2020.
For example, O’Bryant et al. developed a Support Vector Machine (SVM) model with 398 plasma
samples obtained from adults with Down syndrome to predict incident mild cognitive impairment
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(MCI) (AUC � 0.92) and incident AD (AUC � 0.88) (O’Bryant
et al., 2020). O’Bryant et al. also developed a precision medicine
model for targeted NSAID therapy in AD based on data collected
from a previously conducted clinical trial. This work included 351
patients with mild-to-moderate AD that were enrolled into one of
three trial arms: 1-year exposure to rofecoxib (25 mg once daily),
naproxen (220 mg twice-daily) and placebo. The SVM model
yielded 98% theragnostic accuracy in the rofecoxib arm and 97%
accuracy in the naproxen arm, respectively (O’Bryant et al., 2018).
Magnin et al. also built a SVMmodel with three-dimensional T1-
weighted MR images of 16 patients with AD and 22 elderly
controls and obtained a 94.5%mean accuracy for ADwith amean
specificity of 96.6% and mean sensitivity of 91.5% (Magnin et al.,
2009).

Improving speed and capability is a huge issue in applying ML
to AD. It is possible that certain ML computations can be delayed
because of the large amount of time to iteration that is required,
for example, time to train with hyperparameters tuning. High
performance computing (HPC) can be used to help meet the
increasing demands for the speed and capabilities of processing
ML for AD (Eddelbuettel, 2021). With the fast processing ability
of high-performance computing systems, faster results can be
delivered, which in turn would not only speed up finding the
optimal hyperparameters for AD with ML models but would also
identify opportunities to fix issues in hyperparameter tuning for
AD ML models.

In this paper, based on the multicores parallel structure of
Talon3 high performance computing provided by the University
of North Texas, we present a high performance computing
workflow to support our parallel SVM hyperparameter tuning.
We applied the multicore high performance SVM
hyperparameter tuning to 100 times repeated 5-fold cross-
validation model for longitudinal MRI data of 150 subjects
with 64 subjects classified as demented and 86 subjects
classified as nondemented. The computational time was
dramatically reduced by up to 96% for the high performance
SVM hyperparameter tuning model. The multicores parallel
structure and the high performance SVM hyperparameter
tuning model can be used for other ML applications.

MATERIALS AND METHODS

Parallel Structure
We used the Talon3 system (Table 1) provided by University
of North Texas for this study due to its convenient computing

services, which allowed us to import/export/execute large and
complex parallel ML. The hardware configuration of the
Talon3 contains the following: more than 8,300 CPU cores,
150,000 GPU cores, Mellanox FDR InfiniBand network, and
over 1.4 Petabytes of Lustre File Storage. The amount of AD
data necessary for performing ML with a PC workstation is
massive. For example, in one study with 300 samples, to
process just the 100 times repeated 5-fold cross-validation
for hyperparameters tuning with SVM, it would require about
3 h of consecutive CPU time and 12 GB of storage with a local
computer.

For parallel computing, the Talon3 provides several options
including: SNOW, Rmpi, and multicore. We chose multicore
because it executes parallel tasks on a single node as opposed to
multiple nodes and the level of flexibility is higher than the
other two options. For multicore parallel programming,
submitting high performance ML includes two parts: a shell
script and an R script. The shell script we submitted for
multicore is for a single node with 28 cores in C6320. And
for the R script high performance ML, we used doParallel
(Michelle Wallig et al., 2020; Eddelbuettel, 2021) and foreach
(Michelle Wallig and Steve, 2020; Eddelbuettel, 2021)
packages.

Parallel SVM Hyperparameter Tuning
Based on the above parallel structure in Talon3 and doParallel
package, we developed a high performance computing workflow
to support our parallel SVM hyperparameter tuning (Figure 1).
We used a grid search approach to find the best model parameters
in terms of accuracy. This procedure mainly contains three steps:
1) define a grid to vary cost and gamma, 2) perform 100 times

TABLE 1 | Talon3 computer nodes.

Quanity Memory (GB) Cores Description

192 64 28 Dell PowerEdge C6320 server with two 2.4 GHz Intel Xeon E5-2680 v4 14-core processors
75 32 16 Dell PowerEdge R420 server with two 2.1 GHz Intel Xeon E5-2450 eight-core processors
64 64 16 Dell PowerEdge R420 server with two 2.1 GHz Intel Xeon E5-2450 eight-core processors
8 512 32 Dell PowerEdge R720 server with four 2.4 GHz Intel Xeon E5-4640 eight-core processors
16 64 28 Dell PowerEdge R730 server with two 2.4 GHz Intel Xeon E5-2680 v4 14-core processors and two Nvidia Tesla K80 GPUS

(4,992 GPU cores/card)

TABLE 2 | Performance for testing set after hyperparameter tuning.

Actual demented Actual nondemented

Predicted demented 9 1
Predicted nondemented 3 16

Precision/PPV 90.00%
Accuracy 86.21%
Sensitivity 75.00%
Specificity 94.12%
NPV 84.21%
AUC 90.80%
PPV12 63.49%
NPV12 96.50%
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repeated 5-fold cross-validation splits on training data, and 3)
tune the cost and gamma of the SVM model.

100 Times Repeated 5-Fold
Cross-Validation
A single run of the 5-fold cross-validation (O’Bryant et al.,
2019) may result in a noisy estimate of model parameters. We
adopted 100 times repeated 5-fold cross-validation (Kublanov
et al., 2017) to improve the estimation of optimal parameters of
the ML model. This involves simply repeating the cross-
validation procedure 100 times and reporting the mean
performance across all folds from all runs. This mean
performance is then used for the determination of optimal
parameters.

Metrics
The following eight measurements were involved in our
evaluation: 1) Sensitivity (also called recall), the
proportion of actual positive pairs that are correctly
identified; 2) Specificity, the proportion of negative pairs
that are correctly identified; 3) Precision, the probability of
correct positive prediction; 4) Accuracy, the proportion of
correctly predicted pairs; 5) Area Under the Curve; 6)
Negative Predictive Value (NPV), the probability that
subjects with a negative screening test truly don’t have the

disease; 7) Negative Predictive Value at base rate of 12%
(NPV12); and 8) Positive Predictive Value at base rate of 12%
(PPV12).

RESULTS

We downloaded open access longitudinal MRI data available on
nondemented and demented older adults (Marcus et al., 2010a).
The dataset consisted of longitudinal MRI data from 150 subjects
aged 60 to 96. 72 of the subjects were classified as “nondemented”
throughout the study. 64 of the subjects were classified as
“demented” at the initial visit and remained so throughout the
study. 14 subjects were classified as “nondemented” at the initial
visit and were subsequently characterized as “demented”at a later
study visit. For each subject, three to four individual T1-weighted
magnetization prepared rapid gradient-echo (MP-RAGE) images
were acquired in a single imaging session (Marcus et al., 2010b).
The subject-independent model we developed for parallel
hyperparameter tuning is not based on a classifier trained for
each subject individually. We chose the following five imaging
and clinical variables to predict the status of AD: SES
(Socioeconomic Status), MMSE (Mini Mental State
Examination), eTIV (Estimated Total Intracranial Volume),
nWBV (Normalize Whole Brain Volume), and ASF (Atlas
Scaling Factor). Measurements of these variables in this cohort

FIGURE 1 | Pseudo code for parallel SVM hyperparameter tuning.
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including clinical dementia rating scale (CDR), nWBV, eTIV,
ASF, etc. have been previously described elsewhere (Marcus et al.,
2010b). Three demographic variables: Sex, Age, and Edu (Years of
education) were also added as covariates.

We used sbatch commands to submit shell scripts and R scripts
for comparing computational time for hyperparameter tuning under
different number of cores and repeated times of 5-fold cross-
validation in Talon3. With SVM modeling, we demonstrate in
Figure 2 how the number of cores affects the computational time
of hyperparameter tuning, which shows that the computational time
decreases proportionally as the number of cores increases. Figure 2
also demonstrates that the repeated times of the 5-fold cross-
validation algorithm for hyperparameter affects the computational
time. The computational time increased proportionally with the
increasing repeated times. The time spent initially for the
hyperparameter tuning without using high performance
computing is very large (140.73min for t � 100; 11.58min for t �
10). The computational time decreased to 5.44 and 0.67min, for t �
100 and for t � 10 respectively, when we used 28 cores to accelerate
hyperparameter tuning in ML. We thereby reduced computational
time by up to 96%, with high performance ML model.

The optimal hyperparameters we obtained are the same for all
runs (gamma � 0.005, cost � 32). We used grid search method
and set boundary for the two parameters: cost and gamma as
suggested in the paper (Hsu et al., 2003) where fine grid search
was on cost � (2, 32) and gamma � [2̂(−7), 2̂(−3)]. We extended

the cost boundary to (0.25, 512) and the gamma boundary to (0,
10) to catch as much change as possible. Variables importance
under the SVM model with the optimal hyperparameters shows
that the MMSE, nWBV, and SES are leading variables in
predicting dementia (AD) status. Out of the three
demographic variables, education was shown to be less
important for the SVM model than Age and Sex.

With the optimal hyperparameters, the average performance
that the SVMmodel achieved for a testing set of 12 Demented and
17 Nondemented is reported on below for both 100 times
repeated 5 -fold cross-validation and 10 times repeated 5 -fold
cross-validation. The performance (Table 2) is slightly higher
than previously reported at https://www.kaggle.com/hyunseokc/
detecting-early-alzheimer-s, which achieved accuracy � 0.82,
sensitivity � 0.70, and AUC � 0.82 for SVM. Our results show
that the high performance SVMhyperparameter tuning workflow
that we presented can significantly reduce computational time
while maintaining the necessary accuracy.

In order to demonstrate the extensibility of our
hyperparameter tuning workflow to other ML models, we also
followed the SVM hyperparameter tuning workflow (Figure 3)
and adopted random forest into our parallel hyperparameter
tuning workflow (Figure 4). We obtained consistent results that
the computation time for hyperparameter tuning of random
forest was also remarkedly reduced (Figure 5). The
computational time was reduced from 47.67 to 2.24 min by

FIGURE 2 | Computational time vs. number of cores with SVM modeling.
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95% and from 5.25 min to 18.17 s by 94%, for t � 100 and t � 10
respectively.

We also tested the adaptability of our hyperparameter tuning
workflow to the Texas Alzheimer’s Research and Care
Consortium (TARCC) dataset (Zhang et al., 2021). The
TARCC dataset contains a total of 300 cases (150 AD cases;
150 Normal Control cases). Each subject (at one of the five
participating TARCC sites) undergoes an annual standardized
assessment, which includes a medical evaluation,
neuropsychological testing, and a blood draw. The same
blood-based biomarkers in (Zhang et al., 2021) were used as
features for parallel hyperparameter tuning. Even when adopting
a new TARCC dataset into our parallel hyperparameter tuning
workflow (Figure 1), we obtained consistent results, which
showed that the computation time for the hyperparameter
tuning of the new TARCC dataset was also remarkedly
reduced by about 96%. The computational time was reduced
from 311.5 to 12.48 h by 96% and from 34.03 to 1.6 h by 95%, for
t � 100 and t � 10 respectively.

DISCUSSIONS

HPC advances have successfully helped scientists and researchers
to achieve various breakthrough innovations in the field of

Omics-medicine, technology, retail, banking and so on
(Merelli et al., 2014). For example, HPC has been applied to
Next Generation Sequencing that is extremely data-intensive and
needs ultra-powerful workstations to process the ever-growing
data (Schmidt and Hildebrandt, 2017). Hyperparameter tuning
component of ML can be a high-performance computing
problem as it requires a large amount of computation and
data motion. ML requires a computationally-intensive grid
search and lots of computational power to help enable faster
tuning cycles. Introducing HPC toML can take advantage of high
volumes of data as well as speed up the process of hyperparameter
tuning.

Therefore, we presented a parallel hyperparameter tuning
workflow with HPC to exploit modern parallel infrastructures
to execute large-scale calculations by simultaneously using
multiple compute resources. The rationales are 1) the foreach
package that the workflow is based on supports parallel execution
and provides a new looping construct for executing R code
repeatedly. Specifically, a problem is broken into discrete parts
that can be solved concurrently and an overall control/
coordination mechanism is employed; 2) the foreach package
can be used with a variety of different parallel computing systems,
include NetWorkSpaces and snow; and 3) foreach can be used
with iterators, which allows the data to be specified in a very
flexible way.

FIGURE 3 | Pseudo code for parallel RF hyperparameter tuning.

Frontiers in Artificial Intelligence | www.frontiersin.org December 2021 | Volume 4 | Article 7989625

Zhang et al. Machine Learning Hyperparameter Tuning Acceleration

https://www.frontiersin.org/journals/artificial-intelligence
www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


The multicore high performance SVM hyperparameter tuning
workflow we presented is hardware-agnostic and can be used in
HPCs of most U.S. universities or commerical clouds for example,
Amazon AWS, Microsoft Azure, Google Cloud, etc. Before
executing the multicores high performance SVM hyperparameter
tuning, R package (V4.0.3, Linux) and doParallel and foreach
libraries should be installed successfully, which are met for HPCs
inmost U.S. universities or commerical clouds. There aremainly two
of the most popular job schedulers used for requesting resources
allocations on a multi user cluster: 1) the Simple Linux Utility for
Resource Management (Slurm) and 2) the Portable Batch System
(PBS). In Figure 6, we described the shell script for parallel

computing for the Slurm system. Similary a shell script for
parallel computing for PBS system is as followed.

The multicore high performance SVM hyperparameter tuning
workflow significantly reduced computational time while
maintaining a consistent detection accuracy. The workflow was
diagrammed through a multicore computing pseudo code using
the doParallel package in R for high performance hyperparameter
tuning. The basic idea of multicore computing is to allow a single
program, in this case R, to run multiple threads simultaneously in
order to reduce the “walltime” required for completion. The
doParallel package in R is one of several “parallel backends” for
the foreach. It establishes communication between multiple cores,
even on different physical “nodes” linked by network connections.
The foreach function evaluates an expression for each value of the
counter (iterator) “case”. The %dopar% operator is used to execute
the code in parallel. Using %do% instead would lead to sequential
computation by the primary process. When parallelizing nesting for
loops, there is always a question of which loop to parallelize. If the
task and number of iterations vary in size, then it’s really hard to
knowwhich loop to parallelize.We parallelized the outer loop in our
SVM hyperparameter tuning because this would result in larger
individual tasks, and larger tasks can often be performed more
efficiently than smaller tasks. The hyperparameter tuning could be
parallelized at the inner loop also if the outer loop doesn’t havemany
iterations and the tasks are already large.

The multicores high performance hyperparameter tuning
workflow can also be used for other ML such as random forest,
logistic regression, xgboost, etc. For example, we demonstrated that a
random forest model can be adopted into our parallel
hyperparameter tuning model (Figure 3) and the results we
obtained were consistent in that the computation time for
hyperparameter tuning of random forest models were remarkedly
reduced (Figure 7). In the future, we plan to use Rmpi library to
create multinodes parallel computing workflow for hyperparameter
tuning when Talon3 supports multinodes parallel computing to run
R script.

FIGURE 4 | R script for parallel computing.

FIGURE 5 | Variable importance of the eight variables.

FIGURE 6 | Shell script for parallel computing.
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Our optimal hyperparameter model also showed that MMSE,
Age, Sex, nWBV, and SES are important variables in AD
diagnosis, which is consistent with previous findings. For
example, Arevalo-Rodriguez et al. found that baseline MMSE
scores can achieve a sensitivity of 76% and specificity of 94% for
predicting conversion from MCI to dementia (in general) and a
sensitivity of 89% and specificity of 90% for predicting conversion
from MCI to AD dementia (Arevalo-Rodriguez et al., 2015).
Advanced age and sex are two of the most prominent risk factors
for dementia. Females are more likely to be susceptible for
developing AD dementia than males (Podcasy and Epperson,
2016). Podcasy at Penn PROMOTES Research on Sex in Health
and examined sex and gender differences in the development of
dementia and suggested that researchers should consider sex as a
biological variable for dementia research (Podcasy and Epperson,
2016). Rose et al. evaluated the combination of cerebrospinal fluid
biomarkers with education and normalized whole-brain volume
(nWBV) to predict incident cognitive impairment (Roe et al.,
2011). They concluded that time to incident of cognitive
impairment is moderated by education and nWBV for
individuals with normal cognition had higher levels of
cerebrospinal fluid tau and ptau at baseline (Roe et al., 2011).
Khan et al. and Leong et al. assessed the role of various features on
the prognosis of AD, and found that sex, age, MMSE, nWBV, and
SES were significantly associated with and made an impact on the

occurrence of AD (Leong and Abdullah, 2019; Khan and Zubair,
2020).
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