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Targeting resources e�ciently
and justifiably by combining
causal machine learning and
theory

Ozden Gur Ali*

College of Administrative Sciences and Economics, Koç University, Istanbul, Turkey

Introduction: E�cient allocation of limited resources relies on accurate

estimates of potential incremental benefits for each candidate. These

heterogeneous treatment e�ects (HTE) can be estimated with properly

specified theory-driven models and observational data that contain all

confounders. Using causal machine learning to estimate HTE from big data

o�ers higher benefits with limited resources by identifying additional

heterogeneity dimensions and fitting arbitrary functional forms and

interactions, but decisions based on black-box models are not justifiable.

Methods: Our solution is designed to increase resource allocation e�ciency,

enhance the understanding of the treatment e�ects, and increase the

acceptance of the resulting decisions with a rationale that is in line with

existing theory. The case study identifies the right individuals to incentivize for

increasing their physical activity to maximize the population’s health benefits

due to reduced diabetes and heart disease prevalence. We leverage large-scale

data frommulti-wave nationally representative health surveys and theory from

the published global meta-analysis results. We train causal machine learning

ensembles, extract the heterogeneity dimensions of the treatment e�ect, sign,

and monotonicity of its moderators with explainable AI, and incorporate them

into the theory-driven model with our generalized linear model with the

qualitative constraint (GLM_QC) method.

Results: The results show that the proposed methodology improves the

expected health benefits for diabetes by 11% and for heart disease by 9%

compared to the traditional approach of using the model specification from

the literature and estimating the model with large-scale data. Qualitative

constraints not only prevent counter-intuitive e�ects but also improve

achieved benefits by regularizing the model.

KEYWORDS

causal machine learning, interpretability, explainable AI, heterogeneous treatment

e�ects, monotonicity constraints, public health, e�cient resource allocation,

GLM_QC
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Introduction

Efficient resource allocation requires identifying those

groups/individuals with high benefits (treatment effect) per

unit cost (Haupt and Lessmann, 2022). For example, economic

incentives in motivational tools built into health wearables

constitute a treatment to improve healthy behaviors and

health outcomes (Adjerid et al., 2022). Accurately estimating

heterogeneous treatment effects allows focusing the limited

resources on individuals whose health would benefit the most

from these incentives and thus increases the targeting efficiency.

The gold standard for estimating causal effects is

randomized controlled experiments. In their absence, causal

effects can be estimated with observational data, providing that

the model is correctly specified and includes all confounding

covariates (Gelman and Hill, 2006). When used with large

amounts of data that contain all confounders, new causal

machine learning (C-ML) methods (e.g., causal forest, BART, X-

Learner) learn the non-parametric model structure and estimate

heterogeneous treatment effects accurately (Hill, 2011; Athey

et al., 2019; Künzel et al., 2019; Gubela et al., 2020). On the other

hand, their complexity makes these models uninterpretable.

In general, black-box models face lower acceptance from the

decision-makers, who view them skeptically and compare them

to their own understanding (Žliobaite et al., 2016; Coussement

and Benoit, 2021). Decision-makers will want to see that the

model is qualitatively in line with the current understanding and

that the new findings are reasonable considering other external

evidence. Transparency and fairness of decisions to determine

which programs should receive investment are important in

institutional settings, particularly in the public sector (Bilkey

et al., 2019).

Further increasing the importance of interpretability,

unlike the “traditional” machine learning prediction

tasks for an observable quantity, such as whether the

person has the disease or not, causal machine learning

methods estimate the unobservable treatment effect, e.g.,

change in the disease probability due to increased physical

activity, and therefore lack an objective accuracy measure.

Causal inference with observational data necessarily

depends on the external assumptions (Athey, 2017).

Hence, whether the model “makes sense” is not only

important for organization acceptance, but it also serves

as a diagnostic about whether the model is overfitting or has

confounding problems. Justifiability requires interpretable

models that can be related to the existing understanding of

the subject.

The key questions we seek to address in this paper are

“how can we learn heterogeneous treatment effects (HTEs)

accurately without losing interpretability and connection to

existing theory?,” and “how can we facilitate a good tradeoff

between targeting efficiency and interpretability?”.

Our contributions are as follows: first, we propose a

methodology to incorporate causal machine learning findings

into a theory-driven model specification for HTE estimation.

To the best of our knowledge, this is the first use of Causal

ML and Explainable Artificial Intelligence (XAI) to identify the

moderators of the causal (treatment) variable and functional

form of the effect. Second, we introduce the generalized

linear model with qualitative constraint (GLM_QC) method

to efficiently impose sign and monotonicity constraints on the

main and two-way interaction effects of discretized variables.

Third, we provide empirical evidence that enhancing a theory-

driven model with additional heterogeneity dimensions and

qualitative constraints based on Causal ML insights increases

the targeting efficiency. Fourth, we show that imposing sign and

monotonicity constraints leads to more accurate HTE estimates

compared to allowing arbitrary non-linear effects and prevents

counter-intuitive effects.

The case study deals with estimating the HTE of increasing

physical activity on Diabetes and Ischemic Heart Disease (IHD)

probability among the adult population in Turkey. The objective

is to maximize the health benefits, by targeting the limited

public health resources to encourage individuals to increase their

physical activity. The observational data consist of five waves

of the biannual individual level nationally representative health

surveys conducted by the Turkish Statistical Institute (TUIK)

with more than ninety thousand observations, providing self-

reported socioeconomic, demographic, behavior, and disease

information. The theory-driven initial model terms and the

qualitative constraints on sign and monotonicity are taken from

the literature (Ali et al., 2020).

The rest of the paper is organized as follows. The

next section provides an overview of related work in

treatment effect estimation, sign and monotonicity constraints

in regression, causal machine learning methods, and XAI, with

an emphasis on tools used in the study. The problem and

the methodology section lays out the proposed methodology,

including GLM_QC. The case section describes the case study,

the data sources, and the theoretical specifications. Results

section applies the methodology to the case and provides

insights and performance comparison with the benchmarks.

We conclude with managerial and methodological implications

and limitations.

Related work

Treatment e�ect

The causal effect is the difference between a certain outcome

and a “counterfactual” obtained under a different treatment,

such as disease probability with the current and one higher

level of physical activity, or customer churn probability with and

without a retention offer.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2022.1015604
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Gur Ali 10.3389/frai.2022.1015604

While controlled randomized experiments are the gold

standard to guard against confounding and eliminate selection

and self-selection bias in the data, they are frequently infeasible

or not cost-effective. The Neyman-Rubin potential outcome

model (Rubin, 1974) allows for causal effect estimation in

observational studies with two main assumptions: (a) the

treatment of an individual will not affect the outcome of

others and the treatment w is standard; (b) unconfoundedness,

indicating that the treatment assignment is independent of the

outcomes, given the covariates X, that is, y⊥w|X, typically

extended with the overlap (or common support) assumption

that all individuals have a non-zero probability of treatment.

The unconfoundedness assumption ensures that selection bias

is zero conditional on the confounding covariates (Gelman and

Hill, 2006; Athey and Imbens, 2016). Ho et al. (2017) discusses

the methods to infer treatment effects in case of a concern for

endogeneity, e.g., due to the omission of confounding variables

from the model, including instrumental variables, regression

discontinuity, and differences in different approaches.

In this study, we focus on the methods that rely on the above

two assumptions to estimate heterogeneous treatment effects.

Regression of y with w and all confounders can be used to

estimate causal effects, assuming the model is correctly specified

(including linearity and interactions) (Gelman and Hill, 2006).

The treatment effect, τ (X) , is defined as follows, where ω0 and

ωs are the control and treatment levels, respectively.

τ (X) = E
[
y|w = ωs,X

]
− E

[
y|w = ω0,X

]

Unlike the regression model, which is global, matching

relies on the local estimates by comparing the outcome

of treated individuals with those of similar ones who are

untreated. While nearest neighbor matching is popular due to

its simplicity (Stuart, 2010), an alternative is kernel smoothing,

which averages the outcomes in the entire control group by

weighting the subjects according to their closeness (Su et al.,

2012). Propensity score methods use the conditional treatment

probability of the individual, p (w|X), to estimate treatment

effects. The scores can be estimated using any supervised

machine learning technique such as logistic regression, support

vector machines, neural networks, or random forests (Westreich

et al., 2010). They can be used to weight observations in

calculating average treatment effects (ATEs) to adjust for over-

/under-representation among other uses.

While earlier research focused on ATE in a population,

the availability of large-scale data and advanced statistical

and machine learning methods enabled the detection and

measurement of heterogeneous (or Individual) treatment effects

(HTEs), denoted by τi.

τi = E
[
yi
∣∣ wi = ωs,Xi

]
− E

[
yi
∣∣wi = ω0,Xi

]
.

Operation management and marketing applications such

as uplift modeling, differential response modeling, incremental

response, true-lift, or net modeling seek to identify the

individuals or segments with high treatment impact for efficient

use of resources with targeting (Ascarza, 2018). Uplift models

for retention “recognize customer heterogeneity with respect to

the incremental impact” of the treatment (Ascarza et al., 2018).

Gubela et al. (2020) provides a review and evaluate supervised

machine learning algorithms in the context of revenue uplift

modeling for marketing campaigns.

Heterogeneous treatment e�ect learning
in healthcare

In healthcare applications, quantifying heterogeneous

treatment effects allows for taking appropriate preventive

measures and personalizing treatments. While it is possible to

learn the causal effects and calculate counterfactual outcomes

with sufficiently variant observational data, it is important

to maintain robustness in the presence of confounding and

selection bias (Prosperi et al., 2020; Sanchez et al., 2022).

One way of representing known causal relationships among

covariates is structural causal models, which can then be used to

learn machine learning models that can support counterfactual

evaluations such as Bayesian nets (Pawlowski et al., 2020).

Causal directed acyclic graphs (DAGs) can also be learned from

extensive observational data (Vowels et al., 2021). Combining

the results of multiple causal structure learning algorithms

with, e.g., majority voting, Mahipal and Alam (2022) would

alleviate biases due to the different assumptions inherent in the

algorithms. On the other hand, potential biases in the data, such

as selection bias or not having common support for treatment

and control cases in high-dimensional neighborhoods, can still

negatively affect causal discovery and inference. In the case of

Alzheimer’s disease classification, Xia et al. (2022) augments

the training data with counterfactuals of synthesized brain

images from a pre-trained generative model using age as a

conditional factor to alleviate spurious correlations and to

improve classification performance. They use an adversarial

game to identify the most useful counterfactual to add to the

training data.

Identifying confounders and properly specifying the

functional form are the challenges in causal discovery; hence,

external evaluation of discovered relationships is necessary: For

example, in the case of predicting pneumonia risk and 30-day

hospital readmission, thanks to the interpretability of the GA2M

model, a non-causal association was caught: the data implied

that asthma was associated with a lower risk, which was actually

due to the stricter treatment protocols for the patients with

asthma (Caruana et al., 2015).

Several methods discover segments with different treatment

effects. The qualitative interaction tree (QUINT) method

(Dusseldorp and Van Mechelen, 2014) partitions patients into
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subgroups predicting which treatment works better for them

based on the observed characteristics. The causal rule sets

method finds short rules that do not necessarily have a tree

structure (Wang and Rudin, 2022). The heterogeneous effect

mixture model (HEMM) uses mixture distributions rather than

crisp rules (Nagpal et al., 2020).

Causal machine learning models are differentiated from the

predictive machine learning models in that they estimate the

causal effect of treatment w on the outcome y, given other

co-variates X, rather than predicting the outcome y, given X

and w. Used with large amounts of data, and assuming that

the data contain all confounders, these methods can discover

heterogeneity dimensions and functional forms, and locally

average over many potentially viable model structures and thus

guard against confounding due to incorrect model specification.

A classification of the causal machine learning meta-learners

aimed at learning the heterogeneous treatment effects considers

three groups: T-learners learn the outcome for the treatment

and control datasets separately and take the difference of the

predicted values, S-learners use one learner that includes the

treatment to predict the outcome and take the difference of

the predicted outcome values with different treatment variable

values keeping all else the same, X-learners (Künzel et al.,

2019) offer the advantages for learning smooth or sparse HTE

functions and when the sample sizes are unequal by fitting

separate learners on the imputed treatment effects in the

treatment and control groups and combining them with a

weighted average.

Next, we provide a deeper perspective on the two causal

machine learning methods we use in our study. Bayesian

additive regression tree (BART) is a sophisticated S-learner,

while causal forests (CF) do not fall within the meta-

learner classification.

Causal machine learning

BART for treatment e�ects

Bayesian additive regression tree (BART) is a flexible sum-

of-trees machine learning algorithm, which does not impose

strong parametrization, provides uncertainty intervals, and

allows for regularization through prior distributions (Chipman

et al., 2010).

The BART model is the sum of many regression trees f (x)

= g(x, T1,M1 ) + g(x,T2,M2 )+· · ·+g(x,Tm,Mm), where Mh

= (µh1,µh2, . . . µhbh ) denotes the collection of parameters

for the bh leaves of the hth tree, Th. Unlike the parametric

regressionmodels, the BARTmodel captures non-linearities and

interactions without the explicit intervention of the researcher.

To avoid overfitting, BART trees are designed to be small,

while leaf parameters are shrunk toward zero. Each tree can

be seen as a low-order interaction, which is particularly useful

when the true function is also of low-order interaction. The

trees are fit by posterior sampling and averaging, using the

Bayesian backfitting and Markov chain Monte Carlo (MCMC)

algorithms. The regularization prior distributions influence the

size and fit (Hill et al., 2020); for example, when the data

are high-dimensional and ultrasparse, using a sparsity-inducing

Dirichlet prior filters out most of the variables unless the data

strongly suggest otherwise (Linero, 2018). Chipman et al. (2006)

found that BART maintained its strong performance with the

default prior.
τ̂BARTi is calculated as the mean conditional difference

between the predicted outcome value under the treatment and
control w levels, over the set of posterior samples C.

τ̂BARTi =
∑

� ∈C

((
ŷi
∣∣Xi, wi = ωs, �

)
−
(
ŷi
∣∣Xi, wi = ω0, �

))
/ |C|

Hill (2011) remarks that BART provides “simultaneous

inference on CATEs,1 sample average treatment effects, and

everything in between.” Simulation experiments showed that

BART had a higher accuracy in estimating nonlinear HTE

than some other methods such as propensity score matching,

propensity-weighted estimators and regression adjustments, and

created coherent uncertainty intervals, which increased when

there is less information (“lack of complete overlap and hence

limited empirical counterfactuals”). Hill (2011) points out that

BART’s ability to deal with large numbers of predictors and

discard unimportant ones is especially beneficial when the

researcher is trying to avoid confounding bias and trying to

satisfy ignorability by adding all possible covariates.

We use the BART R package implementation that supports

continuous, as well as binary outcomes with probit and logistic

BART (McCulloch, 2019), as one of the C-ML methods in

the ensemble.

Causal forest

Causal forest (CF) builds on causal trees (Athey and Imbens,

2016) and the Random Forest algorithm (Breiman, 2001)

to develop a non-parametric honest causal effect estimation

capable of handling high dimensional data (Wager and Athey,

2018). The causal forest model has three design elements:

honesty, local centering, and local weighting. Honesty refers

to using separate subsets for model structure selection and

estimation, which enables the use of asymptotic behavior

assumption for the confidence intervals as if the model structure

was exogenously given (Athey and Imbens, 2016). One subset is

used for local centering of w and y to improve the finite-sample

performance of estimates. Local centering regresses out the

effect of features/covariates x from w and y, outputting residuals

using leave-one-out estimates of the marginal expectation

without the i-th observation. Athey et al. (2019) claims that by

locally centering the outcomes before running the forest, the

estimator is potentially robust to confounding factors, similar

1 CATE stands for conditional average treatment e�ect, another term

for HTE.
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to the orthogonalization ideas discussed by Chernozhukov et al.

(2018). Using the locally centered outcomes and treatment, they

partition the x space into regions by building trees to get pure

leaves in terms of the treatment effect, τi. The second subset

is used on these trees to find the local weights to estimate the

treatment effects. Local weighting ensures that the heterogeneity

of treatment effect is captured adaptively within the local space

of each leaf.

In this paper, we use its Generalized Random Forest package

implementation (Tibshirani et al., 2018; Athey et al., 2019) as one

of the C-ML methods in the ensemble.

Monotonicity and sign constraints

Sign constraint on linear least squares regression is referred

to as non-negative least squares in the literature. Meinshausen

(2013) and Slawski and Hein (2013) show that as a regularizer,

sign constraints can provide the same convergence rate as the

lasso, providing that the design matrix satisfies the positive

eigenvalue condition, and the sign of coefficients is known

based on prior knowledge. Koike and Tanoue (2019) extends the

result to general convex loss functions and nonlinear response

variables, including logistic regression.

Monotonicity constraints increase the interpretability of

models (Hall and Gill, 2019). They can be used to relax the

linearity assumption while providing the boundaries of the

expected behavior. They reduce the search space in favor of a

simpler shape that is in line with the domain knowledge.

It is well known that regularization in additive models,

e.g., lasso and ridge regression, improves model performance

in the presence of noise and the lack of large data, by biasing

the coefficients in favor of fewer complex models. Monotonic

constraints in non-parametric regression are termed isotonic

regression; Guntuboyina and Sen (2018) studies the theoretical

properties of isotonic regression and states that least squares

and/or maximum likelihood can be used to obtain attractive

theoretical and computational properties without additional

explicit regularization but point to computational difficulties.

Traskin et al. (2013) use monotonicity constraints based on

subject matter knowledge, for the effect of exposure (w) and

its confounder interactions in logistic regression to estimate the

population attributable fraction of disease due to a risk factor.

They show in simulation studies that the impact is estimated

substantially more accurately than without constraints.

Incorporating domain knowledge with monotonicity

constraints has been shown to improve the accuracy of machine

learning models in Bayesian networks (Altendorf et al., 2012)

and with shape constraints in generalized additive models

(Pya and Wood, 2015). Ali et al. (2020) empirically states

that incorporating domain knowledge in Bayesian models

with the sign and monotonicity constraints on the prior

distribution (qualitative informative) rather than the traditional

informative prior approach of setting the prior mean and

standard deviation of the relevant model parameters leads to

better models, i.e., with expected sign and monotonicity and

holdout prediction performance.

Explaining the black-box models

Research into methods to understand/explain black-box

machine learning models has gained popularity due to

the increasing use of machine learning models to make

or support decisions (Goebel et al., 2018; Samek et al.,

2019). Model interpretability is an important driver of model

implementability since it (a) fosters impartiality in decision-

making, by detecting and remedying bias in the training

dataset, (b) highlights potential adversarial perturbations that

could change the prediction, (c) and allows the domain

experts to check that the model has an underlying truthful

causality (Arrieta et al., 2020). Hence, establishing causality

with models that are understandable by the domain experts,

managers, and regulatory branch has been stated as an

XAI goal.

Linear monotonic models are highly interpretable (Hall

and Gill, 2019). Generalized linear models (GLMs) extend

linear models to non-Gaussian responses within the exponential

family, where g is the link function and can be the identity

function, logit/probit, or log, for Gaussian, binomial or Poisson

response, respectively.

g
(
E
(
y
∣∣X
))

= α + β1X1 + ...+ βpXp

The generalized additive model (GAM) further extends the

GLM framework to include smooth non-parametric functions fj
of the input variables, where the user specifies the degree of the

spline function for each variable (Hastie and Tibshirani, 1990).

g
(
E
(
y
∣∣X
))

= α + f1 (X1) + ..+ fp
(
Xp
)

Lou et al. (2012) introduces tree ensembles as fj
(
Xj
)

(called shape functions) in addition to the regression splines.

This increases the accuracy of the models but does not

have the smoothness property. Generalized additive models

plus interactions (GA2M) extend this work with the FAST

algorithm to include two-way interaction terms ranked based

on importance, which is particularly useful for high-dimensional

datasets (Lou et al., 2013). We use the explainable boosting

machine (EBM) in the InterpretML software (Nori et al., 2019),

which provides a fast implementation of the GA2Malgorithm to

explain the black-box C-ML Ensemble.

g
(
E
(
y
∣∣X
))

= α +
∑

j

fj
(
Xj
)
+
∑

k

∑

j

fjk
(
Xj,Xk

)
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The problem and the methodology

We consider the situation where an intervention (e.g., an

incentive for physical activity) can change wi, the level of

treatment (e.g., physical activity2) for individual i, from ω0

to ωs at a cost of ci, thereby affecting multiple outcomes

yi,d (e.g., diabetes and heart disease probability). The resulting

benefit for outcome d and individual i is given by the

heterogeneous treatment effect τi,d. As defined earlier, τi,d =
E
[
yi,d
∣∣ wi = ωs,Xi

]
− E

[
yi,d
∣∣wi = ω0,Xi

]
; i.e., the change

in the expected outcome when physical activity is increased

from ω0 to ωs. We would like to maximize the total benefit

by selecting which individuals to target with the intervention

without exceeding the budget. Assuming that the benefits from

multiple outcomes are additive, the optimization problem for

targeting individuals subject to limited resources boils down to

sorting the individual by their total benefit to cost ratio and

going down the list until either the budget is used up or the

marginal benefit to cost ratio falls below 1.

Next, we present a methodology for the challenging task

of estimating τi,d justifiably, where we drop the subscript d

for simplicity of exposition. The superscript will denote the

estimation model.

Overview of the methodology for
HTE estimation

We would like to obtain stable (low variance) treatment

effect estimates with an interpretable model that is consistent

with the existing theory/domain knowledge and accurately

captures the heterogeneity in treatment effects. The proposed

methodology to achieve this goal has the following components.

• Causal machine learning ensemble (C-ML)

• Explainable AI (XAI)

• Generalized linear model with qualitative constraints

(GLM_QC).

Causal machine learning ensemble discovers heterogeneity

dimensions of the treatment effect, their functional shape,

and interactions that may not be known or articulated in a

theory-driven model specification. While the C-ML is expected

to provide accurate estimates of the heterogeneous treatment

effects with large-scale data that include all confounders,

it is a black-box. XAI explains the C-ML in terms of an

additive model, enabling the domain experts to evaluate

2 Other examples of treatment are a promotion in the marketing

context, a communication with a specific message in the human

resources context, or a change in the o�ered interest rate in the financial

context.

whether the relationships make sense, and enabling the

modeler to incorporate the relationships into the interpretable

model specification. The novel GLM_QC method enables fast

estimation of a generalized linear model, where nonlinear

effects are modeled through discretized variables and sign and

monotonicity constraints can be imposed on main and two-way

interaction effects.

From the statistical learning perspective, C-ML works to

reduce the bias, while regularization in the form of sign and

monotonicity constraints in GLM_QC works to reduce the

variance of the estimates. Having the domain expert and the

modeler in the loop, deciding incrementally whether to modify

the specification based on C-ML and XAI findings and the

incremental improvement in targeting efficiency is an additional

element that ensures complexity control.

Figure 1 provides an overview of the proposedmethodology.

The steps are as follows:

(1) With large-scale observational data, GLM_QC fits the

theory-driven generalized linear model specification, which

models g
(
E
(
y
))

as a function of X and w, allows

nonlinearity, and includes qualitative constraints on the

sign and monotonicity of the effects based on domain

knowledge. This model is used to calculate the initial

heterogeneous treatment effect estimates τ̂
GLM_QC_Th
i for

the target population.

(2) The causal machine learning ensemble (C-ML Ensemble)

independently provides completely data-driven HTE

estimates, τ̂C_ ML
i .

(3) To provide insights into important heterogeneity

dimensions and their functional shape, the causal effect

of w on g
(
E
(
y
))

is explained with a global additive XAI

tool, EBM.

(4) Based on the XAI explanation of the C-ML Ensemble,

the most important heterogeneity dimension that is

not represented in the current GLM_QC model or

is represented with qualitative constraints that are

inconsistent with the C-ML findings is identified as the

next modification.

(5) The current GLM_QC model specification is updated

with the identifiedmodification, which can be an additional

interaction effect with w and/or (modified) qualitative

constraints. In the first iteration, GLM_QC_Th is updated

and labeled GLM_QC_ML_1.

(6) The improvement in targeting efficiency due to the

modification in the previous step is quantified. Themodeler

decides whether to keep the previous model or accept the

modified model3 based on the credibility of the modified

model considering extant knowledge/ theory, the added

complexity, and the targeting efficiency improvement.

3 In the first iteration, the considered models are the GLM_QC_Th and

the GLM_QC_ML_1, respectively.
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FIGURE 1

Overview of the proposed methodology. The numbers in circles represent the order of the steps, where boxes “GLM_QC” and “Modify terms or

constraints?” are repeated until the modeler decides not to modify the model.

Accordingly, either the next set of modifications is

identified, or the previous model is declared final.

Steps 5 and 6 are repeated, incrementally updating themodel

until the modeler decides not to update the model anymore.

As mentioned earlier, we assume that (a) the treatment of

an individual will not affect the outcome of others and the

treatment w is standard and (b) that all confounding variables

are observed and included in X. The outcome y can be binary or

continuous, and the treatment w can be binary or ordinal.

Now, we provide the details about each component.

GLM_QC

The proposed generalized linear model with qualitative

constraint (GLM_QC) is a GLM (McCullagh and Nelder,

2019) subjected to sign and monotonicity restrictions

on the main and two-way interaction effects specified

by the modeler. GLM_QC models nonlinear effects by

discretizing continuous variables, and unlike GAMs,

GLM_QC does not require the function to be smooth but

allows imposing increasing or decreasing monotonicity and

sign constraints.

While monotonicity and sign constraints can be imposed

on linear models using prior distributions, the estimation

of these Bayesian models, especially with large datasets, is

computationally intensive and may not converge (Ali et al.,

2020). GLM_QC is fit with the efficient glmnet algorithm with

well-established convergence properties (Friedman et al., 2010).

Whereas glmnet (Hastie and Qian, 2014) only allows

sign constraints to be imposed on the coefficients, our

reparameterization approach allows the estimation of a model

with the sign and monotonicity constraints.

The GLM_QC model is as follows:

g
(
E
(
y
∣∣X
))

= α +
∑

j

Xjβj +
∑

(k,j)∈
Xj·Xkγjk

Here, g is the appropriate link function for the response

variable y from an exponential family sampling distribution,

which is the identity for a Gaussian response, and the logit for

a Bernoulli response: g
(
p
)
= ln

(
p

1−p

)
where p = E

(
y = 1

∣∣X
)
.

Xj·Xk stands for elementwise multiplication of Xj and Xk.

βj and γjk are coefficient vectors withmatching dimensions. The
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specification includes the independent variables X̃j, the set ( ) of

two-way interactions, the sign constraints, the set 3 of variables

where a non-parametric shape will be fit, and any constraints

on their monotonicity. The continuous variables in the set 3

are discretized and coded with Kj-1 binary variables as follows,

where X̃j ∈ 3 and takes values 1...Kj.

Ij,k =
{
1, if X̃j = k, for k 6= kj,ref

0 otherwise
, where kj,ref is the

reference category.

The matrix X consists of n × 1 column vectors Xj =
X̃j for X̃j /∈ 3, and n × Kj − 1 matrices Xj =[
Ij,1...Ij,Kj−1

]
, for X̃j ∈ 3. This formulation, so far, allows the

variables X̃j ∈ 3 to have arbitrary nonlinear shapes without

monotonicity constraints.

Implementing the qualitative constraints with
reparameterization

To impose the sign and monotonicity constraints, we

reparametrize the model, as follows:

g
(
E
(
y
∣∣Z
))

= α′ +
∑

j

Zjζj +
∑

(l,j)∈
Zl · Zjηl,j

Zj =
{
XjAj, for X̃j ∈ 3

Xj1, for X̃j /∈ 3
,

whereAj is aKj – 1×Kj – 1 invertible matrix, and Zj is a variable

of the reparametrized model. ζj and ηl,j are coefficient vectors

for main and two-way effects, respectively. Table 1 provides the

reparameterization for the main effect with coding variables.

The “Monotonicity” and “Sign of the Effect” columns indicate

the qualitative constraints that are to be imposed on the effect,

and the next two columns indicate the coding variables in

the reparametrized model and the sign restriction on their

coefficients. The coding variables 1+
jk

or 1−
jk
, represent the

incremental effect of consecutive categories.

1+
jk
=
{
1, if k ≤ Xj

0 otherwise
, for k = 1 . . .Kj − 1

1−
jk
=
{
1, if k ≥ Xj

0 otherwise
, for k = 2...Kj

1+
jk
, and 1−

jk
, assume that the reference category kj,ref

is the last and first discretized value of the original variable,

respectively. According to the coding variables,Aj is determined:

it is a lower triangular matrix of 1 s for 1+
jk
, and an upper

triangular matrix of 1 s for 1−
jk
.

Note that a sign restriction without a monotonicity

restriction can also be imposed on the effect of Xj categories

relative to the reference category with sign constraints on the

coefficients of the dummy variables Ijk.

The reparametrized model with sign restrictions on the

1+
jk
, and 1−

jk
, is estimated with glmnet. The original model

coefficients are recovered by multiplying with the coding matrix,

e.g., βj = Ajζj.

Please see Appendices A, B in Supplementary material

for reparameterization proofs of one and two-way

interaction effects.

Estimating HTE with GLM_QC

To estimate HTE with GLM_QC, we use an S-learner

approach (Künzel et al., 2019).

τ̂
GLM_QC
i = ĝ−1 (E

(
y
∣∣X,w = ωs

))
−

ĝ−1 (E
(
y
∣∣X,w = ω0

))

We assume that X contains all confounding covariates.

The appropriate qualitative constraints are implemented as

described above, treating w as any covariate.

If the outcome y is Gaussian, then g−1 is the identity and the

heterogeneity of the treatment effect is determined only based

on the interaction terms withw. But when the outcome is binary,

g−1is the antilogit and nonlinear, all variables contribute to the

heterogeneity of treatment effects.

Causal machine learning ensemble

We construct the C-ML Ensemble by combining the

predictions of two established but dissimilar causalMLmethods:

BART and causal forest (refer to Sections Heterogeneous

treatment effect learning in healthcare and Causal machine

learning); however, there is no restriction on the number or

type of purely data-driven causal models that can be used in

the ensemble. The C-ML Ensemble emphasizes consensus: the

prediction is set to 0 unless the average of the independently

fit ensemble component estimates is sufficiently away from

0, considering how well the component estimates agree for

individual i, as follows.

τ̂
C_ML
i =




0, if

∣∣∣∣
τ̂BARTi +τ̂CFi

2

∣∣∣∣ ≤ qσ̂i ,

τ̂BARTi +τ̂CFi
2 , otherwise

where σ̂i =
∣∣∣∣
τ̂BARTi −τ̂CFi

2

∣∣∣∣ is the standard deviation of the average

of the ensemble component estimates for this individual and q is

a constant.

The causal forest models are implemented with the grf

R package (Tibshirani et al., 2018; Athey et al., 2019), which

provides predictions ŷCFi , and τ̂CFi . For ordinal causal variables,

τ̂CFi is constant across values of w, given Xi.

The BART R package (McCulloch, 2019) is used for

estimating τ̂BARTi , which is the mean conditional difference
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TABLE 1 Coding monotonicity and sign constraints for discretized/ordinal variable Xj .

Case Monotonicity of Xj effect Sign of the effect Coding variables Constraints on coding variable coefficients

1 Increasing Positive 1+
jk , k = 1...Kj − 1 ≥0

2 Increasing Negative 1−
jk, , k = 2...Kj ≤0

3 Decreasing Positive 1−
jk, , k = 2...Kj ≥0

4 Decreasing Negative 1+
jk , k = 1...Kj − 1 ≤0

5 Increasing Unrestricted 1+
jk , k = 1...Kj − 1 ≥0, for k > 1

6 Decreasing Unrestricted 1+
jk , k = 1...Kj − 1 ≤0, for k > 1

between the predicted outcome value under the treatment and

control w levels, over the set of posterior samples, refer to

Section Heterogeneous treatment effect learning in healthcare.

For binary outcomes, logit BART is used.

Explaining the causal ML ensemble in
terms of the link function

While the C-ML Ensemble directly predicts HTE, the

GLM_QC models the outcome y, transformed by the link

function, g(). To provide insights into important heterogeneity

dimensions and their shape, the causal effect of w on g
(
E(yi

)
) is

explained with a global additive XAI tool. Note that:

g
(
E
(
y
∣∣X,w = ωs

))
− g

(
E
(
y
∣∣X,w = ω0

))
=

{
τ̂
C_ML
i , if y∈ R

ln ÔRC_ML
i , if y ∈ {0, 1}

where lnORi = ln
(

pi|wi=ωs
1−pi|wi=ωs

/
pi|wi=ω0

1−pi|wi=ω0

)
.

When the link function is logit, to get insights into the causal

machine learning ensemble model, we calculate the outcome log

odds ratios for being treated vs. non-treated for each individual

i using the C-ML Ensemble model predictions. This way they

are directly comparable to the GLM_QC model coefficients for

the treatment variable w and its interactions, as any logit model

coefficient is interpreted as the log odds ratio associated with the

respective effect.

ln ÔR
C_ML
i =

ln

(
p̂C_ML
i |wi = ωs

1− p̂C_ML
i |wi = ωs

/
p̂C_ML
i |wi = ω0

1− p̂C_ML
i |wi = ω0

)

p̂C_ML
i |wi = 0.5 p̂BARTi |wi + 0.5 p̂CFi |wi,

p̂BARTi |wi =
∑

� ∈C
P̂BART

(
yi = 1

∣∣xi,wi,�
)
/ |C |,

p̂CFi |wi = ŷCFi,OBS − (wi − wi,OBS) τ̂CFi

ŷCFi,OBS and wi,OBS stand for the actual observed w value

for individual i and the CF predicted outcome at that

value, respectively.

We use the EBM in the InterpretML software (Nori et al.,

2019) to explain the ln ÔRC_ML
i globally in terms of an additive

model of tree ensemble based shape functions with up to two-

way interaction terms fj
(
Xj
)
and fjk

(
Xj,Xk

)
.

g
(
E
(
y
∣∣X
))

= α +
∑

j

fj
(
Xj
)
+
∑

k

∑

j

fjk
(
Xj,Xk

)

The case

Non-communicable diseases such as diabetes and heart

disease make up a significant portion of the burden of disease in

the world (Ayer et al., 2014; Gakidou et al., 2017). The COVID-

19 pandemic showed that they also induce severe complications

when such communicable diseases strike (Guo et al., 2020;

Khan et al., 2020). Employers and health insurance companies

contract companies to engage their employees and customers in

healthier lifestyles involving more exercise and healthy eating

habits to reduce healthcare costs and improve quality of life

(Fontil et al., 2016; Castro Sweet et al., 2018). Companies offer

incentives to their employees to increase their physical activity,

including economic incentives in motivational tools built into

health wearables (Carrera et al., 2020; Adjerid et al., 2022).

Some interventions, such as providing accessible exercise

facilities (Sallis et al., 1990), are directed to the population, while

others can be targeted at the individual level, such as assigning

personal coaches and providing incentives for attaining levels

of activity as monitored by apps. Intervention cost resources

and targeting resources on those who are most likely to benefit

can maximize the benefit (reduction in disease burden) with

a limited budget. On the other hand, decision-makers need

to justify the allocation of resources to specific individuals

or groups.

One of the objectives in the 2019–2023 Strategic Plan of the

Turkish Ministry of Health is to increase the physical activity of

the citizens, including individual incentives for achieving certain

physical activity levels (strategy 1.2.24). Governments around

the world are implementing measures to increase physical

activity (World Health Organization, 2019). Prior study showed

4 https://stratejikplan.saglik.gov.tr/#

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2022.1015604
https://stratejikplan.saglik.gov.tr/#
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Gur Ali 10.3389/frai.2022.1015604

that increasing physical activity has a substantial impact on

decreasing diabetes and IHD prevalence (Ali et al., 2020). These

two diseases constitute the fastest growing and the largest

source of the burden of disease in the country, respectively.5

While global studies indicate that increasing physical activity

decreases the probability of disease, the individual effects

could vary due to demographic, socioeconomic, racial, and

environmental differences.

In this case study, we estimate the HTE of increasing

physical activity on diabetes and ischemic heart disease (IHD)

probability among the adult population in Turkey. The case

objective is to maximize the expected decrease in the prevalence

of diabetes and IHD by targeting individuals with incentives for

increasing their physical activity. We consider the benefit due to

each disease to be equally important, and the cost of providing

the incentive to be the same across individuals. We work with a

fixed budget of resources sufficient for 25% of the population.

We use the proposed methodology to incorporate causal

machine learning findings into theory-driven models, striking

a reasonable balance between interpretability and efficiency.

Data sources and the initial theory-driven model specification,

including the sign and monotonicity constraints, are taken from

Ali et al. (2020), which evaluates the impact of population-

wide behavioral change scenarios including smoking, physical

activity, and diet on the burden of disease in Turkey. Working

within the Bayesian framework, this study shows that qualitative

restrictions on the sign and monotonicity of the Bayesian model

coefficients work better than informed prior distributions with

parameters from theory.

The nationally representative biannual health surveys

conducted by the Turkish Statistical Institute (TUIK) in the

years 2008 to 2016 constitute the individual level data source

with 93,528 observations for individuals 15 or older. The surveys

provide self-reported socioeconomic, demographic, behavior,

and disease information. More information about the surveys

can be obtained from TUIK.6

The last wave from 2016 with 17,242 observations

provides the most recent representative joint distribution of

demographics, behaviors, and other covariates; hence, we use

these observations with equal weighting when calculating the

expected benefits. In this population, 18% of adults were

inactive, 45% insufficiently active, 10% active, and 27% very

active. The “very active” group is not targeted.

The model formulation in Ali et al. (2020) relies on large-

scale meta-analysis results from Global Burden of Disease

Studies (Gakidou et al., 2017). The logit of the probability

that individual i has disease d is modeled separately for IHD

and diabetes. Both models contain the following independent

5 https://vizhub.healthdata.org/gbd-compare/

6 https://data.tuik.gov.tr/Bulten/Index?p=Turkey-Health-Survey-

2016-24573

TABLE 2 Qualitative constraints imposed on the qualitative

informative hierarchical bayes models based on meta-analysis results

of global studies.

IHD Diabetes

Sign of the effect

Physical Activity (reference level inactive) Negative Negative

Smoking (reference level non-smoking) Positive Positive

Second-hand Smoke (reference level un-exposed) Positive Positive

BMI (reference level BMI < 22.5) Positive Positive

Shape of effect

Male with Age Increase Increase

Female with Age Increase Increase

Physical Activity with Activity Level Decrease Decrease

Physical Activity with Age Increase NA

Male Smoking with Age Decrease NA

Female Smoking with Age Decrease NA

BMI with Age Decrease Decrease

variables X̃j: discretized (in 3): Physical Activity, Age, Alcohol

Consumption, Fruit Consumption, Vegetable Consumption,

#Trusted individuals. Binary: Gender, Smoking, Second-hand

Smoke exposure, Survey method. Inherently categorical: Region.

Linear: Income Index, Education, BMI’. Interaction affects in the

IHD model are Age × Gender, BMI’ × Age, Smoke × Gender

× Age, Alcohol × Gender, Physical Activity × Age. Interaction

affects in the Diabetes model are Age × Gender, BMI’ × Age,

Smoke× Gender, Alcohol× Gender.

Table 2 summarizes the qualitative constraints on the model

coefficients: for example, the first line under the “Sign of

the Effect” block indicates that all levels of physical activity

(Insufficiently Active, Active, and Very Active) reduce disease

risk relative to the Inactive, whereas the first line under the

“Shape of the Effect” block indicates that the disease risk

increases with age (not necessarily linearly)—all else being the

same. These constraints are based on the 2016 GBD (Global

Burden of Disease) meta-analysis results of hundreds of global

studies on the relative risk (RR) of risk factors (BMI, Age,

Gender), behaviors (Smoking, Secondhand Smoke, Physical

Activity) for diabetes and IHD (Gakidou et al., 2017), as in Ali

et al. (2020). Note that when the reference risk is low, RR is

approximately equal to the odds ratio (Zhang and Kai, 1998),

and thus, the appropriate ln(RR) sign and monotonicity can be

used for the GLM_QC model coefficients.

Treatment, in this context, is one level increase in the

individual’s physical activity level (from 1 to 2, 2 to 3, and 3 to

4). Those who are already at the highest level of physical activity

are not affected.

τi,d =





E
[
yi,d
∣∣ PhysicalActivityi = PAi + 1,Xi

]
−

E
[
yi,d
∣∣PhysicalActivityi = PAi,Xi

]
, PAi < 4

0, PAi = 4
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TABLE 3 Summary of the GLM_QCmodels and unconstrained benchmarks.

Model name Physical

activity

interaction

terms

Qualitative constraints Benefit

when

targeting

25%

% lnOR

positive

Benchmark

GLM

model

Benefit

when

targeting

25%

% lnOR

positive

Diabetes GLM_QC_ThDiab None Theory-based: lnOR decreases monotonically with

physical activity

65.0% 0 GLM_ThDiab 69.2% 0%

GLM_QC_ML1Diab +Smoking Insight-based: Increasing physical activity has a more

negative effect on smokers’ lnOR than non-smokers

68.2% 0 GLM_ML1Diab 68.6% 0%

GLM_QC_ML2Diab +Age Insight-based: Increasing physical activity has a more

negative effect on lnOR as age increases

75.7% 0 GLM_ML2Diab 72.0% 3%

GLM_QC_ML3Diab +Trust Insight-based: Increasing physical activity has a more

negative effect on lnOR of those with more trusted

friends

76.2% 0 GLM_ML3Diab 73.0% 3%

GLM_QC_ML4Diab +Activity×
Second-hand

Smoke

Insight-based: Increasing physical activity from inactive

to insufficiently active has a smaller negative effect on

lnOR in the presence of secondhand smoke; no

monotonicity or sign constraint

76.6% 1% GLM_ML4Diab 75.0% 2%

C_MLDiab Black-box 78.5% 0

IHD GLM_QC_ThIHD Age Theory-based: Increasing physical activity has a

negative effect on lnOR but the effect becomes less

negative as age increases

80.4% 0 GLM_ThIHD 74.3% 23%

GLM_QC_ML1IHD Age Insight-based correction: Increasing physical activity

has a negative effect on lnOR, and the effect becomes

more negative as age increases

81.3% 0 GLM_ML1IHD 74.3% 23%

GLM_QC_ML2IHD +Education Insight-based: Increasing physical activity has a

negative effect on lnOR for those with more years of

education, leveling at 8 years; implemented with

min(education,8) interaction with activity coef > 0

80.9% 0 GLM_ML_2IHD 76.3% 24%

C_MLIHD Black-box 84.0% 1%
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FIGURE 2

Histograms of τ̂C_ML

i
for Diabetes and IHD, all observations in the

representative population (N = 17,242).

where PAi is the observed physical activity of the individual.

Results

All models are fit with the large-scale data and used to

calculate τ̂i (refer to Section The problem and the methodology)

with the target population data represented by the last wave

of surveys. A summary of the GLM_QC models that we

developed following the proposed methodology is provided in

the unshaded cells in Table 3. The shaded rows provide the

Causal ML Ensemble models.

The initial GLM_QC model specifications are based on

the literature (refer to the previous section). Causal forest and

BART HTE estimates for the target population are combined

as a causal machine learning ensemble, as explained in Section

Causalmachine learning ensemble, with q=√
2. The twoCausal

ML algorithms agree very well on HTE predictions for diabetes,

and reasonably well for IHD, with correlation coefficients of 0.92

and 0.79. The Causal ML Ensemble τ̂
C_ML
i distributions for the

target population are provided in Figure 2.

Based on the extant theory, we would expect physical activity

to reduce disease risk; hence, the distributions provide a face

validity check. The “% τ̂i,d positive” column in Table 3 provides

the percent of treatment effect predictions that are positive,

which may be indicative of confounding problems. The initial

theory-driven models for diabetes and IHD, GLM_QC_ThDiab

and GLM_QC_ThIHD have all non-positive τ̂i,d, as expected

due to the sign constraints. It is remarkable; however, that

the τ̂
C_ML
i,Diab is all non-positive, while 1% of τ̂

C_ML
i,IHD indicate

a small increase in IHD probability with increased physical

activity. By fitting complex interactions, nonlinear functions,

and averaging over many model formulations, the Causal ML

Ensemble avoids confounding bias due to incorrect model

specification, as long as the confounding variables are observed

in the dataset. Furthermore, using two dissimilar causal machine

learning methods helps to avoid potential method bias.

The shaded columns in Table 3 provide a benchmark

unconstrained GLM model for each GLM_QC model to assess

the contribution of the qualitative constraints. We see that the

FIGURE 3

Histograms of ln ÔR
C_ML

i
for Diabetes and IHD, leaving out those

individuals who are already Very Active in the target population

(N = 12,580).

GLM_ThIHD model has the same terms as GLM_QC_ThIHD

but no constraints counterintuitively estimate that increasing

physical activity increases the disease risk for 23% of the

population. While the benchmark GLM_ThDiab model has all

negative HTE estimates, its coefficients imply that secondhand

smoke decreases diabetes risk—which is counter to findings in

the literature and may present a problem for the acceptance of

themodel. The benefit when targeting the 25% column in Table 3

provides the expected health benefit with a model M when the

resource budget is set at 25% of the population. The benefit

figures are scaled to read as a percent of the benefit that would be

achievable if all individuals were targeted. The health benefit is

calculated as the sum of the τ̂
C_ML
i,d for the 25% individuals with

the highest τ̂M
i,d . Here, we assume that the Causal ML Ensemble

provides the true HTE, which is not unreasonable since our

goal is to identify a model that emulates the C_ML model while

remaining interpretable with respect to theory.

Note that with random targeting, we would expect to capture

25% of the national health benefits. Thus, all models provide

much higher benefits than random targeting. For example,

the theory-driven GLM_QC_ThDiab and GLM_QC_ThIHD

capture 65.0 and 80.4% of the national attainable health

benefit for diabetes and IHD, respectively. We compare these

figures with the C_MLDiab and C_MLIHD performance to

evaluate how much resource allocation (targeting) efficiency

can be increased by incorporating insights from C_ML models:

Diabetes targeting efficiency can be improved by up to 20%

[calculated as (78.5–65.0%)/65.0% = 0.2)], while the potential

gains for IHD are more modest at about 4%. Figure 7 provides

the achieved health benefit in the target populationwith different

models as well as random targeting and perfect targeting

accomplished with the C_ML ensemble for comparison.

While these figures will change when targeting is based

on the combined benefit from both diseases, they are useful

for quantifying the performance–complexity tradeoff between

models eliminating the noise due to multiple outcomes.

Next, we seek to get insights into the ln ÔRC_ML
i to enhance

the specification of the GLM_QC models. Figure 3 provides

histograms of ln ÔRC_ML
i , leaving out those who are already
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FIGURE 4

EBM feature importance explaining the ln ÔR
C_ML

i
. (Left) IHD, (Right) Diabetes.

FIGURE 5

EBM additive terms for smoking and age explaining the diabetes ln ÔR
C_ML

i
.

FIGURE 6

Explainable boosting machine (EBM) additive terms for Age and Education explain the IHD ln ÔR
C_ML

i
.

Very Active in the target population and hence should not be

targeted for increasing physical activity. We use the XAI model

EBM to explain ln ÔRC_ML
i for each disease. Figure 4 provides

the overall importance of the additive terms according to the

EBM. Figures 5, 6 visualize the most important terms in diabetes

and IHD EBMmodels, respectively.
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While the fidelity7 of these XAI models in terms of R2 is 0.86

for IHD and 0.62 for diabetes, these XAI models are only used

to obtain insights, and the actual estimation is done through

GLM_QC models.

We consider the major heterogeneity dimensions from

Figure 4 for adding to the GLM_QC model as interaction effect

with Physical Activity. We visualize the functional shape of the

major effects for imposing monotonicity constraints.

According to Figure 4, for IHD, the top two contributors

to the heterogeneity of ln ÔRi are Age and Physical Activity

level, followed distantly by Education. These two heterogeneity

dimensions are already captured in the GLM_QC_ThIHD

model. However, as seen in Figure 6, the odds ratio decreases

monotonically with age, whereas the theoretical specification

was for it to increase. The GLM_QC_ML1IHD model

corrects the monotonicity constraint for the Age interaction,

which improves the targeting efficiency, as seen in Table 3.

The GLM_QC_ML2IHD model adds the interaction term

of Education with Physical Activity to incorporate the

additional heterogeneity dimension for HTE. We choose

to use GLM_QC_ML1IHD for the final targeting since it

is less complex, closer to theory, and has slightly better

targeting efficiency.

As seen in Figure 4, Smoking, and Age group, followed

by Physical Activity level, Number of People Trusted, and

interaction of Physical Activity level with Second-hand

Smoke are important heterogeneity dimensions of the

odds ratio associated with increased Physical Activity and

the individual’s probability of having diabetes. As seen in

Figure 5, the effect is more negative with Smoking and

Decreases with age. Table 3 shows that the targeting efficiency

increases with additional interaction terms and associated

monotonicity and sign constraints being added to the

GLM_QC_ThIHD model; adding Smoking, Age, and Trust

interactions (GLM_QC_ML3IHD) increases the expected

health benefits when targeting 25% of the population to

76.2% of the nationally attainable benefits. While adding

activity level-specific Second-hand Smoke terms to the

model increase this figure to 76.6%, we choose to use the

GLM_QC_ML3IHD model, trading off marginal targeting

efficiency gain for better interpretability. Note that with

GLM_QC_ML3IHD, we achieved 97% of the benefits that

we could achieve using the black-box C_MLIHD model and

obtained an interpretable model.

The discussed results focus on the heterogeneity of the

ln ÔRi component of τ̂i, which is represented in GLM_QC as

interaction effects of w. All models have the same accuracy

predicting, p̂i,0, the disease probability at the observed physical

activity levels, with AUC in the target population: 0.77 for IHD

and 0.82 for diabetes.

7 Fidelity of an XAI model is the accuracy with which the XAI model

(EBM) describes the AI model (C-ML) predictions.

The impact of qualitative constraints

Next, we look at the contribution of the qualitative

constraints. GLM_QC models result in better targeting

efficiency than their unconstrained GLM benchmarks, as

seen in Figure 7, with the exception of the GLM_ThDiab

model that—counter to theory based expectations—implies

that secondhand smoke reduces the risk of diabetes. The

GLM_QC_ThDiab model coefficient for Second-hand Smoke

is constrained to be non-negative based on the meta-analysis

results that represent theory.

Adding interaction terms with the causal variable to the

theoretical specification increases the targeting efficiency of

both the GLM_QC and the benchmark GLM models. But

the targeting efficiency of the GLM_QC models remains

considerably higher than the GLM benchmarks even after

adding terms.

Comparing the health benefits associated with the proposed

methodology vs. using the traditional approach of taking the

model terms from the literature and estimating with large-scale

data (GLM_Th), we see an 11% improvement in diabetes and a

9% improvement in IHD benefits.

Final targeting based on HTE estimates
for both diseases

The total benefit due to targeting an individual is the sum of

the τ̂i,Diab and τ̂i,IHD, since we give each disease equal weight.

The final GLM_QC_ML estimates capture 75.6 and 81.1% of the

nationally attainable health benefits due to diabetes and IHD

prevalence reduction, respectively. As expected, targeting to

improve multiple outcomes results in somewhat lower benefits

for each outcome compared to targeting solely to improve that

specific outcome. Perfect targeting benchmarks using C_ML are

76.1% for Diab and 82.9% for IHD.

Figure 8 shows the total expected national health benefits

as a function of the percent of population targeted. We see

that using models specified with terms from theory without

qualitative constraints provides consistently lower benefits

compared to following the proposed methodology regardless of

the percent of the population targeted.

Conclusions, managerial
implications, and limitations

We have demonstrated a methodology to increase the

benefits that can be obtained with the same resources by

estimating the impact of the resource on each group/individual

(HTE) accurately, without losing the connection to

theory/domain knowledge for justifiable and efficient

resource allocation decisions. Executives can generate
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FIGURE 7

Benefit when targeting 25% of the population, adding heterogeneity dimensions with GLM_QC models compared to GLM models.

FIGURE 8

Total expected health benefit as a % of nationally attainable

using the final GLM_QC_ML models.

more benefits with the same resources by leveraging big

data and ML, without losing control over the process.

Domain experts enhance their understanding of the effects of

policies/interventions/treatments, by building on their existing

knowledge, rather than using a black-box model—even if it

is explained with XAI tools. This has implications for the

acceptance of the resulting decisions.

The proposed methodology requires a summary of the

current understanding of how the treatment affects the

outcome, its important drivers, and the expected direction and

monotonicity of the effects, along with large-scale data that

contain these variables. Completely data-driven insights are

identified with causal machine learning and explainable AI tools.

These findings are successively incorporated into the theory-

driven specification if the gain in expected benefits from more

efficient resource allocation is deemed worth the additional

model complexity and potential decrease in interpretability.

Central to the methodology is the GLM_QC method

that we introduced to impose these sign and monotonicity

constraints on main and two-way interaction effects with

very short run times. The alternative Bayesian methods are

computationally intensive and—especially with large datasets—

may not converge.

The public health case study investigates targeting a quarter

of the individuals in the Turkish adult population with

individual incentives to increase physical activity to reduce the

national disease burden caused by diabetes and heart disease.

Compared to the traditional approach of using the model

specification from the literature and estimating the model

with large-scale data, the proposed methodology improves the

expected health benefits for diabetes by 11% and for heart disease

by 9%.

Experiments with the case-study data show that

beyond improving interpretability, the regularization with

qualitative constraints about the sign and monotonicity of

the effect improves the HTE estimation and the resulting

targeting efficiency.

The proposed methodology can be used in other domains

where stakeholders need to be convinced of the rationale of the

resource allocation decision, and large-scale data and domain

knowledge are available. In particular, the healthcare industry

can extend the current theory on the effect of treatments in

different subpopulations, gaining additional insights into the

drivers of effectiveness. These findings can also be used to design

controlled trials in specific subpopulations.
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A standard but important assumption of HTE estimation

methods in general and the proposed methodology is that

the observational data contain all confounding variables.

Unobserved confounders, i.e., covariates that drive both the

treatment decision and its effect on the outcome can bias the

estimated treatment effects. The interpretability of the proposed

models provides an important advantage in detecting potential

confounding issues.

One of the limitations of the proposed methodology is that

the XAI tool (EBM) relies on the additive models with low

degree interaction effects for explaining the flexible black-box

Causal ML Ensemble predictions and modeling the outcome.

On the other hand, this should not be a big limitation based

on prior research, which indicates that GAMs with up to two-

way interaction effects can approximate many functions. In any

case, the benchmark causal machine learning ensemble (C_ML)

targeting performance informs the modeler about the additional

benefits they are giving up for interpretability.
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