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Rapid development of biotechnology has led to the generation of vast amounts

of multi-omics data, necessitating the advancement of bioinformatics and

artificial intelligence to enable computational modeling to diagnose and

predict clinical outcome. Both conventional machine learning and new deep

learning algorithms screen existing data unbiasedly to uncover patterns

and create models that can be valuable in informing clinical decisions. We

summarized published literature on the use of AI models trained on omics

datasets, with and without clinical data, to diagnose, risk-stratify, and predict

survivability of patients with non-malignant liver diseases. A total of 20 di�erent

models were tested in selected studies. Generally, the addition of omics

data to regular clinical parameters or individual biomarkers improved the AI

model performance. For instance, using NAFLD fibrosis score to distinguish

F0-F2 from F3-F4 fibrotic stages, the area under the curve (AUC) was 0.87.

When integrating metabolomic data by a GMLVQ model, the AUC drastically

improved to 0.99. The use of RF on multi-omics and clinical data in another

study to predict progression of NAFLD to NASH resulted in an AUC of 0.84,

compared to 0.82 when using clinical data only. A comparison of RF, SVM and

kNN models on genomics data to classify immune tolerant phase in chronic

hepatitis B resulted in AUC of 0.8793–0.8838 compared to 0.6759–0.7276

when using various serum biomarkers. Overall, the integration of omics was

shown to improve prediction performance compared to models built only

on clinical parameters, indicating a potential use for personalized medicine in

clinical setting.

KEYWORDS

artificial intelligence, machine learning, omics data, liver disease, clinical outcome

prediction

Introduction

Artificial Intelligence (AI)-based tools are being increasingly used for the early

diagnosis, prediction of disease progression or survival also increases. The rapid

development of biotechnology has revolutionized biomedical research by providing

high-throughput molecular data, alongside clinical information collected in health

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2022.1050439
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2022.1050439&domain=pdf&date_stamp=2022-11-15
mailto:Mamatha.bhat@uhn.ca
https://doi.org/10.3389/frai.2022.1050439
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2022.1050439/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Baciu et al. 10.3389/frai.2022.1050439

records (Spann et al., 2020; Castañé et al., 2021). As part

of AI, both conventional machine-learning (ML) and new

deep-learning (DL) algorithms use a data-driven approach

that efficiently screens high-throughput data in an unbiased

manner, uncovering hidden patterns and generating results

which may inform clinical decisions (Chen and Asch, 2017;

Spann et al., 2020). Early detection of liver disease can be

difficult with conventional methods and AI offers a more

comprehensive approach wherein patterns in both clinical and

molecular data could be leveraged for insight into diagnostic and

prognostic predictions.

Conventional ML is the branch of AI that focuses on

processing and learning from data to improve the accuracy

and performance of the machine without being explicitly

programmed (Bini, 2018). The algorithms are self-learning

tools that can be used for efficient and accurate prediction,

classification, and resource allocation. They are optimized on a

training set and their performance are evaluated on a test set.

Supervised ML algorithms [k-nearest neighbor (kNN), linear

regression, logistic regression (LR), support vectors machines

(SVM), naïve bayes (NB), decision trees and random forests

(RF)] work on labeled data where each input is mapped to a

corresponding label. On the contrary, unsupervised algorithms

(k-means clustering, anomaly detection, association rules, and

dimensionality reduction algorithms) use unlabeled input data

with the scope of the creation of labels (Dhall et al., 2020).

Deep learning and neural networks

Neural networks (NNs) or artificial neural networks (ANNs)

are the subdivision of ML that focuses on emulating the neurons

of the brain. They process signals from an external stimulus and

determine the correct downstream course of action. NNs are

made up of three layers. Initially, the neurons of the input layer

receive signal from the environment. This input is passed on

to the neurons in the hidden layer that perform the necessary

calculations. The resulting message is then passed along to the

output layer of neurons. One application of NNs, deep learning

(DL), utilizes a plethora of hidden layers or abstraction units,

where each unit performs non-linear operations to process the

data (LeCun et al., 2015). Furthermore, the ability of DL to

simultaneously accept different forms of input data elevates its

performance above traditional machine learning (Esteva et al.,

2019). This has led to an increase in DL applications in the field

of medicine, such as the use of convolutional neural networks

(CNN) for medical imaging and classification.

In liver disease, AI has been applied to various omics data,

including genomics, transcriptomics, proteomics, metabolomics

and microbiomics for early diagnosis, biomarker discovery, as

well as prediction of disease progression and survival. This mini

review aims to summarize existing literature on AI models built

using a combination of high-throughput omics datasets and/or

of clinical variables for the early identification, stratification, and

survival prediction of non-malignant liver diseases.

Literature search

A PubMed search was conducted to retrieve studies

published up to Nov 18th, 2021. The inclusion criteria were

defined as original papers on human participants in a non-

clinical trial setting. We screened and selected eligible studies

based on their title and abstract. Our search initially identified

940 papers. After applying the exclusion criteria we selected

20 studies for the final review. The exclusion criteria consisted

of following: no liver disease (n = 163) or liver related

(n = 104), animal studies (n = 67), clinical trials (n = 28),

no ML (n = 32), non-articles (n = 16), non-English (n = 8),

malignancy (n = 143), radiomics (n = 114), treatment

related (n = 96,) reviews (n = 57), no clinical or omics

data (n = 77), editorial/reflection/environmental/language

processing or epidemiological studies (n = 15). The extracted

information included: number of study participants and their

clinical data, study objective, type of liver disease, omics type, AI

model and performance metrics. The objectives, AI algorithms

used, sample and clinical information on the studies from

this mini review, classified by the liver diseases, were included

in Table 1. The studies that performed comparison of AI

algorithms and their performance to models using only clinical

parameters, biomarkers or single features were summarized in

Table 2.

Discussion

AI for early diagnosis and progression of
NAFLD/NASH

NAFLD/NASH was the most studied disease, being reported

in eight out of the 20 included studies (Chiappini et al., 2017;

Perakakis et al., 2019; Atabaki-Pasdar et al., 2020; Moolla et al.,

2020; Oh et al., 2020; Masarone et al., 2021;Wang T. et al., 2021).

Using multi-omics, two studies used random forest (RF) models

for early diagnosis of NAFLD and prediction of the progression

from NAFLD to NASH (Atabaki-Pasdar et al., 2020; Oh et al.,

2020). Atabaki-Pasdar et al. conducted amulticenter prospective

cohort study of 3,028 adults, who were recently diagnosed

with or found at risk of developing diabetes, to develop a

non-invasive NAFLD prediction tool (Atabaki-Pasdar et al.,

2020). Multi-omics data including genomics, transcriptomics,

proteomics and metabolomics, along with clinical parameters,

were incorporated into a web interface after model validation.

The RF model incorporating omics with clinical parameters

yielded a cross-validated area under the receiver operating

characteristic curve (AUROC) of 0.84 (95% CI 0.82, 0.86,
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TABLE 1 Summary of the studies included in this review classified by the liver diseases, with details on the objectives, ML algorithm used, sample

and clinical information.

Author/Objectives/ML algorithm Sample size Clinical information

Non-alcoholic fatty liver disease/Non-alcoholic Steatohepatitis (NAFLD/NASH)

Atabaki-Pasdar et al. (2020)

To predict and aid in early diagnosis of

NAFLD / RF

European-ancestry adults diagnosed with T2D

(n= 795) or at high risk of developing the disease

(n= 2,234)

Liver enzymes and other serological biomarkers,

Anthropometry, Measures of beta-cell function, Insulin

sensitivity, and Lifestyle

Moolla et al. (2020)

To distinguish various stages of NAFLD using

urinary steroid metabolome / GMLVQ

275 subjects (n= 121 with biopsy-proven NAFLD,

n= 48 with alcohol-related cirrhosis and n= 106

controls)

Urinary steroid metabolites and creatinine

Masarone et al. (2021)

To differentiate simple steatosis,

steatohepatitis, and cirrhosis in NAFLD

patients /

PLS-DA

Training: controls (n= 69) and patients [steatosis

(n= 78), NASH (n= 23), NASH-cirrhosis (n= 15),

HCV-cirrhosis (n= 8), cryptogenic cirrhosis, (n= 20)].

Validation: 44 controls and patients [steatosis (n= 34),

NASH (n= 10) and NASH-cirrhosis, (n= 6)]

Age, Sex ratio, BMI, serum cholesterol concentration

(both HDL an LDL), triglycerides, ferritin and GGT

resulted among the patients. Blood insulin

concentration, homeostatic model assessment

(HOMA), prevalence of hypertension, type 2 diabetes

mellitus, metabolic syndrome and mean liver stiffness

Chiappini et al. (2017)

To diagnose NAFLD using lipid profiling / RF

Liver biopsies including normal livers as controls

(n= 7), NAFL (n= 39) and NASH (n= 15)

N/A

Perakakis et al. (2019)

To diagnose NASH and liver fibrosis / SVM,

kNN, RF

Healthy subjects as controls (n= 49) and patients with

biopsy-proven of NAFL (n= 15) and NASH (n= 16)

adiponectin, leptin, activin A, follistatin and

triglycerides

Wang T. et al. (2021)

To predict and determine the stages of NAFLD

/ GBM, RF

Samples from patients with NAFL (n= 39), NASH

(n= 39), fibrosis (n= 15), cirrhosis (n= 14), and

healthy controls (n= 120)

Age, BMI, Sex

Oh et al. (2020)

To develop a non-invasive diagnostic tool for

cirrhosis, advanced fibrosis, and NAFLD / RF

163 well-characterized participants with diagnoses that

covered the spectrum of non-alcoholic fatty liver

disease (NAFLD), including non-NAFLD controls

(n= 54), NAFLD-cirrhosis patients (n= 27) as well as

their first-degree relatives.

Age, Sex, Ethnicity, BMI, Liver biopsy, Type 2 diabetes,

AST, ALT, Alk P, GGT, Total Bilirubin, Direct Bilirubin,

Albumin, Glucose, Hemoglobin A1c, Insulin,

Triglycerides, Total cholesterol, HDL-cholesterol,

LDL-cholesterol, Platelet count, Prothrombin time,

INR, Ferritin, MRI proton density fat fraction

(MRI-PDFF) %, magnetic resonance, elastography

(MRE) (kPa)

Luo et al. (2021)

To diagnose NASH and differentiate between

fibrosis stages in NASH patients / Elastic-Net

Samples from patients with NASH (n= 113): stage 0

(n= 13), stage 1 (n= 19), stage 2 (n= 36), stage 3

(n= 23), stage 4 (n= 22)

Liver biopsy images, serum samples, Age, gender, BMI,

ALT, AST, Platelet count, T2DM, NAFLD activity score

Viral hepatitis (HBV/HCV)

Mueller-Breckenridge et al. (2019)

To classify HBV e antigen status / RF

Dataset A: plasma samples from a Western European

cohort (n= 182)

Dataset B: plasma samples from a Chinese cohort (n

= 207)

Age, Sex, Duration of infection, Serum samples, Paired

Liver biopsy, HBV DNA load, AST, ALT, HBeAg status,

Treatment (naïve/established), Serum qualitative

HBsAg, anti-HBs, HBeAg, anti-HBeAg, HBV viral load

Wang M. et al. (2021)

To differentiate patients with chronic HBV

from the immune tolerant stage / kNN, SVM,

RF

290 liver biopsies from HBeAg positive patients divided

into training group (n= 148) and validation group

(n= 142)

Serum samples; HBV serological biomarkers (HBsAg,

HBs antibody, HBeAg, HBe antibody, and hepatitis B

core antibody)

Wu et al. (2021)

To predict HBV integration sites in promoting

malignant transformation / CNN

HBV integration sites:

Positive samples datasets training (n= 2,902) and

testing (n= 1,264)

Negative samples datasets training (n= 5,804) and

testing (n= 2,528)

N/A

(Continued)
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TABLE 1 (Continued)

Author/Objectives/ML algorithm Sample size Clinical information

Huang et al. (2007)

To predict the risk of developing cirrhosis in

chronic HCV patients / NB

HCV patients:

Training: n= 420

Validation: n= 154

Demographics (date of birth, sex, and ethnicity),

virological features (HCV genotype and serum HCV

RNA level), and liver histology.

Zhou et al. (2017)

To analyze correlations among inflammation

grades, gene expressions and clinical

parameters, and prediction of inflammation

grades / RF, SVM, kNN

Chronic HBV samples (n= 122) Sex, Age, serum ALT, AST and HBV-DNA

Lara et al. (2014)

To differentiate between fast and slow rate of

fibrosis among chronic HCV patients / LP, BN

Transplant recipient with HCV (n= 22)

Non-transplanted immunocompetent patients with

HCV (n= 20)

Rate of fibrosis progression, Transplant status

Cao et al. (2013)

To differentiate chronic HBV patients with

cirrhosis from non-cirrhosis controls / LC-NB,

LC-MLP, LC-SVM, LC-DT, LC-CART

162 serum samples including cirrhosis patients with

chronic HBV (n= 44), chronic HBV(n= 46), and

healthy individuals (n= 72)

Age, Sex

Drug-induced liver injury

Moore et al. (2021)

To predict the risk of developing drug-induced

liver injury / MARS

271 patients (33 chronic vs. 238 acute DILI) Dili status (chronic or acute)

Primary sclerosing cholangitis

Iwasawa et al. (2018)

To distinguish salivary microbial communities

of PSC patients from healthy controls / RF

Pediatric-onset PSC patients (n= 24), age-matched

ulcerative colitis patients (n= 16), and healthy controls

(n= 24)

Age at onset, Age at diagnosis, PSC phenotype, Type of

IBD, Biochemical data, Medication

Mousa et al. (2021)

To predict 5-year hepatic decompensation risk

in PSC patients / GBM

Patients with PSC (n= 400) and controls (n= 302) in

the discovery cohort.

Patients with PSC (n= 108) in the validation cohort

Age, Sex, Bile acid profiles, IBD status, PSC subtype

including small duct disease and overlap with

autoimmune hepatitis (AIH), UDCA treatment and

progression to clinical endpoints

Liver echinococcosis

Peng et al. (2021)

To predict and diagnose liver echinococcosis /

RF

6 liver echinococcosis patients N/A

Liver diseases - general

Lin et al. (2011)

To classify patients with hepatocellular

carcinoma, cirrhosis and hepatitis / F-SVM

Plasma samples from patients with: HCC (n= 28),

chronic HBV (n= 26), cirrhosis (n= 28) and healthy

controls (n= 30)

Ultrasonography and computerized tomography (CT)

imaging, Physical and biochemical tests (AFP,

carcinoembryonic antigen, HBV surface antigen,

antibody to hepatitis surface antigen, glutamic pyruvic

transaminase, glutamic oxalacetic transaminase,

albumin, globin)

ALP, Alkaline Phosphatase; ALT, Alanine Transaminase; aNN, Artificial Neural Networks; APRI, Aspartate Transaminase to Platelet Ratio Index; AUPR, Area Under the Precision Recall

Curve; BN, Bayesian Networks; CART, Classification and Regression Tree; CI, confidence interval; CNN, Convolutional Neural Network; DC, Decision Tree; DL, Deep Learning; F-

SVM, Feature Support Vector Machine; FIB-4, Fibrosis-4; GBM, Gradient-Boosting Machine; GMLVQ, Generalized Matrix Learning Vector Quantization; kNN, K-Nearest Neighbor; LC,

Liver Cirrhosis; LDA, Linear Discriminant Analysis; LP, Linear Projection; LR, Logistic Regression; MARS, Multivariate Adaptive Regression Splines; MDR, Multifactor Dimensionality

Reduction; ML,Machine Learning; MP,Multilayered Perceptron; NAFLD, non-alcoholic fatty liver disease; NASH, non-alcoholic steatohepatitis; NB, Naïve Bayes; OR, odds ratio; PLS-DA,

Partial Least Square Discriminant Analysis; PSC, Primary Sclerosing Cholangitis; RF, Random Forest; SVM, Support Vector Machine.

p < 0.001) (Atabaki-Pasdar et al., 2020) that was superior than

the model incorporating only clinical information (AUROC)

of 0.82 (95% CI 0.81, 0.83, p < 0.001). Oh et al. employed a

combination of metagenomics and metabolomics, along with

typical clinical variables, to predict the progression of NAFLD

to advanced fibrosis and cirrhosis (Oh et al., 2020). Their

RF models distinguishes cirrhosis from NAFLD and mild or

moderate fibrosis (AUROC of 0.85 and 0.84, respectively)
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TABLE 2 Selected studies that performed comparison of ML methods and their performance to models using only clinical parameters, biomarkers

or single features.

omics type Author and study

objective

ML method and model performance on omics data Comparison with ML on

non-omics or with non-ML

models

Non-alcoholic fatty liver disease/Non-alcoholic steatohepatitis

M
u
lt
i-
o
m
ic
s

(g
en

o
m
ic
s,

m
et
ab
o
lo
m
ic
s,

tr
an

sc
ri
p
to
m
ic
s,
p
ro
te
o
m
ic
s)

Atabaki-Pasdar et al. (2020)

To predict and aid in early

diagnosis of NAFLD.

RF On multi-omics: AUROC 0.82 (95% CI:

0.80–0.84, p < 0.001) on multi-omics+

clinical parameters: AUROC 0.84 (95%

CI: 0.82, 0.86, p < 0.001)

RF on clinical parameters: AUROC 0.82

(95% CI: 0.81, 0.83, p < 0.001)

fatty liver index: AUROC 0.78 (95% CI:

0.76–0.80, p < 0.001) hepatic steatosis

index: AUROC 0.76

NAFLD-liver fat score: AUROC: 0.76

(95% CI: 0.75–0.78, p < 0.001)

M
et
ab
o
lo
m
ic
s

Moolla et al. (2020)

To distinguish various stages of

NAFLD using urinary

steroid metabolome.

GMLVQ To distinguish between: - control and

advanced fibrotic NAFLD: AUC ROC

0.99 (95% CI: 0.98–0.99) - control and

NAFLD cirrhosis: AUC ROC 1.0 (95%

CI: 1.0–1.0) - NAFLD cirrhosis and

alcohol-related cirrhosis: AUC ROC

0.83 (95% CI: 0.81–0.85)

To distinguish F0-F2 from F3-F4: -

NAFLD fibrosis score: AUC ROC 0.87

(95% CI: 0.86–0.88) - FIB-4 index: AUC

ROC 0.91 (0.89–0.92)

Perakakis et al. (2019)

To diagnose NASH and

liver fibrosis.

SVM (non-linear) On lipids: accuracy 0.88 On lipids+

glycans: accuracy 0.82 On lipids+

hormones: accuracy 0.87 On lipids+

hormones+ glycans: accuracy 0.86

SVM accuracy on glycans: 0.54, on

hormones: 0.55

kNN accuracy on glycans: 0.45, on

hormones: 0.49

RF accuracy on glycans: 0.49, on

hormones: 0.54

kNN On lipids: accuracy 0.65 On lipids+

glycans: accuracy 0.67 On lipids+

hormones: accuracy 0.64 On lipids+

hormones+ glycans: accuracy 0.63

RF On lipids: accuracy 0.86 On lipids+

glycans: accuracy 0.86 On lipids+

hormones: accuracy 0.80 On lipids+

hormones+ glycans: accuracy 0.83

Viral hepatitis (HBV/HCV)

G
en

o
m
ic
s

Wang M. et al. (2021)

To differentiate patients with

chronic HBV from the immune

tolerant stage.

kNN AUC 0.88 (accuracy 0.90, sensitivity

0.82, specificity 0.94)

HBsAg index: AUC 0.6759 (accuracy

0.6922, sensitivity 0.7447, specificity

0.6744)

ALT index: AUC 0.6806 (accuracy

0.5845, sensitivity 0.8958, specificity

0.4255)

APRI index: AUC 0.7033 (accuracy

0.6917, sensitivity 0.7143, specificity

0.6813)

FIB-4 index: AUC 0.7276 (accuracy

0.6617, sensitivity 0.6905, specificity

0.6484)

SVM AUC 0.8838 (accuracy 0.90, sensitivity

0.83, specificity 0.93)

(Continued)
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TABLE 2 (Continued)

omics type Author and study

objective

ML method and model performance on omics data Comparison with ML on

non-omics or with non-ML

models

RF AUC 0.8793 (accuracy 0.90, sensitivity

0.81, specificity 0.94)

Wu et al. (2021)

To predict HBV integration

sites in promoting

malignant transformation.

CNN on HBV integration sequence+ repeats:

AUROC 0.84, AUPR 0.75 on HBV

integration sequence+ TCGA

Pan-Cancer peaks: AUROC 0.94, AUPR

0.93

CNN on HBV integration sequences:

AUROC 0.64, AUPR 0.55

Huang et al. (2007)

To predict the risk of

developing cirrhosis in chronic

HCV patients.

NB On cirrhosis risk score: AUC 0.73 (95%

CI: 0.56–0.89, P< 0.001) On cirrhosis

risk score+ clinical parameters: AUC

0.76 (95% CI: 0.60–0.92, P < 0.001)

NB on clinical parameters: AUC 0.53

(95% CI: 0.35–0.72, P = 0.36)

T
ra
n
sc
ri
p
to
m
ic
s

Zhou et al. (2017)

To analyze correlations among

inflammation grades, gene

expressions and clinical

parameters, and prediction of

inflammation grades.

RF On gene panel: AUC 0.80 (95% CI:

0.69–0.89) (accuracy 0.70, sensitivity

0.72, specificity 0.68) On gene panel+

clinical parameters: AUC 0.88 (95% CI:

0.77–0.93) (accuracy 0.73, sensitivity

0.77, specificity 0.68)

RF on clinical parameters: AUC 0.78

(95% CI: 0.65–0.86) (accuracy 0.69,

sensitivity 0.77, specificity 0.61);

SVM on clinical parameters: AUC 0.73

(95% CI: 0.58–0.81) (accuracy 0.67,

sensitivity 0.72, specificity 0.61);

kNN on clinical parameters: AUC 0.73

(95% CI: 0.62–0.84) (accuracy 0.69,

sensitivity 0.80, specificity 0.58)

SVM On gene panel: AUC 0.75 (95% CI:

0.58–0.82) (accuracy 0.67, sensitivity

0.67, specificity 0.66) On gene panel+

clinical parameters: AUC 0.71 (95% CI:

0.58–0.81) (accuracy 0.65, sensitivity

0.65, specificity 0.66)

kNN On gene panel: AUC 0.72 (95% CI:

0.65–0.86) (accuracy 0.72, sensitivity

0.82, specificity 0.69) On gene panel+

clinical parameters: AUC 0.8075 (95%

CI: 0.71–0.90) (accuracy 0.77, sensitivity

0.89, specificity 0.62)

Drug-induced liver injury

G
en

o
m
ic
s

Moore et al. (2021)

To predict the risk of

developing drug-induced

liver injury.

MARS on SNP interactions: OR 4.19 (95% CI:

1.36–11.74, p= 0.008)

MARS on individual SNPs: OR

3.28/1.49 (95% CI: 1.57–7.09/0.72–3.14,

p= 0.002/0.282)

MDR on individual SNP: 3.01 (95% CI:

1.44–6.43, p= 0.004)

Primary sclerosing cholangitis (PSC)

M
et
ab
o
lo
m
ic
s

Mousa et al. (2021)

To predict 5-year hepatic

decompensation risk in

PSC patients.

GBM PSC-Bile Acid Profile score (validation

cohort): AUC 0.86 (95% CI: 0.74–0.96)

GBM on PSC Risk Estimate Tool: AUC

0.94 (95% CI: 0.87–0.98)

Using cox proportional hazard models:

- Bilirubin score: AUC 0.77

- ALP score: AUC 0.70

ALT, Alanine Transaminase; APRI, Aspartate Transaminase to Platelet Ratio Index; AUPR, Area Under the Precision Recall Curve; CI, confidence interval; CNN, Convolutional Neural

Network; FIB-4, Fibrosis-4; GBM, Gradient-Boosting Machine; GMLVQ, Generalized Matrix Learning Vector Quantization; kNN, K-Nearest Neighbor; MARS, Multivariate Adaptive

Regression Splines; NB, Naïve Bayes; OR, odds ratio; RF, Random Forest; SVM, Support Vector Machine.
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with an improved accuracy upon incorporating serum AST

level (AUROC of 0.94 and 0.91, respectively) (Oh et al.,

2020). Another four studies utilized metabolomics for various

purposes, including the prediction of NAFLD, diagnosis of

NASH, and differentiation of NAFLD stages (Chiappini et al.,

2017; Perakakis et al., 2019; Moolla et al., 2020; Masarone et al.,

2021). The models included decision tree, naïve bayes (NB),

random forest (RF), artificial neural network (ANN), partial

least square discriminant analysis (PLS-DA), linear discriminant

analysis (LDA), DL, and logistic regression (LR). Chiappini

et al. used liver biopsies and lipid profiling to develop an

RF model aimed to differentiate between NASH and different

stages of NAFL (Chiappini et al., 2017). Their RF model

based on a 32-lipid signature, associated with dysregulation

in fatty acid synthesis pathway, showed 100% sensitivity and

specificity, AUC = 1. Uniquely, Perakakis et al. conducted a

proof-of-concept study which used SVM, kNN, linear PLS-

DA and RF models to diagnose NASH and liver fibrosis based

on single or combination of lipids, glycans and biochemical

profile (Perakakis et al., 2019). The non-linear SVM with

selection of biomolecules were the best predictive ML models

for NASH vs. NAFL vs. Healthy groups, with AUC varying from

0.77 to 0.99, depending on the selected variables (see Table 2

for more details). Notably, Masarone et al. used the urinary

steroid metabolome to construct both ML and DL models for

differentiating between different stages, e.g., simple steatosis,

steatohepatitis and cirrhosis in NAFLD patients (Masarone et al.,

2021). The models include decision tree, naïve Bayes (NB),

random forest (RF), artificial neural network (ANN), partial

least square discriminant analysis (PLS-DA), linear discriminant

analysis (LDA), DL, and logistic regression (LR), with PLS-

DA showing best performance. Depending on which two-group

comparison was performed to differentiate between various

conditions (NAFLD and Controls, NAFLD and NASH or NASH

and cirrhosis), the accuracy of the PLS-DA models was very

high, ranging from 0.991 to 0.999 and quality of the prediction

indicated by R2, from 0.928 to 0.968. Similarly, Moolla et al.

also differentiated various stages using a ML-based generalized

matrix learning vector quantization (GMLVQ) analysis on

urinary metabolomic data (Moolla et al., 2020). All these models

were reported to have an accuracy >0.80 (Perakakis et al.,

2019; Moolla et al., 2020; Masarone et al., 2021). A proteomics

study used an elastic-net algorithm to diagnose NASH and

differentiate between fibrosis stages in NASH patients and built

models based on a four- or 12-protein classifier (AUROC of 0.74

and 0.83, respectively) (Luo et al., 2021).

AI applied to viral hepatitis

A total of seven studies reported on the omics profiling

of viral hepatitis patients, specifically hepatitis B virus (HBV)

and hepatitis C virus (HCV) infections (Huang et al., 2007;

Cao et al., 2013; Lara et al., 2014; Zhou et al., 2017; Mueller-

Breckenridge et al., 2019; Wang M. et al., 2021; Wu et al.,

2021). Of these, five studies used genomics (Huang et al.,

2007; Zhou et al., 2017; Mueller-Breckenridge et al., 2019;

Wang M. et al., 2021; Wu et al., 2021), one study utilized

transcriptomics (Lara et al., 2014), and one study generated

proteomics data (Cao et al., 2013). HBV is a major risk factor for

developing liver fibrosis, cirrhosis, and hepatocellular carcinoma

(HCC) (Mueller-Breckenridge et al., 2019). Hepatitis B e antigen

(HBeAg) is a secreted protein of HBV with a high sequence

conservation and seroconversion due to HBeAg represents a

biomarker in infected individuals (Mueller-Breckenridge et al.,

2019).Mueller-Breckenridge et al. used the RFmethod to classify

HBeAg status of patients with chronic HBV infection (Mueller-

Breckenridge et al., 2019). The highest-ranking variables

contributing to the model are known pre-core and basal core

promotor mutants (n1896GA, n1934AT, n1753TC). Similarly,

Wang et al. used the HBeAg biomarker and enrolled HBeAg

positive patients from whom liver biopsies were taken (Wang

M. et al., 2021). Using three ML models, i.e., kNN, SVM, and

RF, the study aimed to differentiate the immune tolerant phase

from chronic HBV. All predictive ML models using genomics

(whole HBV sequencing data and viral quasispecies), showed

higher AUC values (validation group AUC of 0.8838, 0.8801, and

0.8793 for SVM, kNN, and RF, respectively) compared tomodels

commonly used for liver fibrosis, based on HBsAg, ALT, APRI,

and FIB-4 (validation group AUC of 0.6759, 0.6806, 0.7033 and

0.7276, respectively), indicating better classification (Wang M.

et al., 2021) (Table 2). The authors suggested to use the best

performing model for future diagnosis, rather than performing

invasive liver biopsies. Wu et al. used Convolutional Neural

Networks (CNN) to develop an attention-based deep learning

model, DeepHBV (Wu et al., 2021). It effectively learns local

genomic features and uses the information to predict HBV

integration sites which promotes malignant transformation. In

addition to DNA sequences near the HBV integration sites, the

integration of additional genomic features, such as repeat and

TCGA Pan-Cancer peaks, improved the AUROC from 0.64 to

0.84 and 0.94, respectively (Wu et al., 2021). Using this tool they

revealed novel integration site for HBV. Zhou et al. used gene

profiles and clinical variables to predict inflammation grades in

chronic HBV patients (Zhou et al., 2017). A selection of genes

along with clinical parameters showed effectiveness in predicting

binary classifications of inflammation grade [AUROC of 0.88

(95% CI: 0.77–0.93)] and superior performance in comparison

with themodel that did not include clinical variables [AUROC of

0.78 (95% CI: 0.65–0.86)]. Although liver biopsy is the reference

standard for evaluating cirrhosis, it is an invasive procedure. Cao

et al. used proteomics data to differentiate HBV patients with

cirrhosis from non-cirrhotic controls, by testing five machine

learning models (NB), multilayered perceptron (MP), SVM,

decision tree, and classification and regression tree (CART) on

non-invasive serum biomarkers to diagnose cirrhosis. The best
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predictive model was based on NB, called LC-NB, with AUC

of 0.977 (sensitivity: 86.4%, specificity: 96.9%, accuracy: 93.8%)

(Cao et al., 2013), where LC stands for liver cirrhosis. By

comparison, other ML models derived in this study obtained

AUC varying from 0.73 (LC-CART) to 0.83 (LC-DT) to 0.85

(LC-SVM) to 0.97 (LC-MLP) and accuracy ranging from 0.85 to

0.86 to 0.90 to 0.98, respectively. ML (NB) was also applied for

prediction of cirrhosis among Caucasian patients with chronic

hepatitis C, by developing of Cirrhosis Risk Score (CRS) (Huang

et al., 2007). The model that integrated a signature of seven

SNPs with clinical variables presented superior performance

(AUC of 0.76) vs. the model that did not include genomics

data (AUC of 0.53). Lara et al. developed LP and BN models to

differentiate between fast and slow rate of fibrosis progression

(RFP) among chronic HCV patients (Lara et al., 2014). The

LP model showed 95% accuracy of RFP-classification with a

sensitivity of 82% and a specificity of 100%. The BN classifier

models are learned separately from immunocompetent and liver

transplant recipient datasets, reaching an accuracy of 86.4 and

85%, respectively (Lara et al., 2014).

AI in drug-induced liver injury

The inclusion criteria set out to specifically predict DILI,

as diagnosed by liver biopsy, was met by one study which

utilized genomics data. The study by Moore et al. employed

three ML algorithms, multivariate adaptive regression splines

(MARS), multifactor dimensionality reduction (MDR), and LR,

with the aim of investigating single-nucleotide polymorphisms

(SNPs) (Moore et al., 2021). The effect of SNP-SNP interactions

on DILI susceptibility as well as their ability to predict DILI

chronicity were observed. Subsequently, an RF algorithm was

used to validate the ability of the three models in identifying

chronic DILI associated SNP interactions achieving sensitivity,

specificity, accuracy and balanced accuracy scores of 42.4, 90.3,

86.3 and 66.4%, respectively. Ultimately, both the RF and LR

algorithms were unsuccessful in more accurately identifying

SNP-SNP interaction terms than individual SNPs while both

MARS and MDR were successful. MARS identified interactions

between SNPs rs6487213 and rs3785157 with an odds ratio score

of 4.74 (95% CI: 2.14–10.39, p < 0.001), while MDR achieved

an odds ratio of 4.19 (95% CI: 1.36–11.74, p = 0.008) for

interactions between rs5417, rs7658048, and rs12453290.

AI and primary sclerosing cholangitis

PSC accounted for two of the 20 final selected papers.

One study involving metabolomic data from 400 PSC patients

utilized both (univariate) Cox proportional hazard and

(multivariable) GBM models (Mousa et al., 2021). They set out

to predict the 5-year risk of hepatic decompensation in PSC

patients. They developed a PSC bile acid profile (PSC-BAP)

score able to sufficiently predict future hepatic decompensation

events. For the final model with six covariates, the predictive

performance was comparable in the training set (AUC of 0.95,

95%CI, 0.92–0.97) and in the validation cohort (AUC of 0.86,

95%CI, 0.74–0.96). Consequently, they elucidated a genuine

potential for bile acid profiles as non-invasive biomarkers.

Another study by Iwasawa et al. explored the microbiological

features of the salivary microbiota to distinguish salivary

microbial communities of PSC patients from healthy controls

(HC) and ulcerative colitis (UC) patients, by implementing an

RF algorithm on meta-genomics data (Iwasawa et al., 2018).

Their study highlighted the potential of salivary microbiota as a

biomarker to distinguish between PSC patients, UC patients and

healthy controls. Their algorithm achieved an AUROC of 0.8756

when distinguishing between PSC and UC, and an AUROC of

0.7423 when distinguishing between PSC and healthy controls

(Iwasawa et al., 2018).

AI and liver echinococcosis

A study by Peng et al. used transcriptomics to generate

a predictive model for liver echinococcosis (Peng et al.,

2021). Using microarray profiling, the authors identified 1,152

differentially expressed genes. These were selected for Protein-

protein interaction (PPI) network analysis to reveal the most

critical genes by centrality score, then a RF model was

constructed based on hub genes. A particular RF model based

on FCGR2B and CTLA4 genes reliably predicted liver hydatid

disease with an AUROC of 0.921.

Liver diseases (general)

One study applied ML to metabolomics to distinguish

between HCC and other liver diseases: cirrhosis, and hepatitis

(Lin et al., 2011). Using a Feature Support Vector Machine (F-

SVM) with selection of 22 metabolites they differentiated the

latter two with an accuracy of 89.23 +/− 3.82%, suggesting that

metabolites could be used in prediction of liver diseases.

Limitations

AI models are hard to be understood by humans, they lack

in interpretation and considered black boxes. To overcome this

important issue in highly regulated areas, such as healthcare,

explainable AI (XAI) methods have been developed, based on

Shapley values (Shapley; Bussmann et al., 2020). Such models,

however, interpret mostly the importance of local features and

the contribution of each variable within each model, rather than

offering a more global view.

Literature on AI applied to high-throughput omics and

clinical data from non-malignant liver diseases is still somewhat
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limited compared to malignant liver diseases. As evident in

the greater number of papers published, attention has been

heavily given to studies pertaining to HCC. These were

excluded from this review to highlight the use of AI in non-

malignant liver diseases. Further, we found only one study on AI

utilizing molecular data derived from liver transplant recipients,

proving a gap of knowledge in the field of post-transplant

liver diseases.

Future directions

The increased availability of omics data from human

samples can contribute to the advancement of precision

medicine that relies on data for each individual patient, rather

than applying a “one-size-fits-all” model, to fine-tune and

personalize the diagnosis and risk stratification of patients.

Therefore, there is significant potential for the application of

AI for precision medicine in general, and in liver diseases

in particular. Further efforts should be directed toward

improving the predictive ability of these integrated omics-based

algorithms built on a wide range of data, clinical and otherwise.

Strategies should be made for the implementation, as well

as standardization of such practices. For better interpretation

of the AI models, a combination of more interpretable local

Shapley values with more global explainable AI methods, such

as the Shapley-Lorenz XAI (Giudici and Raffinetti, 2021) have

been developed. The advantage of this model resides in both

predictive accuracy and interpretation metric and should be

used in future research involving AI models. Finally, the

practicality of working with large omics datasets on a daily basis

need to be considered, including the cost needed to collect and

process samples, the time required for analysis and the need

for trained personnel and an appropriate facility to perform

various omics.

Conclusion

In this mini review, we screened 20 studies that employed

AI on clinical and high-throughput molecular data from non-

malignant liver diseases. We found that ML or DL algorithms

could predict early disease, stratify different stages, and/or

predict survival in liver diseases when using a diversity of

omics data in addition to clinical information to build specific

models. With greater availability of high-throughput molecular

data, there is potential to implement AI for precision medicine

in hepatology.
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