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Isolated single sound lip-reading
using a frame-based camera and
event-based camera

Tatsuya Kanamaru, Taiki Arakane and Takeshi Saitoh*

Kyushu Institute of Technology, Fukuoka, Japan

Unlike the conventional frame-based camera, the event-based camera detects

changes in the brightness value for each pixel over time. This research

work on lip-reading as a new application by the event-based camera. This

paper proposes an event camera-based lip-reading for isolated single sound

recognition. The proposed method consists of imaging from event data,

face and facial feature points detection, and recognition using a Temporal

Convolutional Network. Furthermore, this paper proposes a method that

combines the two modalities of the frame-based camera and an event-based

camera. In order to evaluate the proposed method, the utterance scenes of 15

Japanese consonants from 20 speakers were collected using an event-based

camera and a video camera and constructed an original dataset. Several

experiments were conducted by generating images at multiple frame rates

from an event-based camera. As a result, the highest recognition accuracy was

obtained in the image of the event-based camera at 60 fps. Moreover, it was

confirmed that combining two modalities yields higher recognition accuracy

than a single modality.

KEYWORDS

event-based camera, frame-based camera, lip-reading, single sound recognition, face

detection, facial feature points detection, Temporal Convolutional Network

1. Introduction

The typical means of communication for us humans is voice. Audio-based

speech recognition (ASR) that analyzes this voice and estimates the contents of the

speech has been researched for a long time. Furthermore, our lives have become

more comfortable by ASR technology has been put to practical use in smartphone

applications. However, there are situations in which ASR is difficult to use, as listed

below. (1) People who have difficulty hearing the other person’s voice due to hearing

impairment, people who cannot speak due to speech problems, and have difficulty

communicating their voice. (2) In a noisy environment such as a car, train, factory,

or lively place such as festivals. (3) Places where it is difficult to speak out, such

as public places. (4) When multiple people speak simultaneously, (5) Restoration of

the utterance content only from visual information without audio information. To

solve these problems, studies using other modalities are ongoing. Among them, lip-

reading or visual speech recognition (VSR) technology uses a camera image and

estimates utterance content from visual information as a typical modality. Research

on lip-reading technologies has been undertaken since the 1950s (Hao et al., 2020).
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In recent years, recognition accuracy has been greatly improved

by enhancing deep learning (Afouras et al., 2018) and public

datasets (Chung and Zisserman, 2016; Chung et al., 2017; Saitoh

and Kubokawa, 2018).

However, the sampling frequency in general ASR technology

is 16 kHz, while that in lip-reading technology is 30 Hz, and

there is a large difference in time resolution. It has been reported

that the recognition accuracy is improved by using a high-speed

camera, but it is expensive. Therefore, in this research, we focus

on an event-based camera, which is inexpensive, has high frame

rates, and has low power consumption.

The event-based camera is a sensor inspired by living

organisms’ retinas and has features such as high time resolution

and high dynamic range. Unlike conventional frame-based

cameras, event data is saved when it is determined that an event

has occurred due to a temporal change in the brightness value

for each pixel.

In event-based camera research, many studies generate

images similar to frame images from the event data. However,

this paper focuses on analyzing faces rather than reconstructing

images exactly. A face extraction method has been proposed

for event-based as well as frame-based cameras (Ramesh and

Yang, 2020). Lenz et al. (2020) have proposed a face-tracking

method that utilizes the characteristics of an event-based camera

by using blinks. In this study, the detection and tracking of

the subject’s face are started with a single blink. It also shows

robustness regarding the distance between the subject and the

camera and the simultaneous detection of multiple people. In

addition, this paper studies lip-reading using an event-based

camera.

Li et al. (2019) reported lip-reading using an event-based

camera. They played back the speech scenes of GRID corpus

(Cooke et al., 2006), a publicly available audio-visual benchmark

dataset shot with a standard video camera, on a screen and shot

the scenes with an event-based camera. In other words, their

studies did not directly shoot speech scenes using an event-

based camera. The GRID scenes were shot with a frame-based

camera, and the time resolution was 25 Hz. Thus, this does not

take full advantage of the high time resolution characteristic of

the event-based camera. To the best of the author’s knowledge,

no other lip-reading research directly shot speech scenes with

an event-based camera. Therefore, this paper is the world’s first

lip-reading for data shot directly with an event-based camera.

The recognition targets in the lip-reading field are roughly

classified into three categories: single sounds (Nakamura

et al., 2021), words (Chung and Zisserman, 2016; Saitoh and

Kubokawa, 2018), and sentences (Assael et al., 2016; Chung

et al., 2017; Afouras et al., 2018; Shirakata and Saitoh, 2021).

In research using frame-based cameras, single sounds were the

research target in the early days of lip-reading technology, but

it was not easy to identify consonants. In recent years, words

and sentences have been actively discussed because words or

sentences are more expansive than single sounds. This paper

focuses on single sounds that are difficult to recognize in the

frame-based camera.

The contributions of our works are as follows.

• We show that face detection and facial feature points

detection can be performed on face images taken with an

event-based camera.

• We show that lip-reading can be performed from the

utterance scene taken with the event-based camera.

• This paper shows that the event-based camera has higher

lip-reading accuracy than the traditional frame-based

camera.

• We show that combining two modalities, the frame-

based camera and the event-based camera, provides higher

accuracy than a single modality.

The rest of this paper is organized as follows: Section

2 describes the proposed method. Section 3 describes some

experimental results. This paper concludes in Section 4.

2. Proposed method

The overview of the proposed method is shown in Figure 1.

A speech scene is simultaneously shot using a standard video

camera and an event-based camera. Event images are generated

by applying the image generation method described in Section

2.1 to the data of the event-based camera. Face detection and

facial feature points detection is applied to event and frame

images, and lipROIs, a region of interest around the lip shown

in Figure 1, is extracted for each. lipROIs are set as input data,

and each modality’s output is obtained by the recognition model

described in Section 2.4. We apply late fusion to get the final

output as a final process.

2.1. Image generation

When the frame rate is expressed as F[fps], the frame-

based camera captures F images per second. On the other hand,

each pixel independently records the event information (change

polarity, coordinates, and time) of the brightness change in the

event-based camera. Therefore, there is no concept of frame rate

in the event data recorded by the event-based camera. Image

generation from event data assigns pixel values based on the

event data of each pixel within a certain time.

This paper sets a pseudo frame rate F for image generation

from the event data. We count the number of events at pixel

(x, y) within the 1/F[second] interval from the recording start

time. There are two types of events, positive and negative, and

the sum of S(x, y) is calculated with positive as +1 and negative

as −1. The following equation gives the pixel value of the image

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2022.1070964
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Kanamaru et al. 10.3389/frai.2022.1070964

FIGURE 1

Processing pipeline of the proposed method.

FIGURE 2

Face images taken with an event-based camera during nodding. (A–L) are a time-series event images in one shooting scene.

E (denoted as an event image) generated by the event-based

camera.

E(x, y) =











0 S(x, y) < 0

128 S(x, y) = 0

255 S(x, y) > 0

Figure 2 shows an example of a time-series event image

generated from the event data acquired when one person sits on

a chair in front of the event-based camera and nods. Figure 2A

is the first state of facing the front and resting, Figure 2D is

the state of facing down, Figure 2F is the state of returning to

the front again, and Figure 2L is the state of facing the front

and resting. The gray value is a pixel with no movement in the

event image, and the white or black is a pixel with movement.

When the luminance value is higher than the previous time, it

becomes a white pixel; when the luminance value is lower, it

becomes a black pixel. In Figures 2C–E, G–I, the edge of the

face can be observed in the event image by the movement of

the head.
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FIGURE 3

LipROIs of frame images and event images when uttering sound

/A/. (A) Frame image @29.97 fps. (B) Event image @29.97 fps. (C)

Event image @60 fps. (D) Event image @100 fps. (E) Event image

@200 fps.

Furthermore, by changing F, an event image with a higher

frame rate than the camera image can be generated. Figure 3

shows the lipROIs described later. In the figure, Figure 3A is a

camera image with a frame rate of 29.97 fps, and Figures 3B–E

are event images with different frame rates. Four images are

shown in Figures 3A–E, but each row is an image taken at the

same time. When observing these event images, the number of

events decreases as the frame rate increases, so the gray value

increases overall, but it is thought that small movements can be

captured.

2.2. Face detection

Figure 2A is a stationary state before starting the nodding

motion. By observing only this image, the exact shape of the face

cannot be seen. When shooting a subject with a frame-based

camera, if the subject is within the camera’s field of view, the

subject can be shot even if it is stationary. On the other hand, in

the case of an event-based camera, it is impossible to capture a

stationary subject, and the subject’s data is not saved unless there

is a relatively apparent movement due to the subject or camera

movement. Therefore, when shooting the utterance scene with

the event-based camera, we take the means of having the subject

perform the nodding motion first, as shown in Figure 2.

In order to detect facial feature points, it is desirable that

edges can be observed in the target image. Since the nodding

motion is a reciprocating motion of lowering and raising the

head, an image with many black and white pixels can be

observed in a series of motions. Therefore, for each image, the

average luminance value of all pixels is calculated, and the image

with the minimum average luminance value in the nodding

motion is automatically extracted as a black image. This paper

applies face detection and facial feature points detection to the

black image.

Before detecting facial feature points, it is necessary to

specify the facial position. Therefore, the face detection process

from the event image is applied. Various methods have been

proposed for face detection for conventional frame-based

cameras. Using Haar-like features and histogram of oriented

gradients (HOG) features have been proposed as non-deep

learning-based methods (Viola and Jones, 2001; Dalal and

Triggs, 2005). As deep learning-based methods, Deep Pyramid

Deformable Parts Model for Face Detection (DP2MFD) (Ranjan

et al., 2015), Deep Dense Face Detector (DDFD) (Farfade et al.,

2015), and Retinaface (Deng et al., 2020) have been proposed.

In this research, the object detection method using the HOG

feature proposed by Dalal and Triggs, which is proposed in

the frame-based camera and implemented in dlib1 (Dalal and

Triggs, 2005) is applied to the event image. In preliminary

experiments, we applied dlib, MediaPipe Face Detection2, and

RetinaFace (Deng et al., 2020), and dlib had the highest accuracy.

2.3. Facial feature points detection

Facial feature points have semantic meaning, also known

as facial landmarks or fiducial points. Facial feature points are

mainly located around facial components such as the eyes,

mouth, nose, and chin. A typical facial feature points detection

method for frame-based cameras is the method of Kazemi and

Sullivan (2014) implemented in dlib, and a face model of 68

feature points has been released. However, since it is difficult to

define contour points in the event image compared to the facial

image of the frame-based camera, 32 facial feature points shown

in this paper are defined in Figure 4.

This paper also investigates some Convolutional Neural

Network (CNN) models using deep learning as a facial feature

1 http://dlib.net/

2 https://google.github.io/mediapipe/solutions/face_detection
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FIGURE 4

Facial feature points (face contour: 9 points, eyebrows: 3 points,

eye contour: 4 points, nose: 5 points, lip: 4 points).

points detection method. Details will be described later in the

experiment of Section 3.2.

2.4. Recognition model

The lipROI shown in Figure 3 is extracted based on the facial

feature points detected above.

Temporal Convolutional Network (TCN) is a network

that uses CNN for series data and has higher accuracy

than RNN, such as LSTM, in tasks for time series data

such as natural language and music (Bai et al., 2018). The

TCN consists of a combination of a 1D fully-convolutional

network and casual convolutions. Furthermore, Martinez

et al. (2020) have proposed a model that uses the Multi-

scale temporal convolutional network (MS-TCN). MS-TCN

incorporates multiple time scales into the network to confuse

short-term information with long-term information during

feature coding. In this paper, MS-TCN is used.

The model structure used in this paper is shown in Figure 5.

The model input is a time-series grayscale lipROIs, with the

shape of W0 × H0 × T, where T stands for the temporal

dimension and W0, H0 represent the width and height of the

lipROIs, respectively. Next, the image features are extracted with

ResNet-18, in which the first convolution layer is changed to 3D

convolution to obtain the spatial-temporal features with shape

W1 × H1 × T × C1, where C1 is the feature channel number.

ResNet-18 is applied to produce features with shape T × C2.

After that, it is composed of MS-TCN and Softmax through

the Global average pooling layer. Here, C1, C2, and C3 denote

different channel numbers. This structure is often used in lip-

reading methods using frame image (Martinez et al., 2020). In

FIGURE 5

Model structure of recognition model.

the utterance scene, no large movements are observed around

the lips. Therefore, ResNet-18, which is not a model with a

complicated structure, can extract sufficient features.

2.5. Decision-level fusion

In this research, we acquire two modalities of frame

and event images. Multimodal fusion is the process of

integrating information from multiple sources for classification

or regression tasks. There have been three information fusion

approaches: early, hybrid, and late. Multimodal fusion provides

the benefits of robustness, complementary information gain, and

functional continuity of the system, even in the failure of one

or more modalities. Early fusion integrates low-level features

from each modality by correlation, potentially accomplishing

the better task, but has difficulty in temporal synchronization

among various input sources. Hybrid fusion attempts to exploit

the advantages of both early and late fusion in a common

framework. The late fusion obtains unimodal decision values

and integrates them to obtain the final decision. Although the

late fusion ignores low-level interactions between modalities, it

allows easy training with more flexibility and simplicity to make

predictions when one or more modalities are missing. In this

research, we exploit late fusion.

3. Experiment

3.1. Face detection

As an experiment to verify the possibility of face extraction

for event images, a nodding scene was originally taken with the

cooperation of 23 students (16 males and seven females). Here,

due to the robustness of the facial orientation, the subject shoots

in five directions, front, top, bottom, left, and right, as shown in

Figure 6. This five-direction shooting is defined as one set. For

the four eyeglass wearers, the scene without eyeglasses was also

taken. Those who did not wear eyeglasses shot three sets of 15

scenes per subject. As mentioned above in Section 2.2, one black

image was taken out from each scene, and 15 face images were
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FIGURE 6

Face images taken in five directions (front, up, bottom, right, left).

FIGURE 7

Face detection results (red: ground truth, green: model by frame-based image, blue: model by event image).

collected per subject. We collected 405 facial images from all 23

subjects.

If the subject wearing/not wearing eyeglasses is regarded as

another subject, there are 27 subjects. We divided 27 people into

three groups, with nine subjects in one group, and evaluated

the face extraction accuracy by 3-fold cross-validation using two

groups as training data and the remaining group as test data. The

number of male and female eyeglass wearers in each group was

set equally.

In this experiment, we trained a face detection model FDMe

on event images As a comparison method, we used the trained

model FDMf for the frame image provided in dlib. The success

or failure of extraction was visually evaluated. The face detection

success accuracy of the two models, FDMe and FDMf , were 99.5

and 82.5%, respectively. From this, it was found that the face can

be detected even in images taken with an event-based camera.

Figure 7 shows three examples of face detection results. In

the figure, the red rectangle is the correct face rectangle, the

green rectangle is the detection result of the model trained by

the frame-based image, and the blue rectangle is the detection

result of the model trained by the event image. In order to

quantitatively evaluate the face detection results of Figure 7, the

Intersection over Union (IoU) was calculated. Here, let IoUe be

the IoU between the detection result of the model trained by the

event image and ground truth, and IoUf be the IoU between the

detection result of the model trained by the frame image and

ground truth. IoUe and IoUf in the left image of Figure 7 are

0.955 and 0.737, respectively. IoUe and IoUf in themiddle image

of Figure 7 are 0.877 and 0.752, respectively. IoUe and IoUf in

the right image of Figure 7 are 0.831 and 0.927, respectively. The

left and middle images of Figure 7 are higher for IoUe. On the

other hand, in the right image of Figure 7, IoUf is higher than

IoUe, but the difference between the two is small, and a sufficient

result is obtained.

3.2. Facial feature points detection

In order to train and quantitatively evaluate feature point

detection accuracy, one author manually gave the correct

coordinates of all feature points to the 405 facial images collected

in the previous experiment.

AlexNet (Krizhevsky et al., 2012), VGG16 (Simonyan and

Zisserman, 2014), ResNet-50 (He et al., 2016), and ResNet-101

(He et al., 2016) were applied as models using deep learning.

For the three models except for AlexNet, the trained model by

ImageNet was used. As with face detection, we used a 68-points

model (denoted as Kazemi68) provided by dlib as a trained

model for frame-based images. On the other hand, the model

trained at the 32 points shown in Figure 4 using the event-based

image is denoted as Kazemi32. A normalized mean error (NME)

was used to evaluate the feature point detection accuracy.

The experimental results are shown in Table 1. It was

confirmed that the accuracy of the four types of CNN models

increases as the number of layers increases. However, Kazemi32,

which is non-deep learning, obtained the highest detection

accuracy. The feature points are given to the boundaries of

the parts of the face. The frame image has gradual shading

changes, but the event image has many edges. Kazemi uses

shape difference, which is suitable for images with many edges.
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TABLE 1 Feature points detection errors with various models.

Model NME

Kazemi68 0.1413

Kazemi32 0.0330

AlexNet (Krizhevsky et al., 2012) 0.1233

VGG16 (Simonyan and Zisserman,

2014)

0.0422

ResNet50 (He et al., 2016) 0.0410

ResNet101 (He et al., 2016) 0.0372

Highest NME is highlighted in bold.

Therefore, Kazemi has higher accuracy than CNN. In addition,

Kazemi is a fast method without using deep learning. Therefore,

Kazemi32 is used in subsequent recognition experiments.

3.3. Isolated single sound recognition

This paper aims to estimate a single isolated sound using

event images. However, there is no open dataset. Therefore,

we originally collected utterance scenes with the cooperation

of 20 students (13 males and seven females) and took the

utterance scene. Here, the students in this experiment are

different students from Section 3.1. The utterance contents are

15 Japanese sounds of /a/, /ka/, /sa/, /ta/, /na/, /ha/, /ma/, /ya/,

/ra/, /wa/, /ga/, /za/, /da/, /ba/, and /pa/. These 15 sounds are

conscious of consonant recognition, which is generally difficult

to identify. The speaker was asked to utter 15 sounds one by one

in one shooting. At this time, the speaker had his/her lips closed

before and after the utterance. The interval between the sounds

was set to 3 s. In the 15-sound utterance after the nodding

motion, we instructed the subject not to move his head as much

as possible. Each speaker was taken five times. In other words, we

collected utterance scenes of 15 sounds × 5 times = 75 sounds

per speaker.

Face detection and facial feature points detection were

applied to the first nodding motion in each utterance scene, and

the lipROI was obtained. Regarding the subsequent utterances

of the 15 sounds, the same position as the lipROI obtained by

the nodding motion was cropped. The utterance section was

detected for the extracted lipROI.

In this experiment, DVXplorer by iniVation was used as

the event camera. In addition, a video was shot simultaneously

for comparison by a standard video camera. The shooting

environment of the utterance scene is shown in Figure 8. Since

the event and video cameras are independent devices, they

cannot be installed on the same optical axis. Therefore, the event

camera was placed in the front, the video camera in the rear, and

each was fixed to a tripod, as shown in Figure 8. The speaker

was seated on a chair and uttered in a front-facing position. The

FIGURE 8

Utterance scene shooting environment.

TABLE 2 Isolated single sound recognition result.

Image type Frame rate [fps] Accuracy

Frame-based 29.97 0.290

Event 29.97 0.414

60 0.528

100 0.409

200 0.399

Highest accuracy is highlighted in bold.

distance between the event camera and the subject was about

60cm. In order to shoot a bright face with a video camera, we

put an LED light on it. A light green curtain was placed behind

the speaker.

In the recognition experiment, 20 subjects were divided

into four groups, and evaluation was performed for 4-fold

cross-validation using 15 subjects in 3 groups as training data

and five subjects in the remaining 1 group as test data. Here,

the groups were created so that the male-female ratio was

almost the same. We generated four frame rates for event

images: 29.97, 60, 100, and 200 fps. The size of lipROI was

70 × 70 pixels. The model parameters were set to W1 =

H1 = 15, C1 = 64, C2 = 512, and C3 = 768.

The recognition results are shown in Table 2. The accuracy

of the frame-based image is low, while the accuracy of the

event image is high at all frame rates. With an event image,

the higher the frame rate, the smaller movements can be

captured, but the number of events per image decreases, and

the number of information decreases. Therefore, it is assumed

that the recognition accuracy decreased in event@100 and

event@200. Lowering the frame rate increases the amount

of information, but it is difficult to capture fine movements.

There is a trade-off relationship between motion capture and

the amount of information. Here, the highest recognition
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FIGURE 9

Recognition accuracies against α.

FIGURE 10

Consugion matrices (left: α = 0.0, center: α = 0.1, right: α = 1.0).

accuracy of 0.528 was obtained at 60 fps. Humans find

the 15 sounds to be recognized difficult to identify, even

visually.

Next, we applied late fusion using two modalities: frame

images and event images. The results are shown in Figure 9. In

the figure, the vertical axis is the accuracy. α on the horizontal

axis is the weight of the frame image and the event image,

α = 0 is the accuracy when only the event image is used,

and α = 1 is the accuracy when only the frame image

is used. The event image used four frame rates in previous

experiments: 29.97, 60, 100, and 200 fps. Therefore, Figure 9

also shows four curves. From Figure 9, the α values for the

highest accuracy in multimodality fusion were 0.2, 0.1, 0.3, and

0.4 for event images of 29.97, 60, 100, and 200 fps, respectively.

There was a strong negative correlation between the recognition

accuracy and α in a single modality using only event images.

When α = 0.1 and the event image is 60 fps, we obtained

a recognition accuracy of 0.532, which is higher than using

one modality. We confirmed that the two modalities improve

accuracy, albeit only slightly. Here, we applied early fusion

after ResNet-18 in Figure 1 to combine the features of the

two modalities, frame@29.97 and event@29.97, and recognize

them with MS-TCN. As a result, the recognition rate was

0.400, which was lower than the single modality. Thus, it
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was confirmed the effectiveness of the proposed late fusion

approach.

Finally, Figure 10 shows three confusion matrice of

frame@29.97 (Figure 10, right) and event@60 (Figure 10, left)

and two modalities of frame@29.97 and event@60 (Figure 10,

center). The numerical value of each cell is the recognition

accuracy, and cells with higher recognition accuracy are

drawn in red. Here, the arrangement of the 15 sounds was

divided into three articulation groups, the bilabial part (four

sounds: /ma/, /ba/, /pa/, and /wa/), the anterior part of the

oral cavity (six sounds: /sa/, /za/, /ta/, /da/, /na/, and /ra/),

and the posterior part of the oral cavity (five sounds: /a/, /ka/,

/ga/, /ha/, and /ya/), according to the place of articulation.

The place of articulation is in the oral cavity, where the

consonant is pronounced. It is considered to be related

to the expression of the mouth shape. For α = 0.0 and

α = 0.1, wrong recognitions tend to be in the articulation

group sound. From these matrices, it can be found that the

event image captures the movement when the consonant is

uttered.

4. Conclusion

This paper proposed a lip-reading method using an event-

based camera and conducted a recognition experiment for 15

Japanese sounds. As a result, we confirmed that event images

have higher recognition accuracy than traditional frame-based

images. We also showed that the face detection and facial feature

point detectionmethods proposed for the frame-based image are

also applicable to the event image.

In this paper, we focused on the isolated single sound that is

difficult to recognize, but we will develop them into words and

sentences in the future.
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