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In many scenarios where robots or autonomous systems may be deployed, the capacity

to infer and reason about the intentions of other agents can improve the performance

or utility of the system. For example, a smart home or assisted living facility is better

able to select assistive services to deploy if it understands the goals of the occupants

in advance. In this article, we present a framework for reasoning about intentions using

probabilistic logic programming. We employ ProbLog, a probabilistic extension to Prolog,

to infer the most probable intention given observations of the actions of the agent and

sensor readings of important aspects of the environment. We evaluated our model on a

domain modeling a smart home. The model achieved 0.75 accuracy at full observability.

The model was robust to reduced observability.

Keywords: intention recognition, goal recognition, probabilistic logic programming, smart home, assisted living

at home

1. INTRODUCTION

From autonomous vehicles to hotel check-in robots, autonomous systems are progressively more
present in human environments. One of the most unpredictable and difficult factors of the
environment for autonomous systems to manage is humans themselves. Humans can be potential
obstacles, collaborative partners, customers in need of assistance, or patients in need of care. To
navigate these complex interactions effectively and safely, it is important for autonomous systems to
be able to reason about the intentions of human agents (Sadri, 2011). Understanding the intentions
of humans aids autonomous systems in predicting the future actions of the human agents they
interact with. This capability can enable an autonomous system to more effectively plan actions
and react to humans in the environment. For example, knowing that a child’s goal is to catch a ball
rolling toward a carriageway enables an autonomous vehicle to predict that the child may step into
the road and thus plan evasive actions.

Intention recognition is the process of inferring the intentions or goals of an agent by analyzing
their behavior (Sadri, 2011;Mirsky et al., 2021). The terms intention recognition and goal recognition
can be used interchangeably. Intention recognition is related to plan recognition, the process of
inferring not only the intention of an agent, but also the sequence of actions the agent will use to
achieve that intention (Sadri, 2011). A further related recognition problem is activity recognition.
Activity recognition is the task of inferring the activity being performed by an observed agent in a
given time window from noisy sensor data (Mirsky et al., 2021). These three recognition problems
are compared in Figure 1. Though all of these recognition problems are closely related, in this work
we focus exclusively on intention recognition.

A motivating scenario in which intention recognition is particularly beneficial is in smart
assistive care facilities. Many societies face the problem of an aging population. The increase
in the population of elderly people will place increasing pressure on existing nursing and care
resources (Cheek et al., 2005). While technology shouldn’t replace human care, smart home
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FIGURE 1 | Comparing intention, plan, and activity recognition.

technology has the potential to improve the quality of life
of people in need of support. Smart homes are living spaces
designed with interactive technology, automation, and support
systems that provide increased independence and wellbeing
(Morris et al., 2013). Smart homes in assistive care contexts are
typically equipped with a variety of sensors for analyzing the
behavior of the occupants (Acampora et al., 2013).

As sensors, actuators and computing power become cheaper
and more widely available, it is increasingly possible to equip
elder care facilities with a smart infrastructure that can help
residents achieve their daily tasks (Ranieri et al., 2021). Elder-
care facilities could be equipped with a smart home architecture
to ease the pressure on staff and improve the independence
of residents. Alternatively, the homes of elderly people can be
equipped with smart technology in order to facilitate aging-in-
place. Many elderly people prefer to remain in their own homes
as they age. Smart technology has the potential to improve the
independence, safety, and health of elderly people living in their
own homes. Smart home technology could aid elderly people
with emergency assistance, fall detection, reminder systems,
and assistance for those with hearing, vision, or cognitive
impairments (Cheek et al., 2005).

Intention recognition is particularly beneficial in smart elder
care facilities in a number of ways. First, it enables the smart
home system to preemptively perform assistive actions and
collaborate better with human occupants. For example, inferring
the intention to go to bed can enable the system to preemptively
close the blinds and switch off any lights in the house. Second,
intention recognition can be integrated with a smart reminder
system. Many elderly people live with some form of cognitive

impairment. A smart reminder system helps elderly people feel
more in control of their daily activities and prevents accidents
(Demiris et al., 2004). Intention recognition can augment such a
system by triggering reminders at the most opportune time. For
example, on inferring the intention to go to bed, the system can
trigger reminders to lock the doors and switch off the cooker.
The system can remind the resident to take their appropriate
medication on inferring the intention to eat dinner.

We implement an intention recognition system suitable
for elder care scenarios based on the principles of statistical
relational artificial intelligence (StarAI) (De Raedt et al., 2016),
specifically, we use the language ProbLog (De Raedt et al.,
2007). ProbLog is a probabilistic extension of Prolog that is
situated within the StarAI paradigm (De Raedt et al., 2007).
ProbLog programs look very much like Prolog programs,
except that clauses can be labeled with the probability that
they are true. ProbLog calculates the probability that a query
is true. ProbLog can also estimate probability parameters.
Given a program where some of the probability labels are
missing, ProbLog can estimate the missing probabilities when
given a set of observations. The combination of tools offered
by ProbLog makes it a powerful tool for reasoning about
agent’s intentions. It can represent both uncertainty and
logical relations.

Our research demonstrates how intent recognition can be
achieved using ProbLog. We use ProbLog to build models
that predict the intention of an agent given observations of
the agent’s actions as well as environmental factors such as
temperature and time. We employ assisted living facilities as
our motivating example. ProbLog can represent and reason over
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relational directed probabilistic graphs. In other words, ProbLog
can represent individuals and the relations that exist between
them, while also reasoning probabilistically. We use ProbLog to
implement relational directed probabilistic graphs that represent
the dependencies between environmental factors, intentions, and
actions. Given an observation of an agent’s actions and factors of
the environment such as time, the network can be queried to find
the most probable intention to have caused those actions.

The article is structured as follows: after introducing the
problem in Section 1, we investigate existing literature in Section
2. Section 3 introduces our technique, which is evaluated in
Section 4. In Section 5, we discuss the results and proposed future
work. The final section summarizes our findings.

2. RELATED WORK

There exist a variety of approaches to implementing intention
recognition. In this section, we present some representative
examples from across the spectrum and comment on their
advantages and disadvantages.

Broadly, the techniques present in the literature can be
put into three categories: logic based, probabilistic, and neural
network based. Many logic based implementations rely on
performing abductive inference given an observation of behavior
and a plan library (Sadri, 2011). Informally, abductive inference is
the process of generating the best explanation given background
knowledge and an observation (Denecker and Kakas, 2002). For
example, if an agent knows that p⇒ q and the agent observes q,
then the best explanation for q given the background knowledge
is that p is true. In intention recognition, the system usually
consists of the following components: background knowledge,
knowledge about how plans and goals are related, a set of possible
intentions, and an observed action sequence. The background
knowledge is often a plan library (Sadri, 2011).

An example of a purely logical approach is an enemy
intention recognition system from (Mulder and Voorbraak,
2003). Their framework allows for intention recognition even
when observations of actions do not contain all of the relevant
information, that is, when observations are of non-ground
actions such as ∃X takeoff (X, carrier1). Their system relies on
performing abduction given such observations and a plan library.
Given a plan library and an observation, the system finds a set
of hypotheses consistent with the library and the observation.
Further examples of logic based approaches can be found in
Myers and Lee (1997), Jarvis et al. (2005), and Sindlar et al.
(2008).

There are also frameworks that combine logic and probability.
An example from assisted living is a system created by Pereira
and Han (2009). They use situation sensitive Causal Bayes Nets
(CBNs) (Pearl, 2009), implemented in a declarative language
called P-log, to model the intent recognition problem. The nodes
in the network encode causes, intentions, and actions. The
networks are implemented as facts and rules in P-log. Causes
have either unconditional or situation sensitive probabilities.
For example:

P(thirsty) is 50/100 (1)

P(thirsty) is 70/100← temperature > 30 (2)

Where equation 1 encodes that the probability of an agent being
thirsty is 0.5, and Equation (2) encodes that the probability of the
agent being thirsty given that the temperature is above 30 degrees
is 0.7.

The probability of an intention given a cause, and the
probability of actions given intentions are encoded as rules. for
example:

P(intention to look for drink) is 90/100← thirsty (3)

P(looking for something) is 99/100← intention to look for a book

is true ∧ intention to look for a drink

is true

(4)

Equation (3) expresses that the probability of the agent intending
to get a drink is 0.9 if they are thirsty. Equation (4) means that
the probability of the agent performing the action of looking for
something is 0.99 if they intend to look for a book and intent to
look for a drink.

In their implementation, all of the probabilities are predefined
by the programmer. One of the key strengths of this system is
the integration of causal environmental factors into the model.
However, the representation of probabilistic information is far
less straightforward in P-log than in ProbLog.

Logical frameworks can make use of relational reasoning,
important in a world of individuals and relations between them.
They can also be integrated with other logic based systems such as
planners. Amajor drawback of logical frameworks is the difficulty
of representing uncertainty. Traditional probabilistic approaches
such as hidden Markov models, on the other hand, are able to
represent uncertainty, but lack relational reasoning. Combining
probabilistic and relational reasoning would clearly have major
benefits. It is for this reason we have identified ProbLog as a
powerful tool for intent recognition in smart homes.

Intention recognition can also be achieved using neural
networks. A recent example is a system using recursive neural
networks for plan recognition (Bisson et al., 2015). The authors
use recursive neural networks to learn a decision model that
infers an agent’s plans via a plan library.

Such neural network frameworks are able to deal with
uncertainty and incomplete knowledge, and often attain
impressive levels of accuracy. They do, however, have some
significant drawbacks. One common issue is the large amount
of data needed for training. Such large amounts of data are
costly to generate (Punjani and Abbeel, 2015; Pinto and Gupta,
2016; Levine et al., 2018). Some promising ways of dealing
with this are emerging, such as using simulated data (Kappler
et al., 2015), digitally manipulated data (Neverova et al., 2014),
or crowd-sourced data (Pratt, 2015). But a further problem is
that the kind of data that allows deep learning to excel is high-
dimensional sensor data. This is often the kind of data we expect
to see in robots, but is not necessarily the case in intention
recognition. Further difficulties are the time needed to train a

Frontiers in Artificial Intelligence | www.frontiersin.org 3 April 2022 | Volume 5 | Article 806262

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Smith et al. Intention Recognition With ProbLog

deep neural net (Pierson and Gashler, 2017) and that the amount
of computational resources needed for neural networks are not
always practical (Zhang et al., 2016).

Recent work explores using ProbLog for action recognition in
smart homes (Sztyler et al., 2018), and using ProbLog for smart
home control via probabilistic agents (Mekuria et al., 2019).
There is no existing work on implementing intent recognition in
smart homes with ProbLog1.

Markov logic networks, a statistical relational technique
related to ProbLog, have been used for goal and plan recognition
(Singla and Mooney, 2011; Ha et al., 2014). However, as
emphasized by Sztyler et al. (2018) representation of probabilities
is more straightforward in ProbLog. Further, unlikeMarkov logic
networks, ProbLog makes a closed-world assumption, meaning
that ProbLog requires less grounding operations and is therefore
more scalable.

3. INTENTION RECOGNITION IN PROBLOG

3.1. Background
In this section, we define the intent recognition problem and
briefly introduce ProbLog.

3.1.1. Intent Recognition

Intuitively, intent recognition aims to answer the question “why
is an agent behaving this way?” (Freedman and Zilberstein, 2019).
The answer to such a question is provided by inferring the
agent’s intention, where an intention is a high level cognitive
desire to which an agent has committed to fulfilling (Wooldridge,
2003). A particular agent boils a kettle and opens a jar of coffee
because that agent desires to drink coffee, and has committed
to fulfilling this desire. Inferring an agent’s intention depends
on observations of that agent’s behavior, observations of salient
features of the environment, and background knowledge that
encodes how these influence each other (Mirsky et al., 2021).
Informally, then, in the process of intention recognition an
observing agent attempts to infer the intentions of an observed
agent by analyzing its behavior. An intention recognition
problem consists of some possible intentions, observations of
behavior, and observations of the environment. More formally,
an intention recognition problem is defined as follows:

DEFINITION 1 (Observable actions). A is a set of symbols that
represent the observable actions of the observed agent.

These symbols map to particular actions that the observed agent
may perform in the environment. In many cases an agent may
also perform actions that are not observable. These would not
have any corresponding symbol in A. The symbols in A are
simply labels for the actions observed, and have no further
internal structure. If deployed in a real smart environment
these symbols would need to be inferred from raw sensor data.
This process is known as action or activity recognition (Mirsky
et al., 2021). An action recognition system could be a novel
system implemented in ProbLog, but it could also be an existing
technique that takes as input raw sensor data and outputs

1During the write up and submission process an independent study was published

(Acciaro et al., 2021).

symbolic tokens representing observed actions. In this article,
we assume action recognition from low level sensor data and
subsequent mapping to these symbols to be given. In a simple
smart kitchen example, A could include switchKettle, getMug,
and openFridge, encoding the behaviors of switching on a kettle,
grabbing a mug or opening the refrigerator.

DEFINITION 2 (Observable environmental properties). E is a
set of variables that represent properties of the environment that
can be observed.

The variables in E are assigned values depending on sensor
observations, where the raw observations are assumed to
be binned into appropriate categories. For example, room
temperature observations could be binned into either cold,
comfortable, or hot.

DEFINITION 3 (Intentions). I is a set of symbols that represent
the possible intentions of the observed agent.

In the smart kitchen example this might include iMakeCoffee,
iMakeDinner, iWashDishes to encode the intention to make
coffee, cook dinner, or wash the dishes.

Finally, we define an intent recognition problem as follows:

DEFINITION 4 (Intent recognition problem). An intent
recognition problem is a tuple R = (I ,A, E ,O). I, A, and E are
defined as above. O is a set of observations O = (V ,F), where
V is an observed sequence of actions V = [a1, ..., an] such that
ai ∈ A, and F is a set of observed environmental properties
F = [e1, ..., ek] such that ei ∈ E .

Given an intent recognition problem, the task is to calculate
the probability distribution over I given the observation O.
The intent with the highest probability is the predicted intent
attributed to the agent:

g = argmax
I

P(I|O) (5)

In assisted living scenarios the problem is to infer the intention
of the resident given observations of their behavior and of the
environment. Examples of possible intents include the intention
to prepare a meal or to watch television. Examples of observable
actions might include turning on a light, opening a cupboard
or sitting in a chair, while environmental observations are of
properties such as temperature, humidity, and time.

Generally, intent recognition can fall into the following three
categories (Mirsky et al., 2021):

• Keyhole recognition: the observed actor is not aware of being
subject to intent recognition.
• Adversarial recognition: the observed actor may take action to

obscure inference of it’s intent.
• Intended recognition: the observed actor behaves such that it’s

intent is easier in infer.

We only consider keyhole recognition, since this is the most
common in a smart assisted living context.

Finally, in an assisted living context an ideal intent recognition
system would be capable of performing intent recognition on
multiple agents, however in this article we only address intention
recognition on a single agent.
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3.1.2. ProbLog

ProbLog is an extension of Prolog whereby clauses in
the program can be annotated with mutually independent
probabilities (De Raedt et al., 2007).

Prolog is a logic programming language particularly suited to
for problems that include objects and relations between them
(Bratko, 2001). Prolog programs consist of clauses. Clauses can
be facts or rules. A query is a clause that encodes a question posed
(Bratko, 2001).

Like Prolog, a ProbLog program consists of clauses, where
each clause can be a fact or a rule. In ProbLog each clause can have
an associated probability. The following example demonstrates a
simple ProbLog program:

0.3::thirsty.

0.9::wantDrink :- thirsty.

The first clause expresses a probabilistic fact: that thirsty will
be true with a probability of 0.3. The second clause is a rule
indicating that if thirsty is true, then wantDrink will be true with
a probability of 0.9.

Prolog computes the success or failure of a query. ProbLog,
in contrast, computes the probability that a query succeeds.
Below follows a summary of the equations for computing this
probability, as summarized from De Raedt et al. (2007) and
Sztyler et al. (2018).

A ProbLog program is defined by T = {p1 : c1, ..., pn : cn},
where ci is a clause and pi is its associated probability. Given a
program, the probability of a world w is defined as:

P(w|T) =
∏

ci∈w

pi
∏

ci∈wT\w

(1− pi) (6)

Where wT\w denotes the set of clauses that are in T but were
not instanced in w, that is, the set of false ground probabilistic
atoms. The probability that a query q succeeds in the program T
is given by:

P(q|w) =

{

1, if ∃2 :w � q2

0, otherwise
(7)

P(q,w|T) = P(q|w).P(w|T) (8)

P(q|T) =
∑

w⊆W

P(q,w|T) (9)

That is, the probability that a query in ProbLog succeeds is the
sum of the probabilities of the worlds where q can succeed.

A detailed tutorial on how to use ProbLog can be found at
https://dtai.cs.kuleuven.be/problog/tutorial.html.

3.2. Underlying Model
We use ProbLog to build directed probabilistic graph models
(Tahboub, 2006). We implement a network that has three layers
of nodes:

• The bottom nodes represent the set of observable actions.
Every observable action is encoded as a node. There are n
nodes in the bottom layer, where n is the number of observable
actions inA. Each node can either take the value true or false.
• The middle nodes encode the set of intentions. There is one

node for every intent i in I , that is, there are j nodes, where j is
the number of possible intents in the set I . Each node is either
true or false.
• The topmost nodes represent factors that influence

the possible intentions. These can be predispositions,
environmental factors, and other background factors.
There are k nodes, where k is the number of observable
environmental properties in E . The top nodes can take a
number of values, depending on what they encode.

The edges in the graph represent causal dependence between
nodes. The nodes in each layer are causally dependant on
the nodes in the layer above. There should be an edge
between nodes where the node in the upper layer causally
influences the value of the node in the lower layer. Every
intermediate node is accompanied by a specification of its
conditional probability distribution given its parents in the graph.
Top layer nodes are accompanied by a specification of their
unconditional probability.

Figure 2 illustrates a portion of an example model for intent
recognition in a smart kitchen. In this example model, the
possible intentions include the intention to make a hot drink, to
make a cold drink, to prepare a meal, and to clean the oven. Each
possible intention has a corresponding node in the network.

The set of observable actions includes switching on the kettle,
grabbing a mug or glass, and opening the fridge or oven. The
edges from the middle nodes to the bottom nodes indicate
causal connections between intents and actions. There is an edge
between the nodes iHotDrink and getMug are connected because
an agent’s intention to make a hot drink is a causal factor in the
production of the action of getting a mug. Wanting to make a
drink does not cause an agent to open the oven, so iHotDrink
and openOven are not connected.

Finally, the kitchen example includes the following
environmental factors that influence the arising of an intent:
temperature, time of day, and whether it is a weekday or a
weekend. The edges from the top nodes to the intermediate
nodes indicate which factors causally influence the probability of
each intention.

After each new action observation, alongside observations
of other influencing factors such as time and temperature, the
probability of each possible intention in the model is queried.
We take the intention with the highest probability to be the
prediction. For example, if there are 4 possible intents, for all 4
we query the probability that it is the true intent, the one with the
highest probability is the prediction.

3.3. Implementation in ProbLog
In this section, we explain how to implement the model
introduced above using ProbLog. We describe in detail the steps
required to take a graphical model like that introduced in the
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FIGURE 2 | Kitchen example graph structure.

previous section and encode it as a ProbLog program. Briefly,
these steps are as follows:

1. Define basic domain facts, for example the residents present
in the home.

2. Encode the possible values of the influencing environmental
factors as a series of probabilistic facts.

3. Encode the dependence of intentions on environmental
factors as a series of probabilistic rules.

4. Encode the dependence of actions on intentions as a series of
probabilistic rules.

5. Define queries (one for each intention).

The first step is to define basic domain facts in order to ground
the rest of the clauses in the program. In the smart kitchen
example, the later rules in the program take a resident as an
argument. To ground the rest of these clauses we therefore have
to define facts that encode those residents in the program. We
encode the residents of the home in the program using ground
atoms. These facts are defined in ProbLog as follows:

person(tom).

person(andy).

The graphical model itself is encoded in ProbLog as a series of
probabilistic facts and rules. First, the nodes in the top layer are
encoded as probabilistic facts. There is one node in the graph
for each observable environmental factor E , and there will be
one ProbLog fact for each node. The facts are encoded using
ProbLog’s; operator, which denotes the XOR operator. Only one
of the atoms in the clause can be true, where each atom is
annotated with the probability that it will be true. We assign
each atom in the clause an equal prior probability, although in
practice which one is true is observed and provided to the model

as evidence. To illustrate this, the top layer nodes in the kitchen
example are expressed as follows:

1/5::morning; 1/5::midday; 1/5::afternoon;

1/5::evening; 1/5::night.

1/3::tCold; 1/3::tComfortable; 1/3::tHot.

5/7::workday; 2/7::weekend.

The middle layer intent nodes are encoded as probabilistic rules
with the intent as the rule head, and the factors that influence the
intent as the tail. There is one node in the graph for each possible
intent in I , and each node is encoded with a set of ProbLog rules.
The set of rules for each node defines the probability distribution
of that node given the environmental factors on which it depends.
There is one rule for each binary parent node, and n rules for
every non-binary parent node, where n is the number of possible
values the parent node can take. Currently, probability labels are
defined and tuned by a human expert.

To clarify, take the prepare meal intention in the kitchen
example. If we assume that the only parent node of iPrepareMeal
is time of day. Time of day can take 5 values, so there is one rule
for each value:

0.5::iPrepareMeal(X) :- morning, person(X).

0.8::iPrepareMeal(X) :- midday, person(X).

0.2::iPrepareMeal(X) :- afternoon, person(X).

0.9::iPrepareMeal(X) :- evening, person(X).

0.01::iPrepareMeal(X) :- night, person(X).

The first rule expresses that there is a probability of 0.5 that X
intends to prepare a meal, where it is the morning and X is a
person in the home. Because residents are stated as ground facts
in the domain, person(X) functions to ground the clause.

The action nodes are encoded in the same way. The set of
rules for each action node represents the distribution of an action
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occurring given the intents on which it depends. Observing the
refrigerator being opened, for example, depends on the resident
either intending to get a cold drink or prepare a meal:

0.7::openFridge(X) :- iColdDrink(X).

0.8::openFridge(X) :- iPrepareMeal(X).

Action observations are encoded in ProbLog using the pre-
defined evidence predicate. Our model presupposes that action
recognition has already been performed, and the observed
actions have been mapped to the set A. In a smart home
setting, action recognition systems typically infer the actions
being performed by the occupant in real time via data originating
from sensors installed in the environment and wearable sensors.
In the ProbLog model we assume this process is done, and only
encode which actions in the set A have been observed. We use
ProbLog’s evidence predicate to achieve this.

Finally, the system queries the probability of every possible
intent. The queries are encodedwith the query predicate. For each
query ProbLog calculates the probability that the clause within
the query predicate is true. The intent with the highest posterior
probability is taken as the prediction.

% Observations of influencing factors.

evidence(afternoon,true).

evidence(tCold,true).

% Observations of actions

evidence(switchKettle(tom), true).

evidence(getMug(tom), true).

% Queries

query(iHotDrink(X)).

query(iColdDrink(X)).

query(iPrepareMeal(X)).

query(iPrepareSnack(X)).

query(iCleanOven(X)).

The posterior probability of each intent is influenced by both
the top nodes and the bottom nodes. Observations of the
factors in the top nodes, such as temperature or time of day,
determines the prior probability of each intent. A set of action
observations then determines the Bayesian posterior probability
of each intent. These two directions of influence together allow
competing hypotheses to be resolved that would not be possible
inmany purely abductive intent recognition systems, or graphical
models that don’t have this layer of nodes. Consequently, the
correct intent can be predicted earlier in the action sequence.
To illustrate this, imagine Tom is thirsty in the afternoon and
intends to drink a cold drink. An observation of Tom opening
the refrigerator corresponds to the competing hypotheses of an
intent to make a cold drink, prepare a meal, or get a snack.
Without the influence of the top layer of nodes, there needs
to be a further action observation to convincingly narrow the
likely hypotheses. But in our model the observation that it is
afternoonmakes greatly reduces the probability that Tom intends
to prepare a meal, effectively narrowing the number of likely
hypotheses earlier in the action sequence.

To sum up, building an intention recognition model with our
technique follows the following process:

1. Observe agent’s behavior to discover links between
environment, intentions, and actions.

2. Map out graphical model to define probabilistic influence.
This step is primarily to clarify for the engineer how the
environment, intentions, and actions are linked.

3. Define domain facts, for example the residents of the home.
4. Encode the environmental factors in E as a series of

probabilistic rules.
5. Encode the dependence of the possible intentions in I on

environmental factors as a series of probabilistic rules with the
intent as the rule head and the environmental factor as the tail.

6. Encode the dependence of observable actions in A on the
intentions as a series of probabilistic rules. The action forms
the head of the rule, the intention forms the tail.

7. Define queries (one for each intention).

This process is illustrated in the flowchart in Figure 3.

4. RESULTS

The main focus of our experiment is investigating how robust
our technique is to reduced observability of the action sequence.
Residents may perform actions that are not observable given
the sensors installed in smart home. We used data generated
from scripts to assess how robust our technique is to partial
observability of the resident’s action sequence.

Our experiment was performed with general smart home data
sets, rather than data sets gathered specifically from smart elder
care facilities. This choice is justified from an aging-in-place
perspective, where the goal is to equip a patients own home with
a smart architecture in order to extend the time that they can live
independently in their own place. In this case, the smart facility
is largely a typical smart home. Our approach is less indicative
of a community elder care facility where many residents live
together under the supervision of care staff. However, even in this
case, the smart architecture is present largely to assist in everyday
activities, and so is not too far removed from a smart home.

The experiment was run on a 2018 Dell XPS 15 running
Windows 10 on a x64 Intel(R) Core(TM) i7-8750H 2.20Ghz 6
core CPU and 16GB of RAM.

The experiment models a smart home. Time of day is the
only observable environmental factor in E and is divided into
morning, midday, afternoon, evening. There are 8 possible
intentions in I , and 27 observable actions in A. These include
typical tasks and actions that an elderly resident may perform,
such as getting a spoon and bowl to prepare breakfast.

To evaluate this model we used a script for generating plan
recognition problems from Ramírez and Geffner (2009). The
inputs to the script are a domain description in the Planning
Domain Definition Language (Malik et al., 1998), a set of possible
goals G, and an actual goal g in G. The script outputs an
observation sequence O. An observation sequence consists of
a sequence of actions that achieves the goal g. The domain
description consists of definitions of the possible actions that
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FIGURE 3 | Model development process.

can be performed. The actions in the domain description
correspond to the set of actions A in the intention recognition
model. Similarly, the set of possible goals G inputted to the
script corresponds to the set of intentions I in the intention
recognition model.

To evaluate the effect of including background environmental
knowledge in the model, we altered the script to generate the
actual goal g with a probability dependent on the time of day. The
value of the time of day was generated randomly. For example the
script may randomly generate a time ofmorning. Given this time,
the goal of making breakfast will be generated with a probability
of 0.8. Given the goal to make breakfast, the script may generate
an observation sequence such as: get cereal - get milk - get bowl.

The key aim of this experiment was to investigate the effect of
reducing observability of the resident’s actions on the prediction
accuracy of the model. It may be that the facility is not equipped
to recognize certain actions, for example, perhaps there is a
sensor that detects when bowls are lifted but not spoons. Action
recognition may fail for other reasons, a sensor could fail, for
example. The upshot is that some of the actions in the sequence
performed by the agent in fulfillment of the intention may not
be observed. We evaluated with five levels of observability of
the data: 100, 90, 80, 70, 60, and 50%. By observability we mean
the percentage of actions in an action sequence that are actually
observed. For example, at 90% observability an action sequence

TABLE 1 | Experiment 1 results.

Observability (%) Accuracy

100 0.75

90 0.8

80 0.74

70 0.73

60 0.68

50 0.62

containing 10 actions will have one action randomly removed,
meaning the observed sequence consists of 9 actions.

We evaluated using 500 examples. We performed three
repeat experiments. Our evaluationmetric is prediction accuracy,
calculated by dividing the number of correct predictions by
the total number of examples.The model prediction accuracy
averaged over the three repeat experiments is presented and
Table 1.

These results show that the prediction accuracy dropped by
only 0.2 at 70% observability, dropping more sharply after. This
indicates that even if only 70% of an agent’s actions performed
in pursuit of an intent are observed, the prediction accuracy will
remain close to that at 100% observability.
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An anomaly is present at 90% observability, where the
prediction accuracy unexpectedly increases. This was present
over multiple re-runs of our experiment. Observability is reduced
by removing actions from the observation sequence. The actions
are removed at random, so we are confident that this anomaly
is not due to any pattern in removing actions from the
observation sequence.

5. DISCUSSION AND FUTURE WORK

In this section we explore the upshot of our results, suggest
some possible further examples, and indicate how our continuing
research will expand on the results presented in this article.

5.1. Advantages and Disadvantages
Building intention recognition models in ProbLog has
some important advantages, and a couple of drawbacks
that need addressing.

An important advantage of implementing intention
recognition models in ProbLog is the interpretability of
ProbLog programs. Interpretability is a term that lacks a
standard definition, but an interpretable AI system is widely
accepted to mean a system whereby a user can inspect and
understand mathematically how a model maps from inputs
to outputs.

Certain limitations prevent AI from being routinely adopted
in healthcare scenarios, these include the possibility of
erroneous decisions, lack of clarity of liability when things
go wrong, and difficulty in securing the trust of healthcare
professionals and the general public. Building models that are
intelligible to the engineers that build them and explainable
to the healthcare professionals that use them is crucial to
overcoming these limitations and advancing the deployment
of AI powered technologies into healthcare environments. The
above limitations also apply to intention recognition systems,
especially in an assisted care context. As an example, suppose
an intention recognition system underpins a reminder system.
A resident must take a certain medication with a meal. The
intention recognition system reminds the resident to take their
medication when it infers the intent to eat dinner. If the system
were to routinely incorrectly infer the intent to eat dinner,
this would trigger reminders at the incorrect time, causing the
resident to take their medication at the incorrect time. There is
a possibility this could reduce effectiveness of their medication
or cause other negative side effects. The result is harm to the
resident. In this case how do healthcare professionals figure out
what caused this result? Who (or what) is liable for the harm
caused? How are residents to trust the system? Tackling these
problems relies on engineers and healthcare workers being able
to interpret and understand how the systemmade it’s predictions,
and explaining this process to end users.

The logical nature of ProbLog programs, coupled with
the intuitive way in which probabilistic causes are labeled
with probability parameters makes ProbLog programs highly
interpretable. The mapping from the input to the ProbLog
model to the output can be analyzed using mathematical logic
and Bayesian mathematics. Traditional logical approaches to

intention recognition are interpretable, but are less able to
handle the probabilistic and noisy nature of the intention
recognition problem. Other systems that combine logical and
probabilistic reasoning, such as Markov logic networks (Ha et al.,
2014), are mathematically interpretable, but are less intelligible
than ProbLog due the unintuitive way in which probability
distributions are defined in Markov networks (Sztyler et al.,
2018). Deep learning approaches can achieve impressive levels
of accuracy (Bisson et al., 2015), but are usually black box
models that are not interpretable. On the whole, ProbLog is
able to obtain reasonable prediction accuracy by reasoning
logically and probabilistically, without sacrificing interpretability
of intelligibility. The extent to which intention recognition
models are intelligible and explainable is an empirical question.
Conducting a study to establish this will be a component of our
future work on this topic.

A significant disadvantage of our approach is that the model
must be built by a human expert. At present, both the graph
structure and the probability parameters must be hand coded.
This requires a significant time investment from an engineer,
which in turn is likely to increase the cost of the model for
a user, and reduce the accessibility of the technique. Cost
is a significant concern in the deployment of aging-in-place
technology. Reducing the amount of time needed from human
engineers is thus an important challenge to address in our future
work. We have begun to tackle this with parameter estimation.

A further drawback of our current approach is that we don’t
take into account concurrent intentions. In many cases an agent
may be pursuing multiple intentions at the same time. When
this is the case it is likely that actions performed in pursuit
of multiple intentions will be present in an observed action
sequence. An intention recognition system would need to reason
about multiple intentions at the same time and be capable of
filtering out which actions in an observation sequence are in
pursuit of the same intention. Our technique does not currently
do this.

5.2. Relational Reasoning
Our examples so far have demonstrated probabilistic reasoning,
but a key advantage of using ProbLog is that it can also
perform relational reasoning. For example, we could change the
iColdDrink predicate to take two take two arguments:

0.6::iHotDrink(X, X) :- afternoon, tComfortable, person(X).

0.7::iHotDrink(X, Y) :- afternoon, tComfortable, person(X),

person(Y), \+identical(X,Y).

0.9::grabMug(X, Y) :- iHotDrink(X, Y).

0.3::grabMug(X, X) :- iHotDrink(X, Y).

This demonstrates ProbLog’s relational reasoning capacity.
Instead of just expressing that X intends to make a drink, we
can express that X intents to make a drink for Y, where Y might
be a another person or identical with X. Different clauses define
different probability distributions in these cases.

The last two clauses state that there is a probability of 0.9 that X
intends to make a hot drink for Y, when X grabs Y’s mug, Where
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as there is only a 0.3 percent probability of the same intention
when X grabs their own mug. What this means is that not only
does observation that a mug has been picked up increases the
posterior probability that iHotDrink is true, but the observation
also allows ProbLog to reason about who X intends to make the
drink for. The nature of ProbLog as a relational probabilistic
language means models capable of this kind of reasoning can
be implemented in a much more compact way than traditional
probabilistic graphical models.

It’s important to note that although the model references two
agents, this is not multi-agent intention recognition since only
the intentions of one agent are being inferred.

5.3. Parameter Learning
Our kitchen model achieved prediction accuracy in the range
of 70% to 80%. Although the model remained robust when
reducing observability, this level of accuracy means that it would
be difficult to deploy the model in a real smart care facility.
For certain low risk scenarios, such as informing reminders for
locking doors, the current accuracy may not be a problem. But
more high risk scenarios would present a problem. The main
factor likely to be preventing our system from achieving higher
prediction accuracy is that estimating the optimal probability
labels is extremely difficult.

Defining the correct probabilities is a crucial and difficult
part of the knowledge engineering stage of building our model.
Defining the probability annotations correctly requires not only
expert knowledge of the relations between the influencing factors,
intentions, and produced behaviors of humans in general, but
of individual residents within the home as well. The extent to
which temperature influences the intent to prepare a hot drink
or the preference for a snack at a certain time of day could be
substantially different for each resident. Gathering the necessary
expertise to manually program these probability distributions is
unreasonable. ProbLog can learn the probabilities that annotate
clauses from data with an expectation maximization based
algorithm (details of the learning algorithm can be found in
Gutmann et al., 2011). ProbLog’s out of the box learning
algorithms was too inefficient to learn the parameters in our large
models, but we were able to learn the parameters for single rules.
This is a proof of concept that supports further work in this area.
Given the resource intensive nature of setting parameters, it is
worthwhile investing more time to augment ProbLog’s learning
for use in this domain.

When learning the probability distributions from scratch, the
clauses have annotations of the form t(_):

t(_)::p_openFridge1.

t(_)::p_openFridge2.

t(_)::p_openFridge3.

openFridge(X) :- iColdDrink(X, Y), p_openFridge1.

openFridge(X) :- iPrepareMeal(X), p_openFridge2.

openFridge(X) :- iPrepareSnack(X), p_openFridge3.

In this case, each probability is first initialized with a random
value. When clauses are annotated with the form t(p), they are
initialized with the value p.

The data consists of partial interpretations, that is, not
every node is observed. Each interpretation should contain
observations of every environmental node, the nodes
corresponding to the observed sequence of actions, and the
intent. Each interpretation is given in the evidence() format and
is separated by lines of “-”:

evidence(weekday,true).

evidence(afternoon,true).

evidence(tHot,true).

evidence(openFridge(tom),true).

evidence(iColdDrink(tom),true).

-----

evidence(weekend,true).

evidence(evening,true).

evidence(tComfortable,true).

evidence(openFridge(tom),true).

evidence(iPrepareMeal(tom),true).

To sum up, although the graph structure would still need
to be designed by an expert, the laborious task of assigning
probabilities to each clause could be learned from an intent
recognition data set. As a proof of concept we were able to
learn single rules. Future work will focus on scaling this to learn
all the parameters in an intent recognition model. We hope
incorporating learning will also improve the prediction accuracy
of the technique.

6. SUMMARY

In this article, we have demonstrated how the probabilistic
logic programming language ProbLog can be used for intent
recognition. We have put forward elder care scenarios as a
motivating example and explained the advantages of using
ProbLog for intention recognition in elder-care. We have
shown that ProbLog can capture the dependencies between
environmental factors, intentions, and actions to build a model
capable of inferring the intentions of smart home residents.
Two key advantages of ProbLog are that ProbLog programs are
highly interpretable and background knowledge can be easily
included in the model. This enables the system to be effectively
personalized for individuals.

We have empirically evaluated our model using a domain
modeling a smart home. Our model achieved reasonable
accuracy in this domain. Importantly, our technique remained
robust even when actions were only partially observable. This
domain is a simplification of the real smart assisted living
environments in which we intend the models to be used.
Therefore, we plan to use participants’ interactions with a smart
home facility to further evaluate the model.

ProbLog is capable of representing dynamic probabilistic
graphical models such as dynamic Bayesian networks and
hidden Markov models. We plan to incorporate this capability
into our model to capture the dependencies of intents and
actions on previous time steps. We also plan to explore
using ProbLog’s parameter learning capability to automatically
learn the probability labels and reduce the burden on the
human engineer.
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