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Due to advances in computing power and internet technology, various industrial sectors

are adopting IT infrastructure and artificial intelligence (AI) technologies. Recently,

data-driven predictions have attracted interest in high-stakes decision-making. Despite

this, advanced AI methods are less often used for such tasks. This is because AI

technology is a black box for the social systems it is meant to support; trustworthiness

and fairness have not yet been established. Meanwhile in the field of marketing, strategic

decision-making is a high-stakes problem that has a significant impact on business

trends. For global marketing, with its diverse cultures and market environments, future

decision-making is likely to focus on building consensus on the formulation of the

problem itself rather than on solutions for achieving the goal. There are two important

and conflicting facts: the fact that the core of domestic strategic decision-making comes

down to the formulation of the problem itself, and the fact that it is difficult to realize

AI technology that can achieve problem formulation. How can we resolve this difficulty

with current technology? This is the main challenge for the realization of high-level

human-AI systems in the marketing field. Thus, we propose customer journey mapping

(CJM) automation through model-level data fusion, a process for the practical problem

formulation known as explainable alignment. Using domain-specific requirements and

observations as inputs, the system automatically outputs a CJM. Explainable alignment

corresponds with both human and AI perspectives and in formulating the problem,

thereby improving strategic decision-making in marketing. Following preprocessing to

make latent variables and their dynamics transparent with latent Dirichlet allocation

and a variational autoencoder, a post-hoc explanation is implemented in which a

hidden Markov model and learning from an interpretation transition are combined

with a long short-term memory architecture that learns sequential data between

touchpoints for extracting attitude rules for CJM. Finally, we realize the application

of human-AI systems to strategic decision-making in marketing with actual logs in

over-the-topmedia services, in which the dynamic behavior of customers for CJM can be

automatically extracted.
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INTRODUCTION

Thanks to advances in computing power and internet technology,
various industrial sectors are adopting IT infrastructure and
artificial intelligence (AI). Recently, data-driven predictions
have attracted interest in high-stakes decision-making (Veale
et al., 2018), yet advanced black-box methods are less often
used (Rudin, 2019). Our research aims to apply explainable
AI technology to the strategic decision-making in the field of
marketing. For a company, marketing (Kotler, 1972) globally
encompasses all business activities aimed at creating demand for
the value that it offers.

In the field of marketing, strategic decision-making is a high-
stakes problem that has a significant impact on business trends.
However, for global marketing, with its diverse cultures and
market environments, future decision-making is likely to focus
on building consensus on the formulation of the problem itself
rather than on solutions for achieving the goal (Conrad, 2019).
This is because the diversity of the environment is created from
different perspectives and degrees of literacy (Quade and Grace,
1989). For this reason, black-box methods are hard to apply to
strategic decision-making, which is a human-based judgement
process. This is because AI technology is a black box for the social
systems it is meant to support; trustworthiness and fairness have
not yet been established (Miller, 2019). Data-driven predictions
using AI inmarketing are limited to the operational level (Whittle
et al., 2019). The challenge is limited both in optimizing decisions
and in improving efficiency under known and highly repeatable
situations (Johnson et al., 2019). The study of intelligence for
strategic decision-making belongs to the domain of artificial
general intelligence (AGI) (Baum, 2017), which aims to discover
unseen tasks and to modify tasks based on a given situation.

The difficulty of realizing AGI can be thought of as building
a technology that can formulate problems from scratch (Duch
et al., 2008). There is a gap between two important facts: the
fact that the core of domestic strategic decision-making comes
down to the formulation of the problem itself, and the fact
that it is difficult to realize AI technology that can achieve
problem formulation. How can we fill this gap with current
technology? This is the main challenge for the realization of high-
level human-AI systems in the marketing field. This raises three
questions. First, what can replace the problem formulation in
marketing strategy? Second, what is the kind of process that can
be derived from the result of problem formulation? Finally, can
the process be functional in a human-AI system that contributes
to strategic marketing decisions?

To answer the first question, we claim that customer journey
mapping (CJM) (Lemon and Verhoef, 2016) is close to a
formulation of the marketing problem itself. CJM is one of the
most important analyses that can overlay marketing strategy
goals and customer behavior by drawing customer journeys.
CJM represents the flow of customer experiences, a dynamic
process akin to a “journey” of universal purchasing attitudes.
Visualizing the customer journey deepens understanding of the
dynamics and feedback of the important information and is
one essential process in a customer-facing business, whether as
a reactive measure or a proactive control (Rosenbaum et al.,

2017). The problem formulation in strategic decision-making
defines the subject of the problem and its model. The elements
of the problem are expressed as manipulable variables and
non-manipulable constants, and the relationships and structures
among these elements that prevent the subject from transitioning
to the target state are represented (Bell et al., 1988). In fact,
the customer journey has involved the necessary elements
for formulating strategic decision-making problems in social
systems. First, the journey has a subject. The subject in the
customer journey is the customer that is conducting buying
behavior. Next, the touchpoints are symbols that represent the
variables and elements that can and cannot be manipulated
as nodes. The nodes are connected by edges that indicate
the behavioral process. In other words, it is an expression of
the relationship between variables and elements. The customer
journey is a directed graph showing customer behavior as well
as representing the customer’s state as a transition to the goal
of purchasing. Moreover, since the model includes a goal, it is
important in decision-making. Because of these characteristics,
the customer journey is used practically in marketing strategy
decisions. Therefore, CJM is synonymous with the formulation
of the problem itself. On the other hand, the current CJM
has some shortcomings that should be improved. Since the
modeling of consumer behavior is always provisional, the essence
of strategic decision-making in marketing is in the consensus
between the decision-makers’ beliefs and contexts (Benzarti et al.,
2021). There is always a conflict between quantitative efficiency
management and qualitative structural understanding. In some
cases, the journeys are drawn with the purpose of reflecting the
gathered data, but they are rarely designed quantitatively in a
data-driven manner beforehand. Also, in creating such models,
it is hard to avoid the subjective influence of the decision maker.
Therefore, the current CJM is vulnerable to interpolation and
extrapolation facts (Richardson, 2010). For example, it is difficult
to represent paths that do not lead to the target state, or in
other words, to represent the true issues in the journey. However,
these shortcomings can be easily solved from the perspective of
AI systems. The techniques for automating CJM are, in short,
a combination of finding the variables in the model, visualizing
the structure and knowledge among them, and maintaining the
prediction accuracy of the model by adjusting the parameters.
These technologies are already well established and have achieved
success in each individual task (Jordan and Mitchell, 2015). If
we can combine the models appropriately in an explainable
artificial intelligence (XAI) framework (Adadi and Berrada,
2018), it will be possible to both visualize the solution process
and achieve accuracy. The problem formulation is whether we
can apply AI technology for CJM automation for conducting
the social decision-making process. The automation of CJM
is a real-world application of AI technology that incorporates
a high-level human decision-making process with explainable,
understandable, and accurate functionality.

For the second question, we propose CJM automation
through model-level data fusion (Diez-Olivan et al., 2019),
a process called explainable alignment. Using domain-
specific requirements and observations as inputs, the system
automatically outputs a CJM. Explainable alignment corresponds
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with human and AI perspectives and in facilitating an unknown
world view, thereby improving the original observation
environment. This alignment creates four layers while building
explainability in an overall feedback loop: (1) an algorithmic
framework layer, (2) a model fusion layer incorporating social
system and AI system perspectives, (3) an automatic CJM
output and knowledge extraction layer, and (4) a data fusion
space layer. Please refer to Chapter 4 for details. For a social
system, we incorporate process mining (Van Der Aalst et al.,
2011) that is linked to specific sequentially recorded business
actions. Illuminating the event logs from the customer behavior
environment with process mining—a process that was originally
used to improve internal processes—ensures social consensus
in technology selection. For an AI system, we employ research
into generative models (Jebara, 2012) with inductive logic
programming (ILP) (Muggleton, 1991) to achieve appropriate
model fusion, which is comparable to process mining. Generative
models and ILP are one of the most active research areas in the
field of AI inference technology and are now being widely used
in everything, for example, data augmentation to investigate
unknown infectious diseases by the former (Waheed et al., 2020)
and advanced satisfiability problem solving for autonomous
driving controls by the latter (Suchan et al., 2019). The customer
journey, automatically output as the third layer, is both an
explanation of the environment learned in the black box and a
predictor that is continuously updated as a behavioral model.
Finally, in the fourth layer, data fusion (Arrieta et al., 2020)
for observation, it is necessary to be able to accurately capture
and verify how the customer responds to the measures. The
alignment toward these four interacting layers supports fair and
transparent decision-making while fostering literacy appropriate
to the decision makers. The observation results are processed
as follows, according to the interpretable framework in which
the modeling was established. First, a long short-term memory
(LSTM) (Murdoch and Szlam, 2017) is trained on the observed
viewing logs, and then preprocessing is applied to generate
the oracle for all episodes for each viewer by assimilating real
data with predictions. We acquire both post-hoc explainability
(Arrieta et al., 2020) and CJM automation with regards to this
black-box method through the following three stages. The first is
to visualize static latent features with a latent Dirichlet allocation
(LDA) (Blei et al., 2003) and dynamic features with a variational
autoencoder (VAE) (Kingma and Welling, 2013). This stage
corresponds to discovery in process mining and dimensional
reduction. The next stage is to use post-hoc explainability (Arrieta
et al., 2020) to identify which features are necessary to focus on.
Only the viewing logs affected by the feature through a learned
model are resampled. This stage corresponds to conformance
checking in process mining and feature optimization. A hidden
Markov model (HMM, a post-hoc explainability contrasting
to LSTM) (Baum and Petrie, 1966) is learned from that log.
The state transition diagram becomes the customer journey.
Furthermore, a set of rules is extracted by applying the learning
from interpretation transition (LFIT) (Inoue et al., 2014) as
an ILP process. This stage comprises enhancement from a
process mining prospective as well as a knowledge update in the
AI system.

For the last question, a practical application of human-AI
systems to strategic decision-making in marketing is realized.
This paper proposes this application with actual customer
behavior logs in over-the-top (OTT) media services (Moro-
Visconti, 2021) as the extension of our previous work (Okazaki
and Inoue, 2017). This provides content that was formerly
delivered over different platforms to a range of devices via
online streaming technology. Revenue structures vary widely
across advertising media and subscription services, but all have
one thing in common: a business can be established only
with content that keeps viewers constantly engaged (Moro-
Visconti, 2021). In such services, content viewing can be captured
as immediate data. Programming, production, and promotion
are already based to some extent on data-driven decision-
making (Moro-Visconti, 2021). This trend toward a business
structure that combines online infrastructure and digital devices
is expanding to all marketing domains, not just entertainment
content (Turkanik and Johnson, 2020). Therefore, applying our
research to the OTT media business is equivalent to approaching
the possibility of a human–AI collaboration system in a more
realistic marketing environment. We analyze viewing-related
behaviors, which are an extremely popular form of OTT content.
Given the observation inherent in serial dramas, we determine
which latent variables to focus on from both process mining and
generative models with ILP perspectives, output the customer
journeys from logs containing such properties, and achieve
model fusion that transforms them into behavioral rules. Section
Related Works of this paper introduces trends in related works
and demonstrates the academic originality of our research.
Section Concepts and Background introduces the necessary basic
concepts and scope with the flow of explainable alignment
as well as details of the four layers that it explains together.
Section Method and Implementation explains the method and
implementation applied to the actual viewing logs from the
OTT media service. Section Experiment and Results discusses
an experiment using broadcast logs from a serial drama and its
results. Finally, Section Conclusion discusses the conclusion and
the direction of future research.

RELATED WORKS

As research on the application of machine learning to decision-
making progressed, it became clear that the output process for
learning-based predictions could not be visualized (Castelvecchi,
2016)—this is the so-called “black-box” problem (Ribeiro et al.,
2016). A movement to study AI explainability itself (Rudin,
2019), in an era where collaboration with humans is a must
(Gunning and Aha, 2019), has begun and is presently ongoing.
Various developments are underway, including establishing a
taxonomy of AI system explainability (Arrieta et al., 2020),
measurement methods (Hoffman et al., 2018), and meta-analysis
(Gilpin et al., 2018). Our proposal applies to the decision-making
in real business data environments (Loyola-Gonzalez, 2019).

In collaborative systems between humans and AI, Miller
(2019) raises issues in terms of social–scientific properties that
govern the decision-making process. Social engineering research
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is concerned mainly with improving business administration
processes (O’Neill and Sohal, 1999). We aim at explainability
laid out in terms of business process re-engineering. We
employed process mining (Van Der Aalst et al., 2011; R’bigui
and Cho, 2017) and presented the possibility of using it to
complement machine learning, but our research delves into the
framework and validation covering the entire process in an actual
application study.

Learning and prediction from real-world data environments
have become an important research area in applied science
in general (Kalman, 1960). Predicting parameters in regression
models from large-scale observation data (Rauch et al., 1965)
has produced many results in meteorology. In sensing-based
motion search (Patterson et al., 2003), various studies (Dong and
Andrews, 2009) have aimed to recognize motion patterns using
machine learning, including the control (Cook and Das, 2004) of
integrated environments (Wang et al., 2005) as well as evacuation
plans (Helbing et al., 2000). Our research is original because
it approaches the extraction of the latent attitudes behind the
behavior, despite the fact that the behavior itself is easily defined
in terms of content viewing.

Although there have been previous attempts to use machine
learning for TV broadcasting (Bennett and Lanning, 2007),
most research has focused on recommendation algorithms.
CJM (Richardson, 2010; Lemon and Verhoef, 2016) aimed at
customer behavior typically proposes a consensus based on ad
hoc marketing research (Halvorsrud et al., 2016), but only a
few scattered studies have targeted automation (Rosenbaum
et al., 2017). Meanwhile, Bernard and Andritsos (2017) proposed
CJM from a process-mining perspective and did not reach the
demonstration stage. The originality of our proposal lies in the
use of real data and an approach to CJM, with informatics
technology based on a management engineering framework,
which facilitates both automation and explainability.

In the field of natural language processing, state-space
models (Aoki, 2013) are used mainly when latent variables
are included in the model, and parameter estimation methods
from Markov chains (Astrom, 1965) and Bayesian hierarchical
models (Murphy, 2002) are used and routinely implemented in
speech recognition (Zweig and Russell, 1998). The technique of
estimating Bayesian networks between events with conditional
probabilities has been used as a statistical causal search technique
in sociology (Pearl, 2009). From the field of deep learning, it is
becoming common to visualize the hidden layers of unsupervised
learning with autoencoders and generative adversarial networks
(Raiko and Tornio, 2009; Kingma and Welling, 2013) and
recurrent neural networks (RNNs) that have been trained over
a long period with post hoc analysis (Murdoch and Szlam,
2017), as well as visualizing the attention of transformer-based
pre-training models for transfer learning (Vig, 2019). These
techniques, which can simultaneously extract latent variables and
reduce observation dimensionality, have been used in places in
this paper.

In the life sciences and bioinformatics, a wide range of
research (Liang et al., 1998; Akutsu et al., 1999; Murphy
and Mian, 1999) has extracted the interaction mechanisms
between chemicals involved in genetic expression. These have

evolved into probabilistic Boolean networks (BNs) (Shmulevich
et al., 2002) and methods for estimating dynamic Bayesian
networks (Lähdesmäki et al., 2006), but as the number of
variables increases, the challenge becomes in how to address
computational complexity (Louizos et al., 2017; Shi et al., 2019).
In contrast, deductive algorithms, which solve the satisfiability
problem from time-series observations, are a promising solution.
In natural language processing, this technique can be applied to
parsing analysis of sentences as well as speech intent recognition
(Sato and Kameya, 1997). In logic programming (Pearl, 1988;
Muggleton, 1991; Poole, 1993), this technique enables inference
from uncertain partial observations using probabilistic logic
formulas (Friedman et al., 2000; Raedt and Kersting, 2008).
In summary, discrete environmental changes in which latent
variables are acting dynamically can be regarded as a state-space
model estimation (Durbin and Koopman, 2012).

Among these options, we use LFIT techniques (Inoue et al.,
2014) developed from work showing the compatibility of
deterministic BNs with logic programming (Inoue, 2011) for
automating CJM as a Boolean network with perturbation (BNp)
and with extracting the rules. LFIT (Inoue et al., 2014) has
been further developed for computation in continuous space,
including the time series of biological reactions (Ribeiro et al.,
2017), behavior detection on TV viewing (Okazaki and Inoue,
2017), and rule extraction from deep learning networks (Gentet
et al., 2016), demonstrating its applicability to big data and online
learning (Sakama et al., 2021).

CONCEPT AND BACKGROUND

Explainable Artificial Intelligence
Since the publication of DARPA’s XAI study (Gunning and Aha,
2019), there have been several meta-analyses (Gilpin et al., 2018)
evaluating subsequent recent trends. The taxonomy presented
in Guidotti et al. (2018) categorizes the problem of opening
black boxes itself as the object to be explained. The solution
to any black-box problem is formulated as a special case
of a general classification problem having the common goal
of providing an interpretive and accurate predictive model.
These solutions can be broadly divided into those that solve
inverse problems and those that design explanations. Solving an
inverse problem means to input a decision-making result from
a black box as an observation and to output an explanation
that arrives at that result. By contrast, designing explanations
is called “transparent box design,” where decision-making
results from a black box are input as a training example
that should be learned alongside development of an explaining
interpretable prediction model. In general, an explanation is
an interface between a decision-maker and a human being
regarding a made decision, with the terminology used in
Arrieta et al. (2020). The terminology of explanations can be
defined in the four quadrants created from the axes of activity–
passivity and model understandability–human understandability
provided by the explanation. Transparency is a passive model
understandability that provides clarity of the functioning of
the model itself. Generally, the simpler the deductive model
is, the more transparent it is. Interpretability is a passive

Frontiers in Artificial Intelligence | www.frontiersin.org 4 May 2022 | Volume 5 | Article 824197

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Okazaki and Inoue Explainable Model Fusion for CJM

human understandability that provides meaning with conviction
and value to a human observer. Comprehensibility, which is
a term that indicates human understandability and activity,
is the capacity for human-style expression of the knowledge
learned by the model. Finally, explainability means active
model understandability. It refers to any action or procedure
intended to reveal in detail the model’s internal functioning.
The concept of explainability in this paper is based on
the above.

How an AI system can be explained depends on whether
the model can be translated from its design or by external XAI
technology. The former is called a “transparent model,” and
the latter is called “post-hoc explainability.” The explainability
required for advanced human-AI systems is based on whether
they are black-box machine learning structures or frameworks
with post-hoc explainability that are involved as social decision-
making processes that address real-world problems (Arrieta
et al., 2020). Our strategy is based on the latter as a
practical choice.

Problem Formulation
The essence of the strategic problem in social systems (Quade
and Grace, 1989) is how to allocate resources in a balanced
manner to areas that compete temporally and spatially. Temporal
conflicts are those that determine the allocation of effort to
the future. Spatial conflicts are conflicts in determining the
proportion of human, material, and financial resources to be
allocated to various activities, including entry into new fields and
exit from existing fields. Strategic decision-making is a series of
processes for solving problems, such as researching ways to deal
with these strategic problems and developing and implementing
strategic plans. However, the future contains many uncertain
factors, and it is necessary to justify the prior investment
of resources, at the expense of the present to some extent,
for the future. The allocation of resources to organizational
activities also means the determination of priorities among
activities, which in turn means changing the rules for the
distribution of authority and benefits implicitly determined by
the current form of activities. In addition, efforts and persuasion
are needed to make the resulting interest structure acceptable.
In this way, strategic decision-making involves a great deal of
unavoidable chaos due to the friction caused by uncertainty
and the spatial and temporal conflicts of interest. In order
for an organization or system to remain adaptable under the
changing social environment, it must have sufficient diversity
within it at the same level as the environment itself (Ashby, 1991).
This trend has become increasingly pronounced in recent years.
This fundamental nature of strategic decision-making requires
a process of coordination between different positions, contexts,
and literacies. The first and most important step is to formulate
the problem. The problem formulation involves examining the
roots and background of the problem, identifying the causes that
should be taken into account in the situation, and describing
the relevant activities of the actors and influencers in the model,
including the possible alternative paths to the goals and objectives
that one wants to reach through the solution. An uncontrollable
environment, such as complex customer behaviors, is assumed

to be an explanatory variable in the model, especially in strategic
decision-making in marketing. This is quite similar to problem
formulation in marketing.

Decision-Making in Social Systems
Miller (2019) provided insights on forms of XAI research from
the perspective of social science. They discuss how people
incorporate cognitive bias and social expectations in the process
of explaining, citing a wide range of academic fields, including
philosophy, psychology, and cognitive science. Explanations in
social systems show four properties that are likely to arise
while approaching consensus. First, explanations in society are
contrastive. Based on local discoveries of an actual event, we try
to approach more universal principles of the world surrounding
these events by contrasting them with hypotheses about specific
confounding factors. Second, social explanations make biased
selections. Rather than seeking complete explanations for events
and their actual causes, people skillfully extract a limited
number of factors that they are comfortable with. However, such
choices are often influenced by cognitive bias. Third, in social
explanations, likelihood is less important than cause. In other
words, using statistical generation to explain why an event occurs
is considered inappropriate without a description of the causal
relationships behind that generation. Fourth, explanations in
society are contextual interactions. People transfer knowledge
presented as parts of conversations and interactions but in
relation to the beliefs of the explainer and the explainee. Although
an event can have many causes, discussions of its explanation will
often occur with explainees focusing only on details that are self-
contextually convenient, while explainers select just one detail
based on various evaluation criteria. As a whole, these properties
suggest that the essence of social consensus in decision-making
lies in a mutual facilitation for obtaining a worldview of which
all decision makers agree and accept, even if doing so results in
unexpected errors. Facilitation (Zajonc, 1965) is a responsible
intervention in group processes that encourages the activation
and cooperation of organizations and communities. As a result,
the key to collaboration between human social systems and AI
systems is to establish a comprehensive governance code for
each domain.

Customer Journey Mapping
Over the past half century, marketing aimed at creating
lasting market demand has evolved from conceptual models
for discussion to engineering models that can be applied
in the real worlds (Lemon and Verhoef, 2016). Engagement
through customer experience is increasingly considered the
most important concept for management that augments brand
value. Customer experience is defined as the multidimensional
construction of a customer’s cognitive, emotional, behavioral,
sensory, and social responses to offers from a company or
brand during the processes that lead to a purchase by that
customer. CJMmodels the flow of this customer experience. As in
Figure 1, CJM produces a segmented timeline showing the order
of occurrence of events as phases in the customer experience,
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FIGURE 1 | Customer journey mapping (CJM). An example of planned CJM based on content viewing.

expressing them as funnels or loops according to the business
model of interest.

A node called a “touchpoint” is then allocated to each
phase. Touchpoints represent both external contact events
between customer and company or environment and the
internal customer experiences they cause. There are two types
of customer journey: those assumed while planning marketing
activities and those resulting from plotting actual customer
behavior histories. Practical CJMs provide perspectives for
sharing better management of marketing activities throughout
the organization. The current customer engagement process
involving CJMs uses the planned journey as a default,
transforming it into a journey based on actual measurements
while measuring the progress, results, and outcomes of activities.
Specifically, an unknown touchpoint observed in a direction
deviating from an assumed transition from a known touchpoint
to its intended subsequent touchpoint is called “inhibiting
deviation,” and an unknown touchpoint observed in the
direction of joining from the outside is called “activating
deviation” (Halvorsrud et al., 2016). We can more precisely
update journeys by incorporating these elements. We consider
potential attitudes as underlying customer experiences that
occur through a transition between touchpoints. Thus, the
contribution of CJMs to marketing is an explainability that
allows various decision-makers to perceive a more engineering-
like approach to customer-oriented management. CJMs also
contribute to providing a scope for innovative marketing
automation. From the above, we suggest that CJM automation is

suitable for problem formulation of human-AI decision-making
collaboration in marketing.

OTT Media Service
As a practical verification, this paper assumes the application
to OTT media services (Farooq and Raju, 2019). Conventional
entertainment content has been little more than a driver for
the encouragement of distribution channels. There are various
revenue structures, including on-demand, which charges for
individual access, subscriptions, which allow unlimited viewing
for a certain period of time, and advertising media models. In
each case, the key to success is to continue attracting viewers to
the provided content. The trend toward a business structure that
combines online infrastructures with digital devices is not limited
to entertainment content but is expanding to all marketing
domains. Already, OTT media services are capturing behavior in
customer activity logs practically and in real-time (Wayne, 2018),
and data-driven decision-making systems are working to some
extent for program organization, production, and promotion.
Given such circumstances (Jenner, 2018), we consider OTT
media services to be an appropriate experimental environment
for the application of this research in marketing.

The domain-specific requirements for applying this research
to OTT media services are as follows (Okazaki and Inoue, 2017).
(1) Partial observations within short periods of time: In the case
of a serialized drama, for example, an average of ten to thirteen
episodes per season will be broadcast at regular intervals. One
must learn to update the posterior forecast model sequentially
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according to the limited timing of each decision made from
the viewing histories. (2) The potential and confounding of
explanatory variables: Viewing attitudes can be fostered through
complex interactions with public relations through such means
as owned media, social media topics, and advertisements that are
developed before broadcast according to stories for promotion
and content. Therefore, latent explanatory variables must be
identified while always assuming confounding covariates. (3)
Appropriate granularity for data fusion: Customer contact
histories for various marketing activities are often a data fusion
of logs from different profit structures and strategies, making
it is necessary to optimize to an observation granularity. (4)
Process visualization: Because strategic decision-making involves
a wide range of departments and the AI literacy of the decision-
makers will vary, facilitation will be essential throughout the
delivery period.

Concept
We present explainable alignment as a concept for the
AI system’s collaborative facilitation with social systems. As
Figure 2 shows, for an inverse problem that takes specific
requirements to a domain as input and provides a facilitated
worldview and acquired knowledge as output, the explainable
alignment engages with the expertise in both systems while
confirming their hypothetical perspectives. Social systems cast
strategic perspectives for achieving the entire alignment as
responsible questioning, and AI systems respond from a scientific
perspective, thereby providing an autonomously correct answer.
We continue to select and confirm viewpoints until this inverse
problem is satisfied and the complementarity between the two
are compatible, that is, until we can form an autonomous
accountability for the solution in coordination with both.

An explicable alignment can be formulated as follows:O: CJM
to be generated; I : data environment specific to OTT domain; f,
F: decision-making frame from social system perspective; m, M:
set of methods from AI system.

Explainable alignment is defined as finding the pair of (f,m)
that best satisfies

{(f,m)|f ∈ F,m ∈ M, f(m|I) = O, f ⊗ m = 0}

In other words, explainable alignment in this paper means
solving the inverse problem of automating CJM under the
requirements of the data environment of OTT media services,
with AI methods working in a complementary way along the
social decision frame. In this paper, we propose a combination of
process mining on f ∗ and generative model and inductive logic
programming onm∗ as the optimal pair (f,m).

Process Mining
Process mining (Van Der Aalst et al., 2011) is a general term for
business process modeling and analysis that utilizes data mining
by machine learning in these tasks. By extracting knowledge
from event logs obtainable in the real world, we can discover,
monitor, and improve the implemented processes. There are
three directions for the analysis of process mining. The first

is discovery, namely, the discovery of actual process models
from event logs without the use of a priori knowledge. Next
is conformance checking, which is the comparison of actual
process models with the event logs they were obtained from
and the matching of the model to reality, and vice versa. The
third is enhancement, namely, the use of recorded information
about actual processes to improve or extend the current process.
In process mining, these three directions are simultaneously
considered, requiring a process-centric analysis that can show
concurrency. Even though the concept of process mining itself
is in a framework for the social science field, the core of that
concept belongs to the computer science field as data mining.
In other words, although it is a tool for social systems, it is
also an irreplaceable perspective for more explainable facilitation
in that it opens doors for AI systems to observation, learning,
knowledge, and reasoning.

Generative Models and ILP
Generative models (Jebara, 2012) are a kind of modeling
approach in machine learning. In general, this approach
builds a hypothetical model from observation in advance and
makes predictions and judgments by learning parameters and
structures. Features behind the data are then extracted using
computational methods such as inference and optimization.
By clearly separating the solution process into inference and
probabilistic modeling, uncertainty in the target system can be
well expressed. In this way, the generative model that describes
the generative process behind all observation data can create or
increase unobserved data belonging to the class by sampling the
probability density function. With better assumptions and purer
observations, a model with more information can be obtained
with fewer observations. On the viewpoint of process mining, a
viewing log at OTTmedia services is a discrete event divided into
periods that show release timings for content delivered at regular
intervals. Therefore, the generative model discretely updates the
probability model from a sequentially observed event log, and the
vector of the probability density sampled at each time expresses
the state.

One approach to extracting knowledge from this state
transition is ILP (Muggleton, 1991), which is a machine learning
approach that uses logic programming techniques defined
at the intersection of inductive machine learning and logic
programming. Focusing on the nature of inference rules,
algorithm convergence, and the computational complexity
of procedures, ILP extracts knowledge from experience
through computational logic that constructs hypotheses from
observations. Specifically, from a set of facts, expected results,
and background knowledge, which are divided into positive
examples to confirm and negative examples to infirm, an
ILP system deduces whether a logical program is sound and
complete. Because logic programming declaratively describes a
problem, the logical formula that is finally derived can be shared,
accumulated, and managed as explainable knowledge for various
purposes. Furthermore, ILP can describe a state transition
system as logical expressions, therein containing dynamics that
dominate environmental changes.
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FIGURE 2 | Explainable alignment. Overview of research idea.

Our approach thus uses ILP to extract knowledge from
state transitions sampled by a generative model that learns
features of interest based on event logs for viewers of the
OTT media services. A graphical model of the hierarchical
Bayesian approach, which provides the basis for the generative
model, is computationally equivalent to a propositional logic
formula with probabilistic measure given as an uncertainty,
which has been pointed out as having weak descriptive power
for general knowledge. This is because no general expression
of knowledge itself is possible except by first-order predicate
logic and its derivations. However, ILP successfully avoids this
problem by using computational logic as a mechanism for
expressing observations and hypotheses. Because the case at
hand targets limited knowledge for viewing inherent programs
in the specific domain of marketing, and furthermore because
strategic decision-making presumes business literacy of the
parties concerned, propositional logic can be adopted. However,
if the discrete time argument is adopted in the propositional
logic, the seamless utilization of the generative model for
observations from the dynamic environment and ILP results
in the state transition of the non-deterministic discrete event
system, and knowledge extraction from it, as the first-order
predicate logic. We thus have a probabilistic model that can be
sampled from a small number of observations, a graphical model
and prior distribution that explicitly incorporate the assumptions
of causality and latency and can control hyperparameters to
adjust granularity, a hierarchical Bayesian update to avoid
overfitting and improve the accuracy for each observation, and
a descriptive logic program that is inductively derived from
the sampled state transitions. Based on the idea of reversing
the task locality and combining only the effective parts of each
technology, coordination between such a generative model and
ILP can be assuredly prepared. By capturing the latency of

variables from the constraints of the data structure of OTTmedia
services (i.e., limited observations), we can create strategies
that respond to the three process mining directions: discovery,
conformance checking, and enhancement. In this way, process
mining guarantees the facilitation required for the generative
model and ILP in the field, providing process mining with tailor-
made explainability for local issues. This is the complementarity
that the explainable alignment arrives at for CJM automation
from OTT media services event logs.

Scheme
The scheme for a solution that automatically outputs CJMs
along the explainable alignment is a loop structure in which
four layers are combined as shown in Figure 3: an algorithmic
framework, model fusion, CJM and rule extraction, and a data
fusion platform.

A learning model and analysis technology are appropriately
fitted to the algorithmic framework from the complementary
viewpoints of the social system and an AI system derived in
the alignment. This process is called “model fusion.” Through
model fusion, a CJM and rules extraction is output from the
observed data and fed back to the data fusion platform to improve
the observation system. Then, taking as input the specific
requirements on OTT media services, the complementarity
achieved as an explainable alignment is a combination of process
mining from the social sciences and knowledge extraction via
generative models and ILP from the computer sciences.

METHOD AND IMPLEMENTATION

Algorithmic Framework
The design concept of the framework is simultaneously for
achieving a balance between the two types of black-box problems
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FIGURE 3 | Methodological scheme of the proposed solution.

described above, knowledge extraction as a solution to inverse
problems, and the design of explanations for the entire system.

Figure 4 illustrates the algorithmic framework. At work in
the upper row of that figure are the black-box learning Lb

and predictor b, which are capable of learning observation Du

obtained from the progress in content distribution and from
sampling a subsequent prediction Ŷ. The input in the middle row
is an assimilated dataset Da that combines observation results
with black box predictions. The generative model group Lca ,Ca

learns these and is responsible for extracting a feature quantity Ea

for a latent variable. This corresponds to a solution for the inverse
problem. The lower row in Figure 4 shows post-hoc explainability
corresponding to the black box b in the upper row, and oracle
data Df resampled to include the target feature amount Ea to
the extent possible among determined feature amounts are input.
This predicts Ȳ as CJM while visualizing the process through a
comprehensible learner Lcf and predictor Cf , then converting to

knowledge Ef via the final learner Lcp . This process corresponds
to transparent box design (Guidotti et al., 2018).

Discovery
Discovery in process mining is an important process that clarifies
the object to be modeled under contrasting perspectives and
selective biases in social systems, and in OTT media services
there are few observations, latent variables, and confounding
factors. To cope with these, generative model groups can reduce
the required input dimensions by grasping probability densities
in prior distributions and freedom in the hierarchical Bayesian
graphical model. There are two potential features in modeling
OTT media services. One is within-period viewing attitudes,
which are units formed by viewers through experiences at various
touchpoints before the distribution of subsequent episodes.
The other is dynamic patterns in viewing attitudes, which are
gradually formed within the flow of series distributions over
multiple times. In our framework, the former is extracted by
applying LDA, and the latter is extracted by applying a VAE.

LDA (Blei et al., 2003) is a representative generative model,
called the “topic model.” Although the customer’s behavior is

reflected in the observation as a history, the object we want
to act on is the latent attitude behind that behavior. LDA is a
method for parsing latent semantics from sentences, and we can
apply it to attitude extraction. The potential semantic relations
called “words,” “sentences,” “document sets,” and “topics” in the
topic model are replaced as-is by relations between individual
unit behavior, their multi-period behavior history, and the
set of viewers’ history and latent attitudes in the modeling
of OTT media services. It is also possible to represent how
several different attitudes are potentially mixed behind a certain
behavior, which is not possible with simple clusteringmethods. In
this system, the dimension of marketing variables Da is reduced
in the dimension of latent attitudes through a learned LDA, and
the viewing behavior of individual d for that week is output as a
weight vector of filtered explanation Ea for each of the multiple
different latent attitudes. An Ea converted into a weight vector for
the attention latent attitude output by the LDA is converted into
a grid image ez

d
, which is assigned a CMYK hue and saturation

for color display. The resulting grid shows the individual’s nth
viewing attitude and can be regarded as a dynamic pattern for
input to VAE as a 3 × 3 matrix image Ez constructed from the
count and order of distributions. VAE (Kingma and Welling,
2013) is a three-layer neural network that uses the same data
for the input and output layers, with a generative model that
learns dimension-reduced features (the latent space) without
supervision. The main advantage of VAEs is their explainable
feature extraction during the learning process, rather than their
use in classification. They generate a probabilistic distribution
within this hidden layer as latent feature space, so unseen
dynamic patterns can be sampled even from partial observation.
Defining a pattern l of interest from the visualized features,
we use an Ez

l
sampled from within the latent space concerning

that pattern and an observed Df associated with that source as
oracle data.

Conformance Checking
Conformance checking in this system corresponds to the brown
line connecting the upper and lower parts in the framework
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FIGURE 4 | Algorithmic framework. The dashed arrows indicate processing, continuous lines indicates prediction and dotted arrows indicates explanation.

diagram in Figure 4. This is a verification of the explainability
of the system itself as the XAI. Referring again to this figure, after
determining the feature Ea that is the focus in the middle-row
process, the data set Df resampled from the original observation
is simultaneously passed through the black box b in the upper
row and the post-hoc explainability Cf in the lower row. While
limiting to reflections of the focused features, evaluation and
verification can be performed with two predictions Ŷ and Ȳ,
accuracy from comparison with the original observation Du,
and post-hoc fidelity by comparing two predictions. Rather than
trying to understand the inner states using a model-agnostic
method, our goal is to suggest a decision-making policy from the
estimated model itself. We do this by selecting a pair of black box
and post-hoc explainability as model-understandable methods in
which the structure of the models is suited to the social decision-
making process. Our hybrid transparent black-box method thus
uses a LSTM as the black box and the HMM, which is a typical
discrete state space model, for post-hoc explainability.

LSTM (Murdoch and Szlam, 2017) is a typical RNN that
currently is most commonly applied when processing continuous
data, such as time series predictions. In our system, LSTMs
cumulatively and incrementally input the unit viewing behavior
Xn observed in the n th week of delivery to generate predictions
for the remaining Nn occurrences. A dataset in which the
input values until the nth episode X1 : n and the remaining
predicted values Xn+1 :N are assimilated is considered as the
oracle. HMM (Baum and Petrie, 1966) is a finite-state machine
having a probabilistic model and is widely used in modeling for

time-series data from a wide variety of fields. Content viewing
behavior in OTT media services often show different tendencies
between the first and second halves of occurrence time series.
Moreover, attitudes behind touchpoints and content viewing
cannot themselves be directly observed. As a characteristic of
serial dramatic productions, previous viewing drives current
viewing, and we can assume that there is a dependency
between adjacent latent variables and that they are conditionally
independent. In that sense, an HMM is a remarkable method in
that for the first time it allows for the modeling of CJM solely
from observations as complicated realities of human psychology
toward such purchases.

Enhancement
Our alignment converts the CJM that is finally output into
knowledge and continues updating it. The readability of symbolic
expressions that enables inference for various uses enhances the
CJM. In models dealing with time series, such as LSTM cell-
state, context information, and HMM latent series st , the latest
knowledge always exists within the state transition. To extract
this knowledge, we use an ILP field technique called LFIT.

LFIT (Inoue et al., 2014) is unsupervised learning that
automatically learns system dynamics from observation data
obtained from a certain dynamic environment. Normal logic
programming (NLP) is a set of rules in the form

A ← A1 ∧ . . . ∧ Am ∧ ¬ Am + 1 ∧ . . . ∧ ¬An (1)
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where A and Ai are atoms and (1 ≤ i ≤ n, n ≥ m ≥ 0). In a given
rule R in the form of (Equation 1), A is the head of R, represented
by h(R), and the conjunction on the right of the← is the body
of R. The set of literals appearing in the body of R is represented
by b(R) = {A1, . . . Am, ¬Am+1, . . .¬An}, an atom appearing
as a positive literal in the body of R is b+ (R) = {A1, . . . ,Am},
and a negative literal is expressed as b− (R) = {Am+1, . . . , n}.
All atoms appearing in NLP are called a “Herbrand base B.”
Herbrand Interpretation I is a subset of B and is an assignment
of truth values to each atom. Given a rule R and an interpretation
I, if b+ (R) ⊆ I and b− (R) ∩ I = ∅ imply h (R) ∈ I, I is said
to satisfy R. A consistent Interpretation I is a model of P where I
satisfies all rules in P. When considering a logic program P and
interpretation I, the Tp operator defined as

Tp (I) =
{

h (R)
∣

∣R ∈ P, b+ (R) ⊆ I and b− (R) ∩ I = ∅

}

(2)

is a mapping Tp: 2
B → 2B . Time is used as an argument for

expressing the dynamics of a system that changes over time. That
is, the atom A at time t is regarded as A(t), allowing us to rewrite
the rule of Equation (1) as the dynamic rule

A (t + 1) ← A1 (t) ∧ . . . ∧ Am (t) ∧ ¬Am + 1 (t) ∧ . . . (3)

∧¬An (t)

This means that when A1, A2, . . . , Am are all true at time t, and
Am+1, Am+2, . . . , An are all false at t, then A is true at t + 1.
By writing this in the form of Equation (3), the Tp operator can
simulate state transitions of the dynamic system. We focus on
state transitions between two adjacent time points. When the
interpretation I reflects the system state at time t, the state J of
the system at time t + 1 is another interpretation. In that case,
the state transition from I to J in the dynamic system can be
expressed as (I, J). Given a set of interpretation transitions E,
an algorithm that learns logical program P satisfying Tp (I) = J
for all the transitions (I, J) ∈ E is called LFIT. The premise
for LFIT to arrive at the correct logical conclusions is that
Herbrand interpretation I is fully observed. In other words, the
soundness and completeness of the rules that appear can only
be presumed if transitional relationships for all of the many
possible worlds are included in the observations. By contrast, like
other observations in the real world, observations of OTT media
service viewing histories are always uncertain and incomplete.
State transitions obtained fromHMMare thus non-deterministic
and LFIT cannot be directly applied. We therefore introduce a
BN as a concept for dynamic systems that connect actual state
transitions and logical programs.

A BN (Kauffman, 1969) G(V , F) is a graph representation
consisting of a Boolean function set F =

{

f1, . . . , fn
}

associated
with the set V = {x1, . . . , xn} of finite binary variables (nodes).
xi (t) ∈ {0, 1} (i = 1, . . . , n) represents the value of node
xi at timestep t, and the network state is the vector xt =

{x1 (t) , . . . , xn (t)}. If there are 2k possible and clear states at each
timestep, and xi1 , . . . , xik are a group of nodes that directly affect
ni, called “xi regulation nodes,” then in the next timestep t + 1
the state of node xi is xi (t+) = fi

(

xi1 (t) , . . . , xik (t)
)

. The BN

is drawn by an interaction graph like that shown in Figure 5A,
but its strict regulatory relations are expressed only by a Boolean
function like those shown in the upper-left of the figure. From
any BN, we can calculate a state transition diagram showing
synchronous transitions of all nodes between xi (t) and xi (t + 1),
as shown at the middle-left of Figure 5. The LFIT calculation
process includes the BN comprising variables {p, q, r}, the truth
table of the Boolean function for node q, the state transition
diagram, and a combinatorial tree for logic programming. The
Boolean functions fp, fq, fr for each node p, q, r of BN are fp =
q, fq = p ∧ r, and fr = ¬p. For example, node p activates
node q while simultaneously suppressing node r. The BN is thus
deterministic, the only potential uncertainty being the choice of
the initial state of the network. Once given an initial state, the
BN will transition within a finite number of steps to either a
fixed state or a set of states that iteratively circulates forever.
As per Inoue (2011), the BN G(V , F) can convert transition
τ (G) to the propositional logic NLP π(G) by removing the time
argument from each literal At appearing in τ (G). Thus, in the
Tπ (G) operator, the trajectory of G can be simulated from any
state. This allows the application of LFIT to the state transitions
of finite automata as long as the model is deterministic.

Next, we launch the BNp (Lähdesmäki et al., 2006) for
application of LFIT to non-deterministic state transitions based
on uncertainties and incomplete observations. The BNp is a
BN that introduces probability. Any transition can cause the
network to move away from its current trajectory to a randomly
chosen state, from which it can start following the orbit as an
updated initial state. The perturbation mechanism is modeled by
introducing the parameter π (0 < π < 1) and the perturbation
vector γ = (γ1, . . . , γn), where γ1, . . . , γn are binary
random variables with independent and identical distribution,
and Pr (γi = 1) = π and Pr (γi = 0) = 1−π for all i = 1, ..., n.
The choice of state transition depends on the realization of the
current perturbation vector given at each transition step. If the
state of the network at time t is x (t) ∈ {0, 1}n, then the next state
x (t + 1) is f (x (t)) or x (t) ⊕ γ (t). Note that ⊕ is component-
wise modulo 2 addition, and γ (t) ∈ {0.1} is the realization of the
perturbation vector for the current transition. x (t)⊕γ (t)means
that xi (withi = 1, ..., n) changes its value if γi = 1 and does not
change if γi = 0. The right side of Figure 5 shows each property
of the BNp; for example, the truth table at the upper-right is
generated by adding the perturbation parameter π = 0.25
to the deterministic BN and shows the types and numbers of
transitions actually occurring with node q as the head. Taking
the example of starting from (1, 1, 1) in a BNp and advancing
50 steps, the colors indicate the frequency of state transitions.
Compared with that for the BN, we can see that state transitions
in the BNp are randomly added to the frequent transitions in the
BN as various deviations. As shown in the combinatorial tree at
the lower right of Figure 5, learning from state transitions in a
BNp requires considering weights on the bodies that are added
in various ways according to the generation of nondeterministic
states. However, one feature of a BNp is that such random
perturbations allow the network to escape the attractor, so these
perturbations make the system reachable in any current state
from a single transition. As a result, the dynamics of a BNp
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FIGURE 5 | (A) Interaction graph. (B) Deterministic and non-deterministic Boolean function. (C) State transition diagram. (D) Example of interpretation transition (LFIT)

output.

are equivalent to an ergodic first-order Markov chain (Tierney,
1996), such that the BNp has a unique stationary and steady-state
distribution with nonzero probabilities assigned to each state. In
subsequent state transition pairs (I, J) where I = J, according
to Fenstad’s theorem (Fenstad, 1967), the density distribution of

the joint probability Pr(I, J) consisting of the product of the
steady-state distribution and the transition probability matrix is
a probability measure for a logical program that can be induced
from (I, J). The NLP with a probability measure obtained from
this transition pair is a group of competing explanations for the
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BNp as a stochastic event in distribution semantics (Sterling,
1995), using the semantically unaffected LFIT algorithm GULA
(Folschette and Ribeiro, 2020). Among them, the explanation
with the highest probability measure is the best explanation.
Importantly, because the HMM is an irreducible first-order
Markov chain, as with a BNp, an NLP with a probability measure
can be obtained from the state transition after advancing the
timestep and reaching the steady-state. Thus, with the launch of
the BNp and the general-purpose LFIT algorithm, we can extract
knowledge even from the non-deterministic state transitions of
an HMM. The models combined in terms of both theoretical
and practical implication are summarized in Table 1 below in the
order of their use in processing. As Table 1 shows, our proposed
method matches a management technique called process mining
with a machine learning method called ILP from generative
models. For the various literacies of stakeholders, process mining
shows the current coordinates of processes leading to decision-
making, thus supplying suggestions to the machine learning
side, and the generative model and ILP are used to perform
computational processing that advances the coordinates and
outputs consequential and necessary knowledge in a visible form.

EXPERIMENT AND RESULTS

Data Environment and Preprocessing
Arrieta et al. (2020) categorizes data fusion into three types
according to processing. Namely, there is a data-level fusion
that combines raw data from different sources, a model-level
fusion that combines each model learned from a subset of
the combined data, and a knowledge-level fusion that merges,
using ontologies or other expression formats, to complement or
improve the originally provided knowledge set. The platform, as
an observation environment, is the first data-level fusion. We use
a previously implemented OTTmedia service as this observation
environment. The environment is a fusion format called the
“centralization approach,” in which data locally acquired at each
observation node are sent to a centralized processing system and
are merged together.

Specifically, the touchpoints for content viewing via OTT
media services and marketing activities via the Internet are
acquired from a single source in units of minutes, and we utilize
a data environment called “esXMP” (Video Research Inc, 2021)
that integrates seven data types from smartphone terminals,
seven data types from television receivers, and four profile-
related data types into a master database. The structure of the
observation data prepared for this study comprised four dummy
variables, x1...4, related to the dynamic viewing attitude xd,t of
individual d at time t, and nine explanatory variables, x5...13,
related to the touch point, which together form a thirteen-
dimensional binary vector. For discretization, the week from
the end of distribution of some targeted content to the end of
distribution of the next content is regarded as a single period.
Following the viewing criteria used by the actual business, each
variable has a dummy variable that records whether the content
was viewed in the previous week and whether it was viewed this
week, along with whether the viewer engaged with marketing
activities before the content distribution within that week.

We used the behavioral histories of touchpoints related to a
60-minute serial drama rebroadcast during the prime-time 22:00
slot. This drama series, a popular romantic comedy, first aired in
2016. It became a social phenomenon, resulting in the creation
of various types of user-generated content, such as buzzwords
and dances. The drama targeted a broad range of viewers,
aged 15–50 years, and it was easy to access related marketing
from personal smart devices. Six broadcasts had already been
completed, while the first few episodes of the next new program
had been completed and were waiting to be broadcast. The
broadcasters were faced with questions such as when to switch
to the new program, whether doing so would betray fans of the
current drama, and what measures must immediately precede
the switchover.

For training, we used updated observation vectors Du ∈

{0, 1}13 for 1,058 persons from esXMP, accumulated from the
first to the sixth broadcast, and an LSTM with 50 layers over
120 epochs learned them. Each window was trained to predict
a fourth week by incrementally moving the history for three
consecutive weeks. We adopted a known approach for handling
discretized training examples.We used an LSTM that had already
been trained in this way as the black-box learning Lb and
predictor b. We input another 353 viewers Du as test data,
and fed back output predictions to produce Ŷ, forecasts of
weekly touchpoints and viewing behaviors of the main story for
the seventh to the ninth episodes. The original Du and Ŷ are
assimilated to produce the oracle data Da for 353 viewers for
weeks 1–9. This is the source of the latent features and the input
for post-hoc explainability in XAI.

Filtering Explanations
Da is effectively a tensor of order 3 with dimensions for viewers
ID 1–353 with behavioral histories {0, 1}13 over viewing weeks 1–
6, but since we know that the history over a viewing week will
be sparse, we convert the behavioral history to binary in advance
to increase computational efficiency. This allows for conversion
of the entire viewing history to a matrix, with each individual
week converted to a vector of binary instances. By considering
this vector as a sentence comprising six words, we can apply
the methods of latent semantic analysis from the field of natural
language processing. The assimilated oracle Da is input into
LDA and is trained. In the trained LDA, a topic is equivalent
to a latent attitude consisting of a combination of touchpoint
variables, and the topic (i.e., latent attitude) is inductively and
qualitatively interpreted and annotated while comparing the
probability of occurrence of a group of touchpoint variables
specific to an attitude (Table 2) from the topic distribution. Since
the probability gives the likelihood of latent attitudes across the
entire sample, we select up to four latent attitudes that should
be prioritized.

This process is the stage at which the explanatory potential
of static latent attitudes among latent features can be examined.
To specify the number of topics, we select and use the
model for it that possesses minimum perplexity and maximum
coherence from a set of 2 to 50 trained models, designated
in advance. Transforming the oracle Da into a real-number
vector representing up to four selected latent attitudes yields
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TABLE 1 | Summary table for managerial and theoretical implication.

the explanatory vector Ea, with
⋃

eai,1 : 9 ∈ (0, 1)4. Ea contains
the complex dynamics of latent attitudes from the first time to
the final prediction. In other words, this process is the stage at
which the explanatory potential of dynamic latent attitudes can
be examined. The personal history ea

d
for individual d over nine

viewings comprising the explanatory vector Ea is transformed
into a 3× 3 matrix of 4-dimensional vectors with latent attitudes
stored in each cell, and this is input into the next feature extractor,
the VAE. The explanatory matrix Ez is the 3 × 3 feature matrix
data that are generated with a Gaussian distribution, which is
the latent space of the learned VAE in Figure 6. If real values
for the four prespecified latent attitudes are used as arguments
for CMYK or some other color function, the dynamic viewing
pattern becomes a 3 × 3 color grid, with features clearly shown.
This allows an intuitive consideration of noteworthy viewing
trends and tendencies to contact touchpoints across the entire
broadcast distribution period.

CJM Automation
Using the explanatory matrix Ez as a filter, only viewing patterns
considered to be similar and predicted viewing histories are

re-collected to obtain the oracle set Df that is our focus. We
evaluate the HMM from this Df . The number of latent states
is predicted in advance in the range of 2–20, and the posterior
Bayesian information criterion (BIC) is used to narrow down
to the model with the highest accuracy. The resulting state
transition diagram representation is the target of our system,
namely, realizing a CJM that generates the viewing pattern.
Annotating the emission probabilities of viewing pattern vectors
Da ∈ {0, 1}13 facilitates interpretation of the latent states. This
process is CJM automation. Rather than mindlessly drawing
arrows to a target state, we come to consider where invisible cliffs
rise up in the minds of customers or viewers.

Rule Extraction
When extracting logical rules from CJMs that generate viewing
patterns of interest, we take advantage of the fact that the
state transition diagram of the HMM obtained by observations
from nature is an ergodic first-order Markov chain, and that
recursive sampling always leads to a steady-state distribution.
Once a steady-state is reached, the transition function from the
subsequent state I to the next state J is the same as the Tp
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TABLE 2 | Definition of variables.

The color of latent Dirichlet allocation (LDA) topics indicates their corresponding CMYK color assignment. Owing to limited space, only the 10 most important pattern numbers are

included in the chart.

FIGURE 6 | Filtering explanation by visualizing the variational autoencoder (VAE) latent space and manifold. Representative color grids of each cluster are shown.
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TABLE 3 | Focused oracle and the annotation of the hidden Markov model (HMM) (touchpoints).

The bottom matrix is the emission and the selected pattern number is emphasized with highlight color. Owing to limited space, only the 10 most important pattern numbers are included

in the chart.

FIGURE 7 | Left: Result of Customer Journey Mapping. Initial probability is illustrated by numbers with underline and other numbers are transition probability. Right:

Sankey Diagram. Transition between steady states is shown, note that the state distribution is similar on both side of transition.

operator in a BNp. In this case, the discrete joint probability
that is a product of the stationary distribution p(S) and the
transition probability matrix is the probability measure of the
state pairs of the steady-state. The LFIT from state pairs between

steady-state differs from that between deterministic operation
in that the number of detected state pairs is proportional to a
perturbation parameter γ, and a conflicted relation between the
rules increases accordingly.
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TABLE 4 | Extracted rule of GULA.

For each variable, all rules of normal logic programming (NLP) form are listed and most

representative rules are highlighted.

In our problem setting, we are considering discrete
probabilistic systems. Probabilistic mechanisms introduce
non-determinism and different ratios of occurrence for each

FIGURE 8 | Result of interaction graph. The arrows indicate head-body

relationship among the variables.

possible state transitions. GULA only learns which next values
a variable may take in a given configuration, but not their
probabilities. For example, by giving the transition ({a1, b0, c2},
{a0, b2, c1}) to GULA, we are requesting it to learn the claim:
“a0 is possible after {a1, b0, c2}.” But to represent a probabilistic
dynamical system, we expect rules that state: “There is X%
chance to have a0 after {a1, b0, c2}.” Thus, in order to use GULA
to learn probabilistic rules, we can encode the probability in
the transition, for instance: ({a1, b0, c2}, {a0, 75%, b2, 100%,
c1, 100%}). Technically, a0, 75% and b2, 100% are just regular
symbolic atoms with a different domain. Given such transitions,
GULA would learn rules like a 0.75%←a1, b0, c2 meaning
“When a has value 1, b has value 0 and c has value 2 in the
current state, a takes value 0 in the next state in 75% of the
cases. Therefore, the GULA algorithm counts occurrences of
all pairs and uses their frequencies as a probability measure
to determine which rule to prioritize. The resulting BN, as an
interaction graph, is a diagram that shows causal relations and
those activating or inhibiting dynamic relations among the, at
most, 13 nodes that are the explanatory variables. Interaction
graphs facilitate understanding of the whole picture, which
can be difficult to do in terms of rules expressed as individual
logic programs.

RESULTS

As shown in Table 2 again, a result of LDA learning with
assimilated oracle data Da and a range of topic counts from 2
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FIGURE 9 | Result of (A) accuracy by Hamming distance, (B) fidelity, and (C) accuracy by matched count.

to 50, since the best pair was between lower perplexity and higher
coherency the decided number of topics as hyperparameters was
7. The lower portion of Table 2 shows whether there is a high
probability that each latent attitude (topic) will appear in the
touchpoint contact pattern (a 13-dimensional vector converted
to binary) in this model. While some patterns, such as #2048,
are markers for all latent attitudes, others, such as #524, appear
only in specific attitudes. From here, we annotate each latent
attitude. For example, we can refer to an attitude that has a
high probability of #2316, leading to inflow viewing associated
with contact with a trailer, as the “zapper” or “impulsive” type,
or attitudes showing high values for #768, leading to viewing
previous programs, as the “routine” type. In the present study,
we selected four interesting attitudes: #0 and #3, leading to
disengagement, and #4 and #6, leading to promotion.

Figure 6 shows again the dynamic features superimposed as
a 3 × 3 color grid distributed on a 2-dimensional manifold
representation of the latent space Z for a VAE that has learned
the explanation vector Ea from a selected combination of
latent attitudes annotated {“routine”, “impulsive”, “zapper”,
“fan”}. The number of dimensions of the latent space is a
hyperparameter of the VAE, but we chose a two-dimensional
manifold representation to account for the explainability of the
feature. A CMYK color function is assigned to each combination
of latent attitudes so that the first three views are arranged in
the top row, the fourth through sixth in the middle row, and
the seventh through ninth in the bottom row. With this color
grid, we can see how the four static viewing attitudes change in
a complex manner as the distribution progresses. For example,

Ez4 in Figure 6 shows how viewership increases toward the end as
a result of promotion programming, despite contention between
the numbers of departing and joining viewers. From the latent
space of VAE, for example, we can see by generating samples
that there can be an unknown observation pattern which is more
easily found around the already detected Ez2 and Ez4. By layering
hierarchical clustering and the like on top of this manifold
representation, we can freely induce the number of features and
express how features are related to each other to create new
patterns.

Subsequently, we evaluated an HMM to elucidate the dynamic
viewing patterns of interest. The number of latent states as
hyperparameters was previously estimated to be in the range 2–
20, and the model with the five latent states with the lowest BIC
value was adopted. Table 3 shows the emission probability of the
touchpoint contact patterns (binary vector) that feature each of
the latent states 1–5. As in the case of LDA, we annotate each state
as a representative or inductive contact pattern. For example,
both T1 and T2 are classified into #4108 as a negative reaction,
but one has the property of #2304 and the other of #2316, so we
can give T2 a name like “passive attention.”

The latent states interpreted in this way are associated with
a fixed transition probability. As shown in Figure 7, another
property is that content viewing behavior strongly expresses the
effects of feedback and self-loops, and it is advantageous to be
able to predict areas that cannot be analyzed by directed non-
cyclic graphs such as Bayesian networks. The appended Sankey
diagram on the right in Figure 7 intuitively shows how the
joint probability between transition pairs following the stationary
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FIGURE 10 | Customer journey mapping based on a human-AI system.

distribution integrates to 1, and also that this value corresponds
to a probability measure in possible world semantics. GULA
learns these inter-transition pairs as interpreted transitions.

Table 4 shows the rules extracted by LFIT (GULA) from
transition pairs of stationary distributions with the above-
described probability measures. The more likely the NLP is, the
closer we get to a rule that would have been true if determinism
had originally been assumed in themodel. By selecting the best on
the list as a candidate for each h(R) with the explanatory variables
appearing in the observation, and realizing an interaction graph
from it, we can see that this model is suitable for a first-order
Markov chain of deterministic uncertainty with perturbations. In
other words, a combination of a BNp and HMM.

Figure 8 shows an interaction graph using the top rules at each
R in the above-described list. We can see how each explanatory
variable is connected to the dummy variables x1, x2, and x4, which
indicate the viewing dynamics by differences. For instance, x2 is
under the influence of variables x5, x10, and x11. These suggest
that in order to increase the inflow of content viewing, the viewer
should be met with an attractive hook as they routinely turn on
the device.

For measuring accuracy, we use the Hamming distance

between the LSTM’s prediction Ŷ and the ground truth Du.
For oracle_s3, each entry contains 6 predictions based on #1-3

logs observed. For oracle_s6, each entry contains 3 predictions
based on #1-6 logs observed. For each ŷi, we measure its
hamming distance corresponding to every kind of pattern in
xui . The result (Figure 9A) shows that the difference of the
averaged Hamming distances of oracle_s3 and oracle_s6 is not
significant, which suggest that both amounts of data are feasible
for LSTM’s training.

Figure 9B shows the amount of matched prediction.
“Matched prediction” means that if the Hamming distance is
below a threshold, we consider the prediction Ŷ and its ground-
truth Du is matched. This can be used as a trade-off treatment
between noise in real-world data. Given two 13-dimensional
binary vectors, the hamming distance is 0 when the vectors are
identical and is 13 when they are totally different. The hamming
distance we used is normalized by the vector length. From the
figure, at all threshold levels, oracle_s3 outperforms oracle_s6,
which supports the results of the previous paragraph.

For measuring fidelity, as shown in Figure 9C, we use the
Hamming distance between LSTM’s prediction Ŷ and its HMM
simulation result Ŷ. For oracle_s3, data from 6 transitions is used
as training data for HMM. Then the trained HMM simulates
the emission 9 times and the last 6 patterns are selected as

HMM’s output. The Hamming distances between Ŷ and Y

are computed. The result shows that oracle_s3 has a better
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fidelity than oracle_s6. This may be due to the fact that the
former provides more HMM training data, which benefits its
learning ability.

Limitations
However, there are many limitations and unexplored areas in
our model fusion. Firstly, optimality of model structures for
tasks, and relations between hyperparameter manipulation and
explainability in LDA and VAE, remain unknown. Following
the above will allow precise and appropriate model fusion
for data environment requirements from OTT media services
and other specific domains. Also, there is a trade-off between
process transparency and analytical sophistication. The reason
for limiting the number of features of interest to at most four
is the constraint of using a color function to reduce them to a
grid representation. Due to cognitive biases, however, there may
be limits on the number of options that can be simultaneously
presented to a single decision-maker and correctly processed.
Also, the data environment was small, centralized, and of
high quality. Currently, the centralized environment in many
businesses is highly reliable for high-stakes decision-making,
regardless of scale. In the future, however, issues of observational
granularity and accountability according to format, as well as
issues of data fusion, along with ethical and liability issues, will
become much more developed.

CONCLUSION

In this paper, we presented an approach to the application of
explainable human AI systems for high level decision-making
in the marketing domain. The essence of this task is the
problem formulation. An AGI system that can perform problem
formulation has not been realized yet. To fulfill the gap, we
proposed CJM automation through explainable model fusion for
addressing the question of how to apply current AI technology
to more advanced decision-making. First, we have shown that
the customer journey can be regarded as a problem formulation
in practical marketing strategy from a management engineering
perspective. Next, through explainable alignment, we automated
CJM by model fusion, which applies a combination of generative
models and ILPs to a process mining frame. Based on the
assimilation between the predictions from the black-box deep
learning model LSTM and the observed data, we also showed
the post-hoc explainability through comparison with the above
generative HMM. Finally, for experiment, we automatically
generated a CJM and extracted the related rules based on
dynamic viewing logs of a serial drama in the OTT media service
domain. We illustrate the conclusion with Figure 10.

In the traditional broadcasting business, the viewing history
has been used only as a material for consideration for the next
period after the program ends. This proposal extends the use of
the observation environment for strategic data-driven decision-
making. In addition, in recent OTT distribution services, the
viewing log is input directly into the machine learning of

the recommendation system, and the recommendation result
is presented to the customer as it is without visualizing the
calculation process. The issue was that the programming and
production departments were unable to gain knowledge of the
planning and production of new content. However, with the
introduction of this system, the relationship between the viewer’s
latent viewing attitude, the content, and the delivery process can
be visualized and examined sequentially, making it possible to
make more precise and agile service strategy decisions. Thus,
our explainable model fusion for CJM has contributed to the
explainable human-AI systems for advanced decision-making in
local managerial practice. However, this research has only just
begun, and we will continue to further optimize model fusion in
real-world applications.

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

AUTHOR CONTRIBUTIONS

KO andKI contributed to conception and design of the study. KO
organized data processing, performed analysis, and wrote the first
draft of the manuscript. Both authors contributed to manuscript
revision, read, and approved the submitted version.

FUNDING

This research has been supported by Video Research, Ltd. and
JSPS KAKENHI Grant Nos. JP17H00763 and JP21H04905. The
authors thank Video Research, Ltd. and Every Sync, Inc. for
providing valuable actual data on customer behavior history for
this research. The funders were not involved in the study design,
analysis, interpretation of data, the writing of this article or the
decision to submit it for publication.

ACKNOWLEDGMENTS

The authors thank Video Research, Ltd. and Every Sync, Inc. for
providing valuable actual data on customer behavior history for
this research.

REFERENCES

Aalst, W. V., Adriansyah, A., Medeiros, A. K., Arcieri, F., Baier, T.,

Blickle, T., et al. (2011). “Process mining manifesto,” in International

Conference on Business Process Management (Berlin, Heidelberg: Springer),

169–194.

Adadi, A., and Berrada, M. (2018). Peeking inside the black-box: a survey

on explainable artificial intelligence (XAI). IEEE Access. 6, 52138–52160.

doi: 10.1109/ACCESS.2018.2870052

Akutsu, T., Miyano, S., and Kuhara, S. (1999). “Identification of genetic networks

from a small number of gene expression patterns under the Boolean network

model,” in Biocomputing’99, 17–28.

Frontiers in Artificial Intelligence | www.frontiersin.org 20 May 2022 | Volume 5 | Article 824197

https://doi.org/10.1109/ACCESS.2018.2870052
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Okazaki and Inoue Explainable Model Fusion for CJM

Aoki, M. (2013). State Space Modeling of Time Series. Berlin: Springer.

Arrieta, A. B., Díaz-Rodríguez, N., Del Ser, J., Bennetot, A., Tabik, S., Barbado, A.,

et al. (2020). Explainable Artificial Intelligence (XAI): concepts, taxonomies,

opportunities and challenges toward responsible AI. Inform. Fusion. 58,

82–115. doi: 10.1016/j.inffus.2019.12.012

Ashby, W. R. (1991). “Requisite variety and its implications for the control of

complex systems,” in Facets of Systems Science (Boston: Springer).

Astrom, K. J. (1965). Optimal control of Markov decision processes

with incomplete state estimation. J. Math. Anal. Applic. 10, 174–205.

doi: 10.1016/0022-247X(65)90154-X

Baum, L. E., and Petrie, T. (1966). Statistical inference for probabilistic

functions of finite state Markov chains. Ann. Math. Stat. 37, 1554–1563.

doi: 10.1214/aoms/1177699147

Baum, S. (2017). “A survey of artificial general intelligence projects for ethics, risk,

and policy,” in Global Catastrophic Risk Institute Working Paper.

Bell, D. E., Raiffa, H., and Tversky, A. (eds.) (1988). Decision Making: Descriptive,

Normative, and Prescriptive Interactions. Cambridge: Cambridge University

Press.

Bennett, J., and Lanning, S. (2007). “The netflix prize,” in Proceedings of KDD Cup

and Workshop.

Benzarti, I., Mili, H., de Carvalho, R., and Modeling, M. (2021). “Personalising

the customer journey: the case for case management,” in 2021 IEEE 25th

International Enterprise Distributed Object Computing Conference (EDOC)

(London: IEEE), 82–91.

Bernard, G., and Andritsos, P. (2017). “A processmining basedmodel for customer

journey mapping,” in Forum and Doctoral Consortium Papers Presented at the

29th International Conference on Advanced Information Systems Engineering

(CAiSE 2017) (1848, 49–56.). CEURWorkshop Proceedings.

Blei, D. M., Ng, A. Y., and Jordan, M. I. (2003). Latent dirichlet allocation. J. Mach.

Learn. Res. 3, 993–1022. doi: 10.5555/944919.944937

Castelvecchi, D. (2016). Can we open the black box of AI? Nat. News. 538, 20.

doi: 10.1038/538020a

Conrad, R. (2019). Culture Hacks: Deciphering Differences in American, Chinese,

and Japanese Thinking. San Diego: Lioncrest Publishing.

Cook, D., and Das, S. K. (2004). Smart Environments: Technology, Protocols, and

Applications. New York: John Wiley and Sons.

Diez-Olivan, A., Del Ser, J., Galar, D., and Sierra, B. (2019). Data fusion and

machine learning for industrial prognosis: Trends and perspectives towards

Industry 4.0. Inform. Fusion. 50, 92–111. doi: 10.1016/j.inffus.2018.10.005

Dong, B., and Andrews, B. (2009). “Sensor-based occupancy behavioral pattern

recognition for energy and comfort management in intelligent buildings,”

in Proceedings of Building Simulation (Vancouver: International Building

Performance Simulation Association), 1444–1451.

Duch,W., Oentaryo, R. J., and Pasquier, M. (2008). Cognitive architectures: Where

do we go from here?. Agi. 171, 122–136. doi: 10.5555/1566174.1566187

Durbin, J., and Koopman, S. J. (2012). Time Series Analysis by State Space Methods.

Oxford: OUP.

Farooq, M., and Raju, V. (2019). Impact of over-the-top (OTT) services on the

telecom companies in the era of transformative marketing. Glob. J. Flexib. Syst.

Manag. 20, 177–188. doi: 10.1007/s40171-019-00209-6

Fenstad, J. E. (1967). “Representations of probabilities defined on first

order languages,” in Studies in Logic and the Foundations of Mathematics

(Amsterdam: Elsevier),156–172.

Folschette, M., and Ribeiro, T. (2020). “GULA: Learning (From Any) Semantics of

a Biological Regulatory Network,” in BIOSS –IA 2020 workshop.

Friedman, N., Linial, M., Nachman, I., and Pe’er D. (2000). Using Bayesian

networks to analyze expression data. J. Comput. Biol. 7, 601–620.

doi: 10.1089/106652700750050961

Gentet, E., Tourret, S., and Inoue, K. (2016). “Learning from interpretation

transition using feed-forward neural networks” in ILP (Short Papers), 27–33.

Gilpin, L. H., Bau, D., Yuan, B. Z., Bajwa, A., Specter, M., and Kagal, L. (2018).

“Explaining explanations: an overview of interpretability of machine learning,”

in 2018 IEEE 5th International Conference on Data Science and Advanced

Analytics (DSAA) (London: IEEE), 80–89.

Guidotti, R., Monreale, A., Ruggieri, S., Turini, F., Giannotti, F., and Pedreschi, D.

(2018). A survey of methods for explaining black box models. ACM Comput.

Surv. (CSUR). 51, 1-42. doi: 10.1145/3236009

Gunning, D., and Aha, D. (2019). DARPA’s explainable artificial intelligence (XAI)

program. AI Magazine. 40, 44-58. doi: 10.1609/aimag.v40i2.2850

Halvorsrud, R., Kvale, K., and Følstad, A. (2016). Improving service

quality through customer journey analysis. J. Serv. Theory Practice.

doi: 10.1108/JSTP-05-2015-0111

Helbing, D., Farkas, I., and Vicsek, T. (2000). Simulating dynamical features of

escape panic. Nature. 407, 487–490. doi: 10.1038/35035023

Hoffman, R. R., Mueller, S. T., Klein, G., and Litman, J. (2018). Metrics for

explainable AI: challenges and prospects. arXiv preprint arXiv:1812.04608.

Inoue, K. (2011). “Logic programming for boolean networks,” in Twenty-Second

International Joint Conference on Artificial Intelligence.

Inoue, K., Ribeiro, T., and Sakama, C. (2014). Learning from interpretation

transition.Mach. Learn. 94, 51–79. doi: 10.1007/s10994-013-5353-8

Jebara, T. (2012). Machine Learning: Discriminative and Generative.

Berlin: Springer.

Jenner, M. (2018). Netflix and the Re-invention of Television. Berlin: Springer.

Johnson, D. S., Muzellec, L., Sihi, D., and Zahay, D. (2019). The marketing

organization’s journey to become data-driven. J. Res. Interact. Market. 13,

162–178. doi: 10.1108/JRIM-12-2018-0157

Jordan, M. I., and Mitchell, T. M. (2015). Machine learning: trends, perspectives,

and prospects. Science. 349, 255–260. doi: 10.1126/science.aaa8415

Kalman, R. E. (1960). A New Approach to Linear Filtering and Prediction Problems.

Kauffman, S. (1969). Homeostasis and differentiation in random genetic control

networks. Nature. 224, 177–178. doi: 10.1038/224177a0

Kingma, D. P., and Welling, M. (2013). Auto-encoding variational bayes. arXiv

preprint arXiv:1312.6114.

Kotler, P. (1972). A generic concept of marketing. J. Market. 36, 46–54.

doi: 10.1177/002224297203600209

Lähdesmäki, H., Hautaniemi, S., Shmulevich, I., and Yli-Harja, O. (2006).

Relationships between probabilistic Boolean networks and dynamic Bayesian

networks as models of gene regulatory networks. Signal Process. 86, 814–834.

doi: 10.1016/j.sigpro.2005.06.008

Lemon, K. N., and Verhoef, P. C. (2016). Understanding customer experience

throughout the customer journey. J. Market. 80, 69–96. doi: 10.1509/jm.15.0420

Liang, S., Fuhrman, S., and Somogyi, R. (1998). Reveal, a general reverse

engineering algorithm for inference of genetic network architectures.

Biocomputing. 3, 12.

Louizos, C., Shalit, U., Mooij, J. M., Sontag, D., Zemel, R., and Welling, M.

(2017). Causal effect inference with deep latent-variable models. Adv. Neural

Inf. Process. Syst. 30.

Loyola-Gonzalez, O. (2019). Black-box vs. white-box: Understanding their

advantages and weaknesses from a practical point of view. IEEE Access. 7,

154096–154113. doi: 10.1109/ACCESS.2019.2949286

Miller, T. (2019). Explanation in artificial intelligence: insights from the social

sciences. Artif. Intell. 67, 1–38. doi: 10.1016/j.artint.2018.07.007

Moro-Visconti, R. (2021). “From Netflix to Youtube: over-the-top and video-

on-demand platform valuation,” in Startup Valuation (Cham: Palgrave

Macmillan), 309–339.

Muggleton, S. (1991). Inductive logic programming. New Gener Comput. 8, 295–

318.

Murdoch, W. J., and Szlam, A. (2017). Automatic rule extraction from long short

term memory networks. arXiv preprint arXiv:1702.02540.

Murphy, K., and Mian, S. (1999). Modelling gene expression data using dynamic

Bayesian networks. Technical report, Computer Science Division, University of

California, Berkeley, CA.

Murphy, K. P. (2002). Dynamic Bayesian Networks: Representation, Inference and

Learning. Berkeley: University of California.

Okazaki, K., and Inoue, K. (2017). “Modeling trans-device content experience

and knowledge development for detection of TV audiences,” in2017 IEEE 19th

Conference on Business Informatics (CBI) (London: IEEE), 53–61.

O’Neill, P., and Sohal, A. S. B. (1999). Review of recent literature. Technovation. 19,

571–581. doi: 10.1016/S0166-4972(99)00059-0

Patterson, D. J., Liao, L., Fox, D., and Kautz, H. (2003). “Inferring high-level

behavior from low-level sensors,” in International Conference on Ubiquitous

Computing (Berlin: Springer), 73–89.

Pearl, J. (1988). Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Burlington: Morgan Kaufmann.

Frontiers in Artificial Intelligence | www.frontiersin.org 21 May 2022 | Volume 5 | Article 824197

https://doi.org/10.1016/j.inffus.2019.12.012
https://doi.org/10.1016/0022-247X(65)90154-X
https://doi.org/10.1214/aoms/1177699147
https://doi.org/10.5555/944919.944937
https://doi.org/10.1038/538020a
https://doi.org/10.1016/j.inffus.2018.10.005
https://doi.org/10.5555/1566174.1566187
https://doi.org/10.1007/s40171-019-00209-6
https://doi.org/10.1089/106652700750050961
https://doi.org/10.1145/3236009
https://doi.org/10.1609/aimag.v40i2.2850
https://doi.org/10.1108/JSTP-05-2015-0111
https://doi.org/10.1038/35035023
https://doi.org/10.1007/s10994-013-5353-8
https://doi.org/10.1108/JRIM-12-2018-0157
https://doi.org/10.1126/science.aaa8415
https://doi.org/10.1038/224177a0
https://doi.org/10.1177/002224297203600209
https://doi.org/10.1016/j.sigpro.2005.06.008
https://doi.org/10.1509/jm.15.0420
https://doi.org/10.1109/ACCESS.2019.2949286
https://doi.org/10.1016/j.artint.2018.07.007
https://doi.org/10.1016/S0166-4972(99)00059-0
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Okazaki and Inoue Explainable Model Fusion for CJM

Pearl, J. (2009). Causality. Cambridge: Cambridge University Press.

Poole, D. (1993). Probabilistic Horn abduction and Bayesian networks.Artif. Intell.

64, 81–129. doi: 10.1016/0004-3702(93)90061-F

Quade, E. S., and Grace, M. C. (1989). Analysis for Public Decisions. Cambridge:

MIT Press

Raedt, L. D., and Kersting, K. (2008). “Probabilistic inductive logic programming,”

in Probabilistic Inductive Logic Programming (Berlin: Springer), 1–27.

Raiko, T., and Tornio, M. (2009). Variational Bayesian learning of nonlinear

hidden state-space models for model predictive control. Neurocomputing. 72,

3704–3712. doi: 10.1016/j.neucom.2009.06.009

Rauch, H. E., Tung, F., and Striebel, C. T. (1965). Maximum likelihood estimates

of linear dynamic systems. AIAA J. 3, 1445–1450. doi: 10.2514/3.3166

R’bigui, H., and Cho, C. (2017). The state-of-the-art of business process

mining challenges. Int. J. Bus. Process Integr. Manag. 8, 285–303.

doi: 10.1504/IJBPIM.2017.088819

Ribeiro, M. T., Singh, S., and Guestrin, C. (2016). “Why should i trust you?”

Explaining the predictions of any classifier,” in Proceedings of the 22nd

ACM SIGKDD International Conference on Knowledge Discovery and Data

Mining, 1135–1144.

Ribeiro, T., Tourret, S., Folschette, M., Magnin, M., Borzacchiello, D., Chinesta,

F., et al. (2017). “Inductive learning from state transitions over continuous

domains,” in International Conference on Inductive Logic Programming (Cham:

Springer), 124–139.

Richardson, A. (2010). Using customer journey maps to improve customer

experience. Harvard Bus. Rev. 15, 2–5.

Rosenbaum, M. S., Otalora, M. L., and Ramírez, G. C. (2017). How to

create a realistic customer journey map. Bus Horizons. 60, 143–150.

doi: 10.1016/j.bushor.2016.09.010

Rudin, C. (2019). Stop explaining black box machine learning

models for high stakes decisions and use interpretable models

instead. Nat. Mach. Intell. 1, 206–215. doi: 10.1038/s42256-019-

0048-x

Sakama, C., Inoue, K., and Sato, T. (2021). Logic programming in tensor

spaces. Ann. Math. Artif. Intell. 89, 1133–1153. doi: 10.1007/s10472-021-

09767-x

Sato, T., and Kameya, Y. (1997). “PRISM: a language for symbolic-statistical

modeling,” in IJCAI, 1330–1339.

Shi, C., Blei, D., and Veitch, V. (2019). “Adapting neural networks for the

estimation of treatment effects,” in Advances in Neural Information Processing

Systems, 32.

Shmulevich, I., Dougherty, E. R., Kim, S., and Zhang, W. (2002). Probabilistic

Boolean networks: a rule-based uncertainty model for gene regulatory

networks. Bioinformatics. 18, 261-74. doi: 10.1093/bioinformatics/18.2.261

Sterling, L. S. (1995). A Statistical Learning Method for Logic Programs With

Distribution Semantics. Cambridge: MIT Press.

Suchan, J., Bhatt, M., and Varadarajan, S. (2019). Out of sight but not out of mind:

An answer set programming based online abduction framework for visual

sensemaking in autonomous driving. arXiv preprint arXiv:1906.00107.

Tierney, L. (1996). Introduction to general state-space Markov chain theory.

Markov Chain Monte Carlo. 1, 59–74.

Turkanik, G., and Johnson, J. (2020). “Sales and Marketing Automation and New

Customer Conversion in International Markets,” in The Tenth International

Conference on Engaged Management Scholarship.

Veale, M., Van Kleek, M., and Binns, R. (2018). “Fairness and accountability design

needs for algorithmic support in high-stakes public sector decision-making,”

in Proceedings of the 2018 chi Conference on Human Factors in Computing

Systems, 1–14.

Video Research Inc. (2021). esXMP. Available online at: https://www.videor.co.jp/

service/communication/esxmp.html (accessed November 10, 2021)

Vig, J. (2019). A multiscale visualization of attention in the transformer model.

arXiv preprint arXiv:1906.05714.

Waheed, A., Goyal, M., Gupta, D., Khanna, A., Al-Turjman, F., and

Pinheiro, P. R. (2020). Covidgan: data augmentation using auxiliary

classifier gan for improved covid-19 detection. IEEE Access. 8, 91916–91923.

doi: 10.1109/ACCESS.2020.2994762

Wang, D., Federspiel, C. C., and Rubinstein, F. (2005). Modeling

occupancy in single person offices. Energy Build. 37, 121–126.

doi: 10.1016/j.enbuild.2004.06.015

Wayne, M. L. (2018). Netflix, Amazon, and branded television content in

subscription video on-demand portals. Media Cult. Soc. 40, 725–741.

doi: 10.1177/0163443717736118

Whittle, T., Gregova, E., Podhorska, I., and Rowland, Z. (2019). Smart

manufacturing technologies: Data-driven algorithms in production planning,

sustainable value creation, and operational performance improvement. Econ.

Manag. Fin. Markets. 14, 52–57. doi: 10.22381/EMFM14220193

Zajonc, R. B. (1965). Social facilitation: a solution is suggested for an

old unresolved social psychological problem. Science. 149, 269–274.

doi: 10.1126/science.149.3681.269

Zweig, G., and Russell, S. (1998). Speech Recognition With Dynamic Bayesian

Networks. Berkeley: University of California.

Conflict of Interest: KO was employed by SONAR Inc.

The remaining author declares that the research was conducted in the absence of

any commercial or financial relationships that could be construed as a potential

conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Okazaki and Inoue. This is an open-access article distributed

under the terms of the Creative Commons Attribution License (CC BY). The use,

distribution or reproduction in other forums is permitted, provided the original

author(s) and the copyright owner(s) are credited and that the original publication

in this journal is cited, in accordance with accepted academic practice. No use,

distribution or reproduction is permitted which does not comply with these terms.

Frontiers in Artificial Intelligence | www.frontiersin.org 22 May 2022 | Volume 5 | Article 824197

https://doi.org/10.1016/0004-3702(93)90061-F
https://doi.org/10.1016/j.neucom.2009.06.009
https://doi.org/10.2514/3.3166
https://doi.org/10.1504/IJBPIM.2017.088819
https://doi.org/10.1016/j.bushor.2016.09.010
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1007/s10472-021-09767-x
https://doi.org/10.1093/bioinformatics/18.2.261
https://www.videor.co.jp/service/communication/esxmp.html
https://www.videor.co.jp/service/communication/esxmp.html
https://doi.org/10.1109/ACCESS.2020.2994762
https://doi.org/10.1016/j.enbuild.2004.06.015
https://doi.org/10.1177/0163443717736118
https://doi.org/10.22381/EMFM14220193
https://doi.org/10.1126/science.149.3681.269
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles

	Explainable Model Fusion for Customer Journey Mapping
	Introduction
	Related Works
	Concept and Background
	Explainable Artificial Intelligence 
	Problem Formulation
	Decision-Making in Social Systems
	Customer Journey Mapping
	OTT Media Service
	Concept
	Process Mining
	Generative Models and ILP
	Scheme

	Method and Implementation
	Algorithmic Framework
	Discovery
	Conformance Checking
	Enhancement

	Experiment and Results
	Data Environment and Preprocessing
	Filtering Explanations
	CJM Automation
	Rule Extraction

	Results
	Limitations

	Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Acknowledgments
	References


