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Within computational reinforcement learning, a growing body of work seeks to express

an agent’s knowledge of its world through large collections of predictions. While

systems that encode predictions as General Value Functions (GVFs) have seen numerous

developments in both theory and application, whether such approaches are explainable

is unexplored. In this perspective piece, we explore GVFs as a form of explainable AI.

To do so, we articulate a subjective agent-centric approach to explainability in sequential

decision-making tasks. We propose that prior to explaining its decisions to others, an

self-supervised agent must be able to introspectively explain decisions to itself. To clarify

this point, we review prior applications of GVFs that involve human-agent collaboration. In

doing so, we demonstrate that by making their subjective explanations public, predictive

knowledge agents can improve the clarity of their operation in collaborative tasks.
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1. A SUBJECTIVE VIEW ON AGENTS

It is advantageous for agents to learn about the world that they are operating in. An agent deployed
for a sufficient amount of time will face circumstances unforeseen by its creator, making the
ability adapt and react to new experiences essential. Computational reinforcement learning (RL)
methods that adapt based on experience have had numerous recent successes in both research
domains and applied settings (Mnih et al., 2015; Silver et al., 2017; Lazic et al., 2018; Bellemare
et al., 2020); however, how agents make decisions is often opaque, leading to concerns about how
agents will perform in new circumstances (Adadi and Berrada, 2018; Holzinger, 2018). In this
article, we concern ourselves with how artificial agents in sequential decision-making problems
can explain their decisions. In particular, we focus on systems that model their world by learning
large collections of predictions encoded as General Value Functions (GVFs) (White et al., 2015), an
area of Machine Intelligence in which explainability has yet to be explored. To do so, we argue for
a subjective, and self-supervised approach to explainability.

2. PREDICTIONS: THE FOUNDATION OF AGENT PERCEPTION

Evidence suggests that the best ways for an agent to construct an independent conception of the
world is through their subjective experiences (Brooks, 2019). One way for agents to learn about
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their experience is to model their world as many interrelated
predictions (or forecasts) (White et al., 2015). These predictions
can be as simple as “If I keep walking forwards, will I bump into
something?”, and can be so complex as to map out the entirety of
the environment an agent exists in Ring (2021).

By learning predictions, an agent’s conception of the world
can be composed exclusively of interrelations of sensations and
actions over time. Forecasts can be made and learned in an
entirely self-supervised fashion: agents do not require labeled
examples nor a human ontology to form abstract relationships.
This enables agents to construct new abstract relationships from
its own stream of experience by adding new predictions over time
(Sherstan et al., 2018b; Veeriah et al., 2019; Kearney et al., 2021)
without human prompting or input.

Understanding perception through the lens of prediction has
a basis not only in AI, but also in biological systems, such as
humans (Wolpert et al., 1995; Rao and Ballard, 1999). Humans
are constantly making predictions about what they expect to
see next in order to anticipate and react to their environment
(Gilbert, 2009; Clark, 2015). It is no surprise then, that predictive
approaches to machine perception have also been successful.
Recent examples include industrial laser welding (Günther,
2018), robot navigation (Daftry et al., 2016), facilitate walking in
decerebrate cats (Dalrymple et al., 2020), and control of bionic
upper-limb prosthetics (Edwards et al., 2016a). A core theme
that unifies this broad collection of research is (1) the ability to
flexibly adapt to new situations by predicting future stimuli, and
(2) learning predictions using experience.

There have been numerous advances in the algorithms
underpinning predictive machine perception, and applications
in real-world settings (e.g., Sherstan et al., 2015; Edwards et al.,
2016a; Günther, 2018; Veeriah et al., 2019; Dalrymple et al.,
2020; Schlegel et al., 2021); however, explainability of predictive
knowledge systems is as of yet unexplored. In this article, we take
a first look at explainability in General Value Function (GVF)
systems by reflecting on recent advances in the literature. In
doing so, we highlight the importance of introspection: How
an agent can examine its own subjective experience and explain
decisions to itself. We then focus on how the private subjective
explanation can be made public, and explore examples where
such explanations led to success in joint-action systems between
humans and agents.

3. VALUE FUNCTIONS AND HOW THEY
ARE ESTIMATED

To explore the explainability of predictive knowledge systems,
we must first understand how they are specified and learned
(Figure 1). The core component of predictive knowledge systems
are their learned GVFs: forecasts of future returns of signals
from the agent’s environment. One of the best understood ways
of making temporally-extended predictions is through temporal
difference (TD) learning (Sutton, 1988). In temporal difference
learning, time is broken down into discrete time-steps t0 · · · tn. On
each time-step, the agent observes the environment as ot : a tuple
of values that include everything the agent can perceive (e.g.,

sensor readings, inputs from a camera). Using TD learning the
value of a future signal V(o;π , γ , c) = E[Gt|ot = o] is estimated,
given the agent’s experience.

General Value Functions (GVFs) learn the value specified by
three question parameters: a cumulant c, a policyπ , and a discount
γ . The cumulant is the signal of interest being accumulated.
The policy describes the behavior the prediction is conditioned
on. The discount function describes the temporal horizon over
which we wish to make the prediction and how the cumulant is
accumulated. Using these three parameters, functions about the
agent’s subjective experience can be expressed as returns Gπ

t =∑∞
k=0 γ kCt+k+1. An agent can then learn a model that estimates

the return, or value of a GVF given its current sensations via TD
learning (Algorithm 1).

4. EXPLANATION TO SELF AND OTHERS:
HOW AN AGENT INTERPRETS ITS OWN
ESTIMATES AND SHARES THEM

If the question parameters of a GVF are explainable, then it is
apparent what a prediction is about by looking at the question
parameters themselves. The cumulant c(ot), policy π(ot , at),
and discount γ (ot , at , ot+1) describe what a prediction is about
in terms of environmental stimuli to the agent. While these
parameters do not provide an intuitive explanation in terms of
natural language or symbols, the cumulant, discount, and policy
are inherently interpretable.

While we can determine what a prediction is about by
examining the question parameters, the question remains if we
determine why a decision or estimate was made by looking at
the model that produced the estimate: e.g., given an observation
ot , why is the value v(ot)? Whether we can determine why an
estimate was made depends on whether function approximation
is used.

If a particular GVF is a linear combination of features and
weights, it is inherently interpretable (Molnar, 2020; Ghassemi
et al., 2021): coefficients wi are directly multiplied with each
input oi, and each coefficient wi determines how an estimate
v(ot) was reached by weighting the observations. However, many
value functions cannot be characterized by a linear relationship.
By using function approximation (e.g., Sherstov and Stone, 2005;
Mnih et al., 2015; Travnik and Pilarski, 2017) non-linearity is
added to the inputs, producing a new vector x(ot) with which we

Algorithm 1 | TD(λ).

1: Initialize eligibility traces z ∈ 0n, weights w ∈ 0n; initialize a
step-size 0 < α ≤ 1 and eligibility decay 0 ≤ λ ≤ 1; observe
environment o

2: Repeat for each observation o and cumulant c:
3: δ← c+ γw⊤x(ot+1)− w⊤x(ot)
4: For i = 1, 2, · · · , n:
5: zi ← ziγ λ+ xi(ot)
6: wi ← wi + αiδzi
7: ot ← ot+1
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FIGURE 1 | From left to right: (1) Classical RL where an agent takes actions and receives a reward and observations from its environment; (2) a setting where an agent

maintains n GVFs about its environment to augment its observations with; (3) a setting where the agent monitors its internal learning process to further inform its

estimates. Additional signals that are produced during the process of learning can be used to inform the GVFs themselves, allowing the learner access to its internal

mechanisms.

linearly combine with the models weights in order to produce
an estimate v(ot) = w⊤x(ot). The weights w are no longer
inherently interpretable since they are learned such that they
combine with x(ot).

Interpreting the model’s weights when using function
approximation and making sense of its estimates is challenging,
as is the case with non-linear many ML methods. However, an
agent may use post-hoc interpretation (Molnar, 2020) methods to
justify its decisions. In this discussion, we contribute a distinction
between two forms of explanation: introspective explanation—
how an agent analyses and evaluates its own internal signals
and decisions; and, exteroceptive explanation—how an agent
communicates its internal signals to other agents or individuals.

5. INTROSPECTIVE EXPLANATION

The problem of introspective explanation within the context of
predictive knowledge is then the problem of an agent deciding
whether or not an estimate—whether a particular GVF within
the agent’s model—is sufficient to rely on for decision-making.
Prior to rationalizing a decision to external agents and human
designers, an agent must commit to a decision itself—an agent
must choose an action at using the information available to itself
ot . In predictive knowledge systems, GVF forecasts are often a
key component of this observation ot (Edwards et al., 2016b;
Günther, 2018; Kearney et al., 2021; Ring, 2021; Schlegel et al.,
2021). However, not all predictions are created equally.

The accuracy and precision of predictions are dependent on
a variety of factors, including the learning methods used to
generate the model, the hyperparameters that modulate learning,
and the inputs or features available to learn a model from.
Two models of the environment can have different numerical
values, despite being about the same thing. It is important to

differentiate between accurate and inaccurate estimates when
they are used as inputs for decision-making tasks. Poor inputs
can lead to catastrophic errors; moreover, these errors may not
be immediately apparent from the agent’s (or human designer’s)
perspective (Kearney et al., 2020).

Looking only at immediate estimates v(ot), faults in an agent’s
ownmodel and GVF estimates are inscrutable. On each time-step
the agent is aware of its estimate v(ot) and the bootstrapped value
observed c + γ v(ot+1). Although error δ can be calculated from
these values (line 6, Algorithm 1) to further learn the estimates,
error is often not an input in ot that influences an agent’s
decision-making. Without additional information, an agent has
no means to discern how reliable an estimate in its model is.

5.1. Estimating Variance: A
Self-Assessment of Certainty
By monitoring the variance of estimates (Sherstan et al., 2018a),
an agent can take into account both the model estimates and the
certainty in those estimates during decision-making (Sherstan
et al., 2016). By evaluating the qualities of its own estimates and
learning progress, an agent can develop a sense of confidence:
“howmuch do I trust that my estimates are accurate?” This ability
to incorporate post-hoc interpretations (Molnar, 2020) of its own
model in decision-making, is a form of self-explanation. In this
case, an agent chooses an action not only because of predicted
values, but the relative certainty in those values.

An estimate from a newly initialized GVF will often be
poor, and for good reason: it has not had time to refine its
estimates through experience. An agent which examines the
certainty of estimates alone cannot differentiate between newly
added components of its model, and genuinely poor estimates.
It is possibly to use summary statistics of internal learning to
capture measurements of learning progress (Kearney et al., 2019;
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Linke, 2021). By monitoring how much it has learned about its
environment, an agent can use this information as an auxiliary
reward to shape how it moves about its environment to further
learn useful behaviors (Linke, 2021). In this case actions are taken
based on not only what is believed to be rewarding, but also what
action would enable the most learning.

5.2. Unexpected Error: As Self-Assessment
of Surprise
Unexpected Demon Error (UDE) is a metric designed to express
an agent’s “surprise” about a sensation (White et al., 2015). By
calculating UDE, an agent can monitor unexpected changes in
either the environment or its own physical body (Pilarski and
Sherstan, 2016; Günther et al., 2018; Wong, 2021). Neither error
encountered while learning, nor error due to random noise in the
environment factor into UDE. As regular predictable sources of
error are filtered out, the UDE represents salient sources of error
that would not be otherwise noticeable to an agent.

5.3. Feature Relevance: A Self-Assessment
of Explanatory Variables
Learning processes are governed by parameters that dictate how
learning occurs. One important parameter is the step-size or
learning-rate. The step-size α determines how much the model’s
parameters w are updated every time-step based on the observed
error δ. The value of a GVF’s step-size α can be set by a meta-
learning process (Günther et al., 2019; Kearney et al., 2019).
Not only do these adaptive step-sizes improve learning, they can
also provide useful information about the operation of an agent
(Günther et al., 2019). Learned step-size values can also detect
anomalies in the agent’s observation stream, including those that
indicate a hardware or sensor failure of the agent (Günther et al.,
2020).

Each internal measurement we discussed is a fragment of an
agent’s inner life that can directly be accessed and monitored
by the agent itself. By introspecting and monitoring their own
internal signals, an agent can augment their observations: an
agent can act on not only its model of the environment, but it’s
interpretation of how the model was constructed. By building
up the private, subjective experience of an agent, explanation is
no longer grounded in symbols that are pre-defined by human
designers, but is rooted in the agent’s own conception of the
world. Each internal measurement we discuss is a measurement
that depends only on what is available to the agent. In this case,
the agent’s ability to explain is limited only by the functions of
internal and external signals it canmonitor. As an agent adds new
predictions to learn, interospective measurements can be added
to asses each new GVF of the agent’s model, without human
intervention. Each individual GVF can be learned separately
from the others, and thus each GVF that makes up our model
can be interpreted independent of the rest. It is not necessary
to assess a collection of predictions monolithically, as is the case
with many neural-network based world models. By prioritizing
agents that introspect, we provide a basis for explanation that
begins with the agent explaining to itself.

6. MAKING INTROSPECTION PUBLIC:
EXPLANATION TO OTHERS

Having given an agent the ability to explain its beliefs and
decisions to itself, we can begin to make the agent’s private
inner life public: we can make overt the subjective view of
the agent. We view exterospective explanation through two
lenses: (1) the behavior the agent undertakes, and (2) the
estimates the agent learns and produces. In this section,
we show that making the internal signals of the agent’s
inner life external is a viable form of communication and
explanation.

6.1. Reflexes: Communication via Fixed
Responses
The simplest way an agent can communicate with its outside
world is by taking an action. The simplest action an agent
can take is a reflex: an automatic fixed response to some
external stimuli. Reflexes are a foundational form of behavior
in both complex and simple biological systems (Gormezano
and Kehoe, 1975; Jirenhed et al., 2007; Pavlov, 2010). Artificial
agents can learn to anticipate signals (Ludvig et al., 2012),
and perform reflexively similar to biological systems (Modayil
and Sutton, 2014). Reflexes are inherently explainable, because
they are deterministic. By reflexively acting, an agent is
making external its internal estimate for a given stimuli.
While deterministic, differentiating between reflexes and the
stochastic behavior of regular decision-making is not always
clear. Moreover, when behaviors are not fixed, interpreting
the cause for a particular behavior is more challenging: many
different stimuli could possibly elicit the same response from
the agent.

6.2. Predictions: Communication of Inner
Estimates
The challenge of interpreting agents based on behavior alone is
evident in existing work using GVF-based systems on biomedical
devices and assistive devices (Pilarski et al., 2013; Edwards
et al., 2016a,b). In these applications, humans interact with
machines that build behaviors based on predictions learned
from the machine’s subjective experience (Pilarski et al., 2013;
Sherstan et al., 2015; Edwards et al., 2016a). Applications
of predictive knowledge systems where humans and agents
collaborate to control a system, have been shown to improved
performance over non-adaptive systems an individual controls
directly (Edwards et al., 2016b); however, one overriding theme
is that human participants have consistently expressed a lack
of trust in these systems where internal predictions that led
to decisions were not visible to them (c.f., Edwards et al.,
2016b). The actions of the agent in the environment are an
insufficient form of communication with human collaborators.
When the internal predictions made by a system were made
visible in their raw form to a human partner, participants
were able to both understand and fruitfully make decisions
in the shared environment (Edwards et al., 2016b). In a
task where a human collaborator was in direct control of
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a robotic third arm, when predictions of motor torque (a
proxy for impact in a workspace) were mapped to vibration
on a human collaborator’s arm, the user was better able
to perform precise positioning tasks (Parker et al., 2019).
Similarly, by using audio cues to communicate a machine’s
internal prediction of the value of objects in a Virtual Reality
environment, humans were able to perform better in a foraging
task (Pilarski et al., 2019). In a task where an artificial agent
had control over some aspects of a bionic limb, external
communication of the predictions driving control were needed
to enable well-timed collaboration with a jointly acting human
(Edwards et al., 2016b). Put simply—humans often find it
uncomfortable to collaborate with a learning machine on a
task if they do not have a window into the predictions
that inform decision making. By making the agent’s internal
estimates public, humans are able to learn about the agent and
build trust through joint experience. Exploring how internal
signals can be made public provides a promising frontier for
future work exploring joint-action GVF systems, and a ideal
setting to put into practice the suggestions presented in this
perspective article.

7. DISCUSSION

In this article, we explore GVFs within the context of explainable
AI. We discuss how the question and answer parameters that
make up a GVF can be interpreted by human designers. We
emphasize that self-supervised agents benefit from introspection,
arguing that introspection is a form of self-explanation. We
explore a wide range of collaborative human-agent GVF
systems, highlighting how these agents’ success is dependent
on making the internal, introspective signals public to their
human collaborators. Collaborative human-agent systems are

more effective when an agent’s internal estimates are made
public to collaborators, even though such signals are not
necessarily in human terms or symbols. Although predictive
knowledge systems are a relatively new area of research,
they are a promising way of developing self-supervised and
explainable AI.
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