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In recent years, the ability of intelligent systems to be understood by developers and

users has received growing attention. This holds in particular for social robots, which are

supposed to act autonomously in the vicinity of human users and are known to raise

peculiar, often unrealistic attributions and expectations. However, explainable models

that, on the one hand, allow a robot to generate lively and autonomous behavior and,

on the other, enable it to provide human-compatible explanations for this behavior are

missing. In order to develop such a self-explaining autonomous social robot, we have

equipped a robot with own needs that autonomously trigger intentions and proactive

behavior, and form the basis for understandable self-explanations. Previous research

has shown that undesirable robot behavior is rated more positively after receiving an

explanation. We thus aim to equip a social robot with the capability to automatically

generate verbal explanations of its own behavior, by tracing its internal decision-making

routes. The goal is to generate social robot behavior in a way that is generally

interpretable, and therefore explainable on a socio-behavioral level increasing users’

understanding of the robot’s behavior. In this article, we present a social robot interaction

architecture, designed to autonomously generate social behavior and self-explanations.

We set out requirements for explainable behavior generation architectures and propose a

socio-interactive framework for behavior explanations in social human-robot interactions

that enables explaining and elaborating according to users’ needs for explanation that

emerge within an interaction. Consequently, we introduce an interactive explanation

dialog flow concept that incorporates empirically validated explanation types. These

concepts are realized within the interaction architecture of a social robot, and integrated

with its dialog processing modules. We present the components of this interaction

architecture and explain their integration to autonomously generate social behaviors as

well as verbal self-explanations. Lastly, we report results from a qualitative evaluation

of a working prototype in a laboratory setting, showing that (1) the robot is able to

autonomously generate naturalistic social behavior, and (2) the robot is able to verbally

self-explain its behavior to the user in line with users’ requests.

Keywords: explainability, transparency, social robots, human-robot interaction (HRI), interaction architecture,

autonomous explanation generation, user-centered explanation generation, socio-interactive explanation

generation
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1. INTRODUCTION

In recent years, the ability of intelligent systems to be understood
by developers and users has been receiving increasing attention.
Correspondingly, there is a rapidly growing body of work in
the field of Explainable A.I. (XAI). Less work so far has been
directed to this question in the field of robotics and human-robot
interaction, although explainability is particularly important for
social robots that are supposed to act autonomously in the
vicinity of human users. Such robots are known to raise peculiar,
often unrealistic attributions and expectations because users tend
to anthropomorphize and ascribe intentionality to them (Wiese
et al., 2017). This bears a risk as having difficulties to understand
a robot’s workings and, therefore, a lack of understanding its
intentions has been described as a psychological hazard to the
user (Salvini et al., 2021). Further, non-understandable robot
behavior may be classified as a social error, leading to users
perceiving the robot as less competent on a socio-affective level
(Tian and Oviatt, 2021).

In order to prevent such negative effects of non-transparent
robot behavior, it is of utmost importance to not only design for
the most social robot behavior, but rather the most social and
understandable behavior. That is, a robot’s behavior should either
be readily interpretable to the user, or it should be potentially
explainable to the user, i.e., made interpretable through some
additionally given explanations. We consider the case when the
robot itself shall be able to produce a self-explanation of its own
behavior, online and during a running human-robot interaction.
Such a setting is different from classical XAI research, for what is
to be explained (the agent’s behavior) is hardly separable from
the explainer (the robot) or delimitable from the interaction:
the explanandum is being established within the interaction and
evolves depending on which behavior is executed (and when) as
well as how it is perceived by the explainee (the user). This, in
turn, will generally depend on the user’s prior experiences and
expectations as well as general attitude toward social robots, all
of which can change over the course of the interaction. Previous
studies have shown that a robot’s verbal explanations can increase
the understandability and desirability of its behavior when rated
by passive observers (Stange and Kopp, 2020). Here, we adopt the
view that explaining is a social and interactive process (Rohlfing
et al., 2021), and we argue that it is an essential next step to
develop and investigate how social robots can generate and “co-
construct” explanations with an active interaction partner, online
and embedded in the evolving interaction context.

In this article, we present the concept, implementation, and
evaluation of an explainable social robot behavior architecture.
The proposed architecture enables the social robot Pepper to
autonomously interact with a user and to self-explain its own
behavior, at the time and at the level of detail verbally requested
by the user during the interaction. This work has been carried
out within the VIVA project1, which aims at designing an
autonomous, lively social robot for home environments (see
Figure 1). Different from application scenarios in which human
and robot collaborate in order to reach a shared task goal,

1https://navelrobotics.com/viva/

FIGURE 1 | Interaction situation in which a puzzled user is looking for a

behavior explanation by the robot.

behavior generation for social companion robots primarily aims
to enable close social relationships. Correspondingly, social
companion robot behavior generation, does not predominantly
focus on the exact reproduction of the cognitive processes that
lead to a human’s behavioral task decisions and thus optimal
collaboration, but rather on the generation of diverse and sociable
behavior that fits the current interaction situation and may thus
foster long term interest (Leite et al., 2013). In order to create a
lively sociable robot presence, the VIVA robot is equipped with
a motivational system that drives its behavioral decisions. The
robot is able to autonomously decide on its behavior based on
own needs that are connected to behavioral strategies (Stange
et al., 2019). Some of these needs, e.g., for social contact or
certainty, are influenced by events such as a user entering the
room and lead to its rapprochement, while others are intrinsic,
such as a need for energy linked to the robot’s battery status.
As a result, the robot can proactively select behaviors that may
not be readily interpretable by the user and thus may need
to be explained. Users shall be able to request an explanation
from the robot at any time, when they don’t understand the
robot’s behavior or simply when they want to know more about
it. The architecture we present here supports this in two ways:
(1) by organizing the robot’s behavior generation process in
terms of explainable attributes and categories, and (2) by adding
a specific explanation generation model that introspectively
retrieves information about the internal reasoning process and
present it to the users in form of verbal explanations.

We start by discussing related work on robot architectures and
explanations in human-robot interaction (Section 2). Based on
this we will derive general requirements for explainable social
robot architectures. In Section 3, we propose a user-centered
framework for autonomous, explainable behavior generation
and lay out a dialogic model for responding to explanation
requests in human-robot interaction. In Section 4, we present
an implemented interaction architecture, focusing on how the
proposed autonomous behavior and explanation generation
processes are realized. Subsequently, Section 5 reports insights
from a first evaluation study, before discussing and concluding
with a wrap-up as well as an outlook on future work (Section 6).
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2. RELATED WORK AND REQUIREMENTS

2.1. Interaction Architectures for Social
Robot Behavior
Several architectures have been developed for social robots
focusing on different aspects of social interaction (e.g., Breazeal
et al., 2004; Laird et al., 2012; Baxter et al., 2013; Chao and
Thomaz, 2013; Trafton et al., 2013; Adam et al., 2016; Moulin-
Frier et al., 2018; Bono et al., 2020).

The work of Breazeal et al. (2004) explored a single-route
architecture to generate attentive behaviors in a social robot.
Visual cues such as eye gaze and pointing gesture were combined
with verbal cues to detect which object in the environment
the human interaction partner was referring to. Whenever
the human shifted the gaze or referred to another object, the
architecture triggered pre-defined behaviors to follow the gaze
of the human or to point to the relevant object. Another single-
route architecture is proposed in Tanevska et al. (2019) to
dynamically adapt the level of engagement of a social robot
based on social stimuli such as receiving a touch or seeing a
face. A key component of the architecture is the module that
computes a “comfort level” based on whether a touch or a face
is detected. This serves as an internal drive that triggers pre-
defined engagement or disengagement behaviors. The perception
of social stimuli progressively increases the comfort level and the
lack of this stimuli decreases the comfort level. When the comfort
level exceeds the saturation limit or falls below the critical
minimum, the robot disengages from the user and does not
respond to social stimuli. This period is then used as a recovery
phase to bring the comfort level back to the optimal range.

The above-mentioned single-route architectures defined
associations between perceived information and the social
behavior to be generated. In contrast, Lemaignan et al. (2017)
proposed a deliberative architecture for human-robot interaction
for shared task execution. This architecture identifies and
integrates artificial cognitive skills such as theory of mind, visual-
spatial perspective taking, geometric reasoning, knowledge
representation and human-aware task planning, in order to
enable the robot to model the beliefs and intentions of the
human collaborator, assess the situation, and accordingly engage
in joint actions (cf. Devin and Alami, 2016). Although several
of these high-level capabilities are also required for social robots
acting as companions, a striking feature of our robot is its
animal-like liveliness, which is achieved through intrinsically
motivated, needs-based behaviors, that are not always linked
to the beliefs and goals of the human(s) inhabiting the shared
physical space. Moreover, liveliness requires the integration
of reactive, associative, and deliberative behaviors of different
temporal resolutions and priorities, which necessitates multi-
route architectures that are more specific than generic, theory-
based cognitive architectures such as ACT-R (Anderson et al.,
2004) and SOAR architecture (Laird, 2008, 2019), which
primarily aim to model human cognition and are not geared
toward the online processing of rich socially interactive behavior.

Multi-route architectures use multiple processing routes to
generate appropriate behaviors. For example, in Adam et al.
(2016), a dual-route architecture is proposed to generate

emotional responses to verbal stimuli. It has a fast and reactive
route that generates an initial emotional response, and a slow and
deliberative route that reasons about the response by taking into
account the verbal stimuli as well as the mental state of the robot.
Generally, as the number of processing routes increases, the logic
to integrate the different levels as well as the resulting behavior
can get highly complex. Other works on social human-robot
interaction did not propose an architecture but explored specific
methods to realize key elements of an interaction, with the goal of
increasing user engagement. In Chao and Thomaz (2013), Timed
Petri Nets (TPN) were used to enable social robots to dynamically
seize, yield, hold, and audit the conversational floor during 1-on-
1 interactions with a human. In Park et al. (2019), multimodal
affective cues were used as feedback to dynamically adapt the
robot’s storytelling strategy and thereby improve the engagement
of the child.

As can be seen from the above examples, interaction
architectures for generating social behaviors in robots involve
several components and models that closely interact with each
other (cf. Kopp and Hassan, 2022). Although the mentioned
architectures were rather simple and focused on specific aspects
of social behavior generation and interaction, it is evident
that a combination of these solutions would be necessary for
building a full-fledged social robot. Perception-based attentive
behaviors, dynamic adaption to the preferences of the human
interaction partner, possession of internal drives and emotions
that dynamically influence behavior, naturalistic conversations
involving dynamic turn-taking and accompanying nonverbal
expressions, dynamic switching of behaviors depending on
context, fluent integration of reactive, intuitive, and deliberative
behaviors—all of these are essential for rich social human-robot
interactions. However, this has the consequence that the internal
logic for behavior generation will no longer be interpretable
nor intuitive to the human interaction partner. Therefore,
social robots need the capability to explain their behavior and,
importantly, to provide reasons for it in a way understandable to
naive human users.

In Han et al. (2021b), different ways to explain a robot’s
actions through nonverbal modalities were explored. More
specifically, they tried to communicate the unreachability
of an object in a hand-over task with the help of head
shakes, head turns, and pointing gestures. The autonomous
generation of these explanatory gestures was not discussed.
Han et al. (2021a) leverage the hierarchical structure of
Behavior Trees to automatically generate explanations for
actions performed by the robot and to answer questions about
how a complex task is performed. Although such algorithms
are useful for task or action-specific explanations, they are
insufficient to explain more general behaviors of an autonomous
social robot. As mentioned earlier, autonomous behavior
generally arises from an interplay of different components
and models, and also through interactive processes that
involve the user. To autonomously generate explanations of
social robot behavior, we thus have to introduce necessary
mechanisms (e.g., components and interfaces) at the conceptual
level of the architecture. In this article, we propose and
demonstrate the working of an interaction architecture that
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autonomously generates different types of verbal explanations at
user’s request.

2.2. Explanations in Human-Robot
Interaction
Throughout this article we will use the term interpretable as
defined in Ciatto et al. (2020), as “white boxes whose functioning
is understandable to humans, also thanks to the expertise,
resources, or tools.” If a system is not interpretable to a user
(e.g., due to a lack of expertise or knowledge), we make
use of explainability. As defined by Wallkötter et al. (2021),
explainability of embodied social agents is their ability to provide
information about their inner workings using social cues such
that an observer (user) can infer how/why the embodied agent
behaves the way it does. That is, an explainable model can be
made interpretable through some additional explanations.

In the social sciences, explanations were described as social
interactions early on: In his work on conversational processes and
causal explanation, Hilton (1990) emphasizes the social nature
of the explanation process, defining it as a three-place predicate:
someone explains something to someone. Likewise, Rohlfing
et al. (2021) summarize: An explainer explains an explanandum
to an explainee. Research on explanations in human-robot
interaction for a long time has looked at these different
components and roles separately and not in an integrated
fashion. In particular, previous work has focused on what a good
explanation of robot behavior should entail, or how it should be
presented with regard to how to best communicate specific action
intentions or plans to increase a user’s understanding.

Studies focusing on a robotic explainer, have for example
suggested expressive motions (facial and bodily expressions)
as a means of successfully communicating a robot’s intentions
to pedestrians (Mikawa et al., 2018), while Sado et al. (2020)
conclude that for intuitive interaction one should aim at
expressing explanations verbally, through natural language.
Effects of the timing of a robotic explanations have been
addressed by Zhu and Williams (2020), who investigated effects
of explanations generated before actions were taken. Stange and
Kopp (2021) showed that undesirable robot behavior should be
explained after acting (as opposed to before). Han et al. (2021b)
investigated a robot’s arm movements and found that users
prefer in situ behavior explanations. What is being explained,
and thus the role of the explanandum, ranges from collaborative
human-robot team work scenarios (Gong and Zhang, 2018) to
explaining path plans (Chakraborti et al., 2020), to a robot’s
social behavior (Stange and Kopp, 2020). And lastly, whom it is
being explained to (the explainee) has been shown to influence
explanatory preferences on the basis of a person’s characteristics
such as age (Kaptein et al., 2017) or expertise (Ehsan et al., 2021b).

In recent years, a more socio-interactive view on the
explanation process has emerged, focusing on the dynamic
nature of explanations as emphasized for example by Morek
et al. (2017), who describe explaining as a bidirectional process.
Yet, a user-centered approach to explaining technical models
and thus acknowledging the importance of adapting explanations
to the recipient’s (changing) needs throughout an interaction is

by far not new. Fiedler (1999) used a cognitive architecture to
plan dialogs for adaptive explanation generation based on a user
model informing the generation architecture about previously
gathered information on user preferences or capabilities. De
Rosis et al. (1995) presented an implementation that not only
accounts for eventual changes in the recipient’s needs, but also
takes the speaker’s view into account. Ever since the relevance
of including insights from the social sciences in XAI research
has been emphasized (Miller, 2019), this socio-interactive view
on explanations has experienced a resurrection. In Madumal
et al. (2019), formalized an interactive explanation dialog model
grounded in conversation data. Ehsan et al. (2021) stress the
fact that explanations are socially situated and dynamically
changing based on the goals and beliefs of both, explainer
and explainee. They propose the concept of social transparency
as a tool to incorporate the socio-organizational context into
the explanation process of AI decisions. Rohlfing et al. (2021)
describe explanations as a social practice, proposing a conceptual
framework for studying the co-construction of explanations as
a social and interactive process. And, recently, Matarese et al.
(2021) highlighted the socio-interactive aspect in human-robot
explanation situations and proposed a user-centered explanation
framework that models the explanation process as an interaction
between explainer and explainee.

2.3. Requirements for Explainable
Autonomous Behavior Generation
Designing social robots that create long-term engagement with
their human users requires a trade-off between consistency and
variability of the robot’s behaviors. The former is to ensure that
users are familiar with the robot’s behavior; the latter often
results through adaptation/learning and is needed to sustain user
interest. In both cases, it is crucial that users are able to interpret
the robot’s behavior in order to further and maintain users’ trust
toward the robot (Sheh, 2017). This can be achieved through
enabling the robot to comprehensibly self-explain its behavior, in
particular when it is unexpected or surprising to the user (Malle
and Knobe, 1997).

The autonomous generation of lively, social behaviors in
robots constitutes a complex technical challenge. Several different
cognitive models and methods need to be integrated and
run simultaneously and in close coordination with each other
(Gratch et al., 2002). This requires an interaction architecture
that integrates components for (1) sensing and processing
multimodal information about the interaction partner and
situational context, (2) modeling, monitoring, and managing
internal drives and needs of the robot, (3) generating expressive
and coherent needs-based multimodal behavior, (4) integrating
behaviors of varying timescale according to context-based
priorities, and (5) fluently adapting behavior in real-time to
dynamic changes in the social interaction context. In addition to
these already complex architectural and functional requirements,
we demand such an architecture to be explainable. That is,
we require it to support the autonomous generation of verbal
explanations of the socio-interactive behavior it is producing.
For this, behavior explanations and their generation must be
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co-designed with the interaction architecture. To that end an
interaction architecturemust fulfill the following requirements:

1. Component-level inspectability: Every component of the
architecture that is causally involved in the robot’s reasoning
and action planning must be inspectable. This is necessary to
enable the extraction and encoding of information relevant
for explaining the role of these components in enabling social
interaction.

2. Interpretable inter-component communication interfaces:
The semantics of information exchange between different
components should be well-defined in terms of their relevance
to social interaction. These semantics should be reflected in
the design of the inter-component communication interfaces
in the architecture. This is necessary to enable the explanation
of interaction between multiple components.

3. Empirically validated explanation generation models: The
architecture must support empirically validated models for
generating understandable and desirable explanations for
socio-interactive behavior. This involves the definition of
interfaces for delivering information relevant for behavior
explanations. Crucially, the explanation generation models
should be interpretable or explainable themselves, as the
robot’s explanation behavior can become an explanandum
itself.

4. Incremental behavior explanation generation: Social
interactions are highly dynamic, resulting in constant
changes in information flowing through the architecture and
in the actions performed by the robot. Therefore, in order to
provide correct explanations without delay, it is important
that the information necessary for explaining a behavior are
generated and updated incrementally within the architecture,
parallel to behavior generation.

5. User-centered explanation delivery: The architecture should
be capable of delivering explanations according to the needs
of the user. For this, it should be capable of understanding
verbal requests from the user and dynamically adapting the
explanation strategy. In addition, the architecture should
support flexible dialog in order to ensure that the user requests
can be served seamlessly, also within an ongoing conversation.

3. A FRAMEWORK FOR BEHAVIOR
EXPLANATIONS IN SOCIAL
HUMAN-ROBOT INTERACTION

In accordance with the above requirements, we propose a social
robot architecture that enables the autonomous generation of
rich, interactive behavior of the robot, while simultaneously
supporting the flexible and autonomous generation of
explanations for the produced behavior. In this section, we
will first present our conceptual approach to how explanations
of robot behavior can be given and interactively established in
social human-robot interaction. The actual implementation of
the architecture and the explanation generation model are then
described in Section 4.

Inspired by BDI (beliefs, desire, intention) principles and
drive theory, our robot is equipped with internal needs that

steer its behavioral choices (Stange et al., 2019). Based on its
current needs and under consideration of the utility (impact
on needs) and applicability (met preconditions) of possible
behavioral strategies, the robot selects a strategy and executes the
behavior(s) entailed. This straightforward behavior generation
process is, at first, aimed at producing consistent, autonomous
behavior which, due to its bio-inspired internal logic, should
at the same time be potentially interpretable to human users.
However, a behavior’s degree of interpretability strongly depends
on the situation it may occur in and the knowledge the user has
about the robot’s behavioral choices. More concretely, behavior
that is interpretable for one user in one situation may not be
interpretable in another situation or by another user. A user’s
need for explanation can thus emerge and change over the course
of the interaction. We therefore propose an interaction-based,
user-centered framework to lay down when and how a robot’s
social behavior should be explained (see Figure 2). It picks up on
and extendsMatarese et al.’s socio-interactive, user-centered view
on providing explanations in human-robot interaction.

More specifically, we frame the interactive process of
constructing an explanation as follows: A user continually
observes a robot’s behavior and tries to understand it (e.g., figuring
out the agent’s reasons). To that end, she interprets and evaluates
the observed behavior based on her current mental model of the
robot, which provides the basis for her expectations about the
robot. The observed behaviormay be interpretable resulting in the
user’s understanding and, possibly, acceptance of the behavior. In
other cases, the observed behavior may not fit the user’s current
robot model, i.e., it is not fully interpretable and thus can result
in an explanation request. Once such an explanation request is
issued by the user, the robot interprets the user’s request and
generates a behavior explanation revealing information about the
behavior or the reasons that led to it, as stored in a robot’s self
model. Upon receiving the robot’s self-explanation, the user will
update her mental robot model and re-evaluate the behavior based
on the newly gained information, either resulting in a sufficient
understanding of the behavior, or triggering further explanation
requests. The robot must then be able to elaborate on its previous
explanation, in a dialogic fashion that takes into account the
user’s current requests as well as the previous discourse. In this
way, anchoring the robot’s behavior explanations in the social
interaction and enabling the user to evoke explanations via verbal
inquiries allows them to actively co-determine when and what
kind of explanation is sufficient. The underlying social interaction
loop along with the different, involved communicative actions
can most naturally and intuitively be implemented in a language-
based dialog interaction.

While the previously presented model provides a larger
conceptual framework, we still need to define the specific
forms of self-explanations the robot should produce in this
model, and in response to which explanation requests of the
user they should be given. Following the socio-interactive
approach to explanations, we define a dialog flow model
(see Figure 3) laying out when to provide what kind of
explanation. That is, we differentiate between different kinds
of user requests, explanation types and dialog contexts in
which they can be employed. Following Madumal et al. (2019)’s
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FIGURE 2 | Overview of the proposed framework for robot self-explanations in social human-robot interaction.

FIGURE 3 | Flow model of explanation dialogs in socio-interactive human-robot interaction.

grounded interaction protocol, we initially differentiate between
what- and why-questions of the user. These requests mark
the beginning of a hierarchically graded explanation dialog
flow, in which different kinds of requests (for explanation
or elaboration) are answered by the robot with different
kinds of explanations. The latter are defined based on
previous empirical studies in which different robot behavior
explanations have been investigated in video-based online
studies, with positive effects on the perceived understandability
and desirability of robot behaviors (Stange and Kopp, 2020,
2021).

The different types of explanations included in the dialog
flow are inspired by the different “domains” found by Malle

in studies on how humans explain intentional behavior (Malle,
2004, 1999): (a) robot or user needs that the robot desires
to fulfill, (b) intentions or strategies the robot selected to
pursue, (c) concrete actions executed by the robot. In addition,
to enable more complex and elaborate explanations, these
domains of intentional behavior can be causally linked in
structured explanations, leading to (d) intention formation-
based explanations (linking need and intention), and (e) action
selection-based explanations (linking intention and action).

Our dialog flowmodel lays out when and in response to which
kinds of request these different kinds of explanations are to be
given: In case the user asks the agent what it is currently doing,
the robot gives a mere action explanation. If this answer does
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not lead to a sufficient increase in understanding and the user
requests an elaboration, the robot will provide a combined action
selection-based explanation. Similarly, if the user starts with a
why-request, the robot will explain its intention and, in case of
a subsequent elaboration request, follows up with a combined
intention formation-based explanation. This explanation can also
be given to elaborate upon an action selection-based explanation.

This dialog flow model of self-explanations can only
be realized if the underlying robot architecture fulfills the
requirements listed above. In particular, the different kinds of
explanations need to be mapped to the structures and processes
underlying the robot’s decision-making and behavior planning.
Here, the robot’s self model (see Figure 2) plays a central role
in generating these explanations: Episodic information about
internal processes as well as external events must be encoded and
stored in memory. For example, in our architecture, interaction
episodes are defined on the basis of (i) user-initiated dialog
sessions or (ii) robot-initiated plans of actions (Hassan and
Kopp, 2020). This information is then fed as input to a module
for dynamically generating behavior explanations that suit the
user’s need for explanation. How this is implemented in detail is
described next.

4. AN EXPLAINABLE SOCIAL ROBOT
ARCHITECTURE

To test the proposed framework for social robot self-
explanations, we have implemented an explainable social robot
architecture that fulfills the above-mentioned requirements.
The architecture comprises different kinds of components:
(i) modules for processing multimodal perceptual input
for interpreting the active interaction context; (ii) modules
involved directly in autonomous and needs-based socio-
interactive behavior generation; (iii) modules involved in
autonomous explanation generation; (iv) and modules needed
for multimodal behavior realization. A graphical representation
of the implemented interaction architecture is given in Figure 4.
It is evident that several components of this architecture also
appear partially in other social robot (control or interaction)
architectures (see Section 2.1). The aim of this article is to
show the co-design of socio-interactive behavior generation and
explanation for a needs-based, lively social robot. Here, a first
implementation of our interaction architecture (components
and interfaces) is elaborated.

4.1. Perception and Interaction Context
Modeling
4.1.1. Perception
The Perception component receives data from the different
sensors attached to the embodiment. These sensor data are
processed to interpret relevant information about the state
of the internal and external environment of the robot, and
make this information available to other components. The
perception component includes separate modules for handling
different types of sensor data. For example, the Interoception
module deals with the physical state of the robot, such as the

state of its joints and batteries. The Face Perception module
receives image data from the robot camera, and analyzes it
to detect and recognize a face. It builds on the dlib2 library
(King, 2009) and generates an embedding to represent the
detected face with the help of a deep learning model based on
ResNet3. This embedding is compared with embeddings from
previous interactions, and an appropriate Universally Unique
Identifier (UUID) is assigned. The estimation of the current
position of the face and attributes such as age, gender, and
emotion is performed using the SHORETM library (Küblbeck
and Ernst, 2006; Ruf et al., 2011)4, which use classical machine
learning models.

4.1.2. ASR and NLU
Dialog processing begins with analyzing the speech input from
the user to recognize the spoken words [Automatic Speech
Recognition (ASR)]. Afterwards, the communicative intent is
inferred from the recognized verbal phrases by the Natural
Language Understanding (NLU) component. With the help
of an incremental information processing strategy, the verbal
phrases and intent are updated incrementally, as new speech
input arrives. In the current implementation, we use Google
ASR5 for automatic speech recognition and the open-source
tool RasaNLU6, for intent classification. In line with the
explanation dialogue framework proposed in Section 3), we
have trained the NLU component to differentiate between
three different explanation request intents: what-explanation
requests, why-explanation requests and elaboration requests.
To recognize named entities such as name, date of birth
and hobbies of the user, we use Spacy7 and expression
matching methods.

Note that, the machine learning models used for face
detection, face embedding generation, speech recognition,
and natural language understanding are black-box models,
which could be made inspectable to some extent by
applying suitable explainable AI methods (cf. Adadi
and Berrada, 2018; Molnar, 2022; Requirement 1).
However, causal explanation of the output of the above-
mentioned machine learning models so far has not been
relevant for the socio-interactive behavior explanations in
our framework.

4.1.3. Memory
The Memory component consists of modules for aggregating,
fusing, or associating information from other components
of the architecture, in order to infer higher-level information
relevant for social interaction and social behavior generation.
This component comprises separate modules for processing
information at different temporal granularity and abstraction
levels. The modules in the Memory component jointly
describe and represent the active socio-interactive context.

2http://dlib.net/
3http://blog.dlib.net/2017/02/high-quality-face-recognition-with-deep.html
4http://www.iis.fraunhofer.de/shore
5https://cloud.google.com/speech-to-text
6https://rasa.com/docs/rasa/nlu-only/
7https://spacy.io/models/de
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FIGURE 4 | Schematic view of the explainable interaction architecture for an autonomous self-explaining social robot. The components are marked using rectangles

and the most important communication interfaces between components are indicated by black arrows. Dotted arrows are used to enhance readability and have the

same meaning as solid arrows.

By virtue of the declarative and symbolic nature of
these modules, they fulfill the inspectability requirement
(Requirement 1).

The Working Memory processes only information and
events from the present and the immediate past, to update
internal memory variables having a short time span (e.g.,
face_in_view, gaze_running, user_greeted,
etc.). The preliminary implementation uses a queue to
store heterogeneous information for a short period of time
and retrieve the last known information not older than
a specific time interval. The Episodic Memory integrates
events and actions into an interaction episode. It tracks and
updates the ongoing interaction episode and persistently
stores past interaction episodes (see Hassan and Kopp,
2020) for details). The ongoing interaction episode provides
information about the active robot behaviors and actions,
which can then be used by the robot for generating the
action explanation. In the initial implementation, each
interaction episode is represented as a collection of key-
value pairs and all past interaction episodes are stored in a
JSON file.

The Interaction Model implements a state machine which
is used to classify and keep track of the current human-
robot interaction situation (see Figure 5). This state machine
comprises four interactions modes, namely, Alone, Co-presence,
Interaction, and Dialog. The transitions between these states
are triggered by Boolean-valued internal memory variables. The
interaction modes can be used as preconditions to systematically
enable behavioral strategies suited to the current socio-interactive
situation. The User Model builds profiles of users based on
information gathered via face perception and natural language
understanding. In the current implementation the User Model
stores UserInfo (UUID) and data extracted from the user’s
face via the Face Perception module, such as age and gender,
emotional state, and gaze direction. It further provides the
infrastructure to record the user’s name, birthday, hobbies and
interests, gathered and updated via verbal interaction with the
user. The stored information about the ActiveUser are at disposal
for other modules and, e.g., used by the Dialog Manager to greet
a specific person with their name. The user profiles are stored in
persistent storage (currently, as a JSON file) and retrieved based
on the identity of the person interacting with the robot. The
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FIGURE 5 | State machine describing possible interaction modes along with

their transitions.

Self Model manages the robot’s internal states, for example, its
emotional state, which is represented within a Valence-Arousal-
Dominance (VAD) space and is influenced by own needs as well
as the user’s emotions.

4.2. Autonomous Needs-Based
Socio-Interactive Behavior Generation
4.2.1. Needs Engine
The Needs Engine models the state of needs of the robot and
of the user. Currently, there are five robot needs (certainty,
energy, social contact, relaxation, and entertainment) and two
user needs (contact and rest). The needs are modeled as
continuous values between 0 and 1, and grow linearly over time
according to their respective growth rate. These needs can also
be influenced by changes in the internal memory variables (e.g.,
agent_detected increases the robot’s social contact need).
The Needs Engine periodically publishes the current values of the
robot’s and user’s needs within the architecture. Based on these
values, the Decision Engine dynamically selects an appropriate
high-level, socio-interactive behavior (or, Strategy) that would
minimize the overall needs. The needs are updated accordingly
by the Decision Engine, when the selected strategy completes
execution. In the current implementation of the Needs Engine,
each need is modeled independently of the other needs. This
makes it easier to extend or update the list of modeled needs in
the future.

4.2.2. Decision Engine
TheDecision Engine is in charge of selecting the next Strategy (or,
high-level behavior) to be executed based on the current state of
needs (provided by the Needs Engine). In each decision-making
cycle, only those strategies that are relevant for the current
interaction mode (given by the Interaction Model) are considered
as candidates. Each Strategy S has an estimated average execution

time tS and an expected impact IS on the needs of the robot
and the user. In each cycle, the Decision Engine constructs
all possible plans that can be executed within a specific time
interval in the current state (specified by the variables in the
Working Memory). A plan P is an ordered sequence of one
or more of the candidate strategies. An objective function f (P)
measures the effectiveness of a plan based on the impact that
each strategy S in the plan is expected to have on the needs of
the robot and the user. Using the needs impact vector iS and
the average execution time tS of Strategy S as well as the vector
of growth rates of needs gN, the expected change (growth or
decay) 1nS in the state of needs after the execution of Strategy
S is calculated (see Equation 1)8. The expected state of needs
after the execution of the plan (nP) is calculated by aggregating
the changes contributed by each strategy in the plan and adding
them to the state of needs at the start of the current decision-
making cycle n(0), as shown in Equations (2) and (3). The
objective function then computes a weighted sum of squares of
these expected needs (see Equation 4). The weights vector wN

encodes the relative importance of individual needs and thus
assist in dealing with conflicting needs9. Currently, the weights
are identical for all users, but could be adapted in the future to
match user preferences and traits, which could be learned and
recorded by the User Model.

1nS = iS + tSgn (1)

1nP =

∑

S∈P

1nS (2)

nP = n(0) + 1nP (3)

f (P) = nP
T(nP ◦ wN) (4)

A small value for f indicates that the plan can effectively decrease
the overall and the most influential needs. The plan having the
smallest value for f is selected as the best plan, and the first
Strategy in this plan is the next strategy that will be executed.
This decision is recorded in the form of a “decision snapshot”
that specifies the selected strategy along with the robot and
user needs at the beginning of the decision-making cycle. This
causal relationship between needs and active high-level behavior
can be subsequently used for generating intention explanations
and extended explanations based on intention and needs (see
Section 4.3). The selected Strategy is sent to the Strategy Manager,
which then starts this strategy after terminating any currently
active strategy. Thus, in the current implementation, the Strategy
Manager ensures that only one strategy is active at a time.

By basing the decision on plans, it is expected that the chosen
strategy may make other advantageous strategies feasible in the
future. In order to avoid behavior repetition, the previously
selected strategies are excluded from successive decision-making
cycles for 30 s. A new decision-making cycle (or, re-planning)
is started when no strategy is active or when the state of needs

8All vectors are column vectors.
9More elaborate strategies to handle conflicting needs (e.g., suppression, deference,
etc.) would be explored in the future.
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increased significantly after the last strategy selection. In this way,
the robot autonomously chooses its behavior under diverse and
changing external events and internal needs.

4.2.3. Action Planner
A set of predefined Strategies in the Action Planner component
determine the available high-level socio-interactive behaviors.
A Strategy is associated with an intention, e.g., initiating
contact with a user (StrategyInitiateContact), and describes a
high-level behavior or action plan to realize this intention.
It may consist of ordered subgoals (post-conditions) that
are fulfilled by elementary actions. The elementary actions
can be either high-level dialog behaviors (e.g., greet_user,
acquaint_with_user) that are forwarded to the Dialog
Manager, or non-dialog behaviors (e.g., approach_user)
which are sent directly to the Behavior Controller for realization.
The execution of these actions may require certain preconditions
to be fulfilled. Pre- and post-conditions are Boolean-valued
internal memory variables that reside inWorking Memory.

Currently, Strategies are implemented in the form of Behavior
Trees (Colledanchise and Ögren, 2018) using the PyTrees
library10. Behavior Trees are hierarchical arrangements of nodes
representing conditions, actions, or control logic for executing
child nodes (e.g., sequential, parallel, selective execution). Of
particular relevance to the present work are the selector and
sequence nodes. A selector node executes a child node on its
right, only if all the child nodes on its left have failed. If at least
one of its child nodes is successful, then the selector node is also
successful. A sequence node executes a child node on its right,
only if all child nodes on its left have succeeded. It is successful
only if all its child nodes are successful. The explicit structure
of the Behavior Trees makes the high-level behaviors inspectable
and, consequently, explainable (Requirement 1).

In Figure 6, the Behavior Tree representation of
StrategyInitiateContact is shown. A selector node initiates
the robot to drive toward the user (action: approach_user)
only if it is not already in the proximity of the user (condition:
proximity). The sequence node above this selector node
ensures that, once the robot is in the proximity of the user, the
right subtree may be executed, leading the robot to have eye
contact with the user and thus initiating the interaction. Usually,
each subtree follows the concept of either a condition being true
or executing the action/subtree that would eventually make the
condition become true.

Each Strategy (high-level behavior) is associated with a set
of preconditions that should hold before a behavior can be
initiated, and a set of post–conditions that are fulfilled when
the behavior has been successfully executed. Pre-conditions of
strategies can be either an interaction mode that is determined
by the Interaction Model or an internal memory variable that
is published by the Working Memory. Each strategy is also
annotated with a vector denoting its impact on the needs of
the robot and the user, when executed. Every time a strategy is
successfully completed, its average duration attribute is updated.

10https://py-trees.readthedocs.io/

There is also a time-out duration associated with the strategy to
recover from potential execution-time issues.

All available Strategies and their key attributes are listed
in Table 1. During start-up of the architecture, all Strategies
are initialized and other components (e.g., Decision Engine,
Explanation Engine) are informed about the available strategies
and their attributes, which includes the strategies’ needs impact
vectors. This information is used to generate the intention + need
explanation, verbalizing the need the selected strategy has the
highest impact on. In the future, new strategies can be added
without having to change existing strategies.

4.2.4. Dialog Manager
Any verbal communication with the user is managed by the
DialogManager. It handles both communicative actions triggered
by the active strategy as well as user-initiated conversations
and explanation requests. We employ the previously developed
flexDiam system (Yaghoubzadeh and Kopp, 2017) to plan the
next phrases to be spoken by the robot based on the active
dialog context and the user’s communicative intent. In flexDiam,
dialog is considered to be organized hierarchically according to
Issues that are addressed by the user and the robot cooperatively.
Several Issues can be active simultaneously in the background
and are triggered upon request, enabling an interactive dialog
and yielding the possibility to react to off-topic user requests.
For example, the user is always able to ask the agent to repeat
its last utterance, or to end the dialog and leave the conversation.
Upon completion of an issue, higher-level issues that have not
yet been completed are resumed. The agent is thus able to handle
interruptions or interjections. Issues that wait for a response are
re-triggered if no answer has been received within floor time
allotted to the user.

In the current implementation, the following issues are
realized: A GreetingIssue and an AcquaintIssue, which includes
child issues that gather information about the user (GatherName,
GatherBirthday, and GatherHobbies) or alter information already
stored about the user (CorrectingIssue); an AboutUserIssue that
is used to answer questions about the information the robot
has stored about the user; an AboutVivaIssue that is used to
share information about the robot itself; a HowAreYouIssue that
is used to answer questions about the robot’s emotional state;
an EmotionIssue that is used to inform about the user emotion
the robot has recognized; and finally, an ExplanationIssue
that is triggered when recognizing a user explanation request.
The ExplanationIssue evokes the generation of a robot self-
explanation according to our dialog flowmodel (details described
in Section 4.3).

FlexDiam captures the sequential structure of the dialog on
a timeboard, on different tiers related to different elements
like words, phrases, floor, or messages to and from other
components of the architecture. Information about the current
dialog state, e.g., whether a discourse is ongoing (an Issue
is open) or not, is communicated to the Working Memory.
Likewise, user information obtained through dialog is sent to
the User Model. On the other hand, flexDiam receives data
from other components, e.g., to respond to user queries or to
exploit knowledge stored in the User Model. All Issues employ
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FIGURE 6 | Example Behavior Tree for StrategyInitiateContact: The octagons represent selector nodes, rectangles represent sequence nodes, ellipses represent

condition nodes, and rounded rectangles represent action nodes.

an embedded Natural Language Generation (NLG) component
to generate utterances and determine accompanying nonverbal
behaviors, which are then sent to the Behavior Controller
for realization.

4.3. Autonomous Explanation Generation
4.3.1. Explanation Engine
The Explanation Engine collects all information that are
potentially necessary for explaining the current behavior of
the robot, as proposed in the explanation dialog flow model
(Section 3). This information is gathered from different
components in the architecture. The Decision Engine sends a
“decision snapshot” to the Explanation Engine, containing the
selected strategy along with the specific robot and user needs
at the time the strategy was selected for execution. The needs
impact vector associated with each Strategy is collected when the
strategies are initialized at start-up (via StrategyInfo message).
The currently active dialog-based or non-dialog-based action (or,
behavior) is specified in the current Interaction Episode which is
issued by Episodic Memory. The Explanation Engine puts these
pieces of information together into the structure ExplanationInfo
andmakes it available to theDialogManager so that it can explain
the current behavior, when the user requests for it (as described
below). Figure 7 shows how an instance of ExplanationInfo is
initialized or updated. Any changes to any information relevant
for ExplanationInfo are updated incrementally and notified by
the respective components immediately (Requirement 4). This
is illustrated in the sequence diagram in Figure 8, where the
incremental updates are triggered by a newly started action. It

also shows that the behavior generation and the extraction of
information relevant for explanation take place hand-in-hand.

4.3.2. Explanation Generation
The ExplanationIssue is activated in flexDiam whenever an
explanation request is identified by the NLU. The explanations
are then constructed according to the empirically validated
explanation types described in Section 3 (Requirement 3).
The type of explanation requested by the user (i.e., what or
why explanation) is stored in the context and used by the
NLG component to generate an explanation phrase based
on the explanation type and the last received explanation
information from ExplanationEngine. If an explanation request
is followed by an elaboration request, the ExplanationIssue
fetches the last handled explanation type from the context
and commissions an appropriate elaboration based on this
information. The corresponding explanation phrases are
generated by the NLG module using templates for the different
explanation types. Based on the provided information, the
NLG inserts sub-phrases into these templates. An action-based
explanation triggered by what-questions uses a template like “I
am [action_name].” For example, for the action greet_user,
[action_name] is substituted with the sub-phrase “greeting
you” and for drive_to_charging_station, it is
substituted with “driving to the charging station.” An intention
explanation inserts the name of the active strategy into the
template “I wanted to [strategy_name].” For example, for the
strategy StrategyInitiateContact, the sub-phrase is “establish
contact with you.” The extended explanation inserts multiple
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phrases into a template. Precisely speaking, it repeats the last
delivered explanation and extends it with causal information
about the intention or the most relevant need. Extended
explanations include “I am [action_phrase], because I wanted to
[strategy_phrase].” and “I wanted to [strategy_phrase], because
my need for [relevant_need_name] was [relevant_need_level].”
The sub-phrases for substituting [relevant_need_name] are
identical to the name of the need. The continuous-valued needs
are discretized into three levels by applying two thresholds (0.3
and 0.7). Accordingly, the level of the need is termed as “high,”
“medium,” or “existent.” All verbal explanation phrases are
accompanied by a hand gesture of the robot.

In sum, the explanation dialog flow model proposed in
Section 3 is implemented by the issue structure of the Dialog
Manager and, in this way, enables explaining and elaborating
according to users’ needs for explanation evolving in the
interaction. The interplay of the input and output processing
modules, the socio-interactive behavior generation modules, and
the explanation generation modules, enables users to request and
receive incrementally updated self-explanations of the robot, at
their preferred time or level of detail during an ongoing dialog
(Requirements 4 & 5).

4.4. Multimodal Behavior Realization
4.4.1. Behavior Controller
This component is responsible for coordinating and managing
the execution of communicative and non-communicative robot
behaviors, which are either the elementary actions of the active
Strategy or utterances requested by the Dialog Manager. The
Behavior Controller instantiates any requested behavior and
keeps track of its execution status. In addition, it coordinates
the allocation of hardware resources between individual behavior
instances and acts as a proxy for communication between
individual behaviors and other components of the architecture.
Multimodal communicative behaviors requested by the Dialog
Manager, are dialog acts specified in the Behavior Markup
Language (BML) (Kopp et al., 2006) syntax. These BML
descriptions may contain the text to be uttered along with
accompanying non-verbal behaviors. In our use case, every
utterance is marked with a desired communicative intent
(speech act), namely question, explanation, affirmation, denial,
or greeting. When an utterance is received, a behavior
is instantiated that selects a gesture corresponding to the
communicative intent and then triggers Speech and Gesture
Engines via control commands. Non-communicative behaviors
(e.g., approach_user) that may be requested by the active
Strategy or by the user directly, are realized using Locomotion
and Gesture Engines.

4.4.2. Behavior Engines
The transformation of individual behavior elements into
embodiment-specific commands is done via dedicated behavior
engines. The Speech Engine handles the commands for verbal
output, the Gesture Engine handles body animations and
individual joint movements, and the Locomotion Engine handles
the rotation and translation of the whole robot in space. The
engines provide the execution status of commands in individual
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status messages, which are then distributed to higher-level
components via the Behavior Controller. The implementation of
these engines differs depending on the used robot. In our use case,
to communicate with the robot Pepper11, the engines use the
NAOqi Bridge, which interfaces between ROS and Aldebaran’s
NAOqi12. In this way, the Speech Engine can use Pepper’s TTS,
the Gesture Engine can execute pre-defined animations and joint
motion trajectories safely, and the Locomotion Engine can drive
the robot at safe velocities. We also use the Basic Awareness
ability of NAOqi to realize the gaze behavior and enable the robot
to react to people and movements in the environment (sound
and touch stimuli are currently ignored). Although the Behavior
Engines and the Behavior Controller are inspectable due to their
declarative nature (Requirement 1), the models used for realizing
the behaviors on the hardware might not always be available for
inspection, due to the proprietary nature of those libraries.

4.5. Communication Interfaces
In the current implementation of the architecture,
communication between sensors, actuators and other
hardware components takes place via the ROS middleware.
The communication between all other components, modules,
and models uses the Python 3 implementation of an incremental
communication framework (Schlangen et al., 2010) (IPAACA13)
with MQTT as the transport protocol. As shown in Figure 4,
the names of the interfaces convey the semantics of the
information exchanged between components (Requirement
2). Moreover, the information transported in the IPAACA
message payload is represented in the JSON format, making
it easy to interpret the content of the messages and to trace
the causal structure of the behavior generation process within
the architecture (Requirement 2). Except some parts of the
perception component and low-level hardware drivers, all
parts of the architecture have been implemented in Python 3.
Furthermore, modularity, extensibility, and portability were key
considerations during the implementation of the architecture.
Except the low-level components that interface or communicate
with sensors and actuators (i.e., Perception modules and Behavior
Engines), all other components are independent of the physical
embodiment and can be easily ported to other social robot or
virtual agent platforms.

5. EVALUATION

To test the proposed framework for social robots’ behavior
explanations, as well as its implementation in the presented
architecture, we have carried out a first evaluation in live
human-robot interactions in a lab setting. More specifically, a
qualitative evaluation was designed to investigate if the first
working prototype fulfills both, the

1. architectural and functional requirements, via evaluation
of the robot’s ability to (1) sense and process multimodal
information about the social context, (2) generate naturalistic

11https://www.softbankrobotics.com/emea/en/pepper
12https://developer.softbankrobotics.com/pepper-naoqi-25
13https://gitlab.ub.uni-bielefeld.de/scs/ipaaca

and coherent multimodal behavior, and (3) fluently adapt its
behavior to dynamic changes in the social interaction context

2. explainability requirements, via evaluation of the robot’s
ability to deliver explanations in parallel with generating
behavior (Requirement 4) and according to the needs of the
user (Requirements 3 & 5), indirectly validating adherence to
Requirements 1 & 2.

5.1. Materials and Methods
The evaluation included an acquaintance interaction between a
human user and the social robot “Viva” (here, Pepper) situated
in a laboratory living room setup. Throughout the interaction,
the robot was entirely controlled by the above-described behavior
generation architecture. Ethics approval was obtained from the
ethics committee at Bielefeld University and COVID-19-related
hygiene and safety precautions were taken.

The procedure of the study is depicted in Figure 9. Upon
arrival, participants were invited to read the participant
information and consent to the data policy. Thereafter,
participants received verbal instructions about the robot being
developed to live with people in their homes, being able to move
in the room and to interact with users vis-à-vis. They were then
informed that the research objective was to investigate how Viva’s
behavior is perceived. Participants were told that they had a few
minutes to get to know Viva and should try to find out how the
robot generated its behavior over the course of the interaction.
They were explicitly told that they should find out what the robot
was doing and which reasons it had for its behavior, and that
they could ask the robot about this. Finally, participants were
informed that the investigator would knock at the door after
about 5 min, which was their signal to say goodbye and leave
the room and that they would be asked to complete a survey
to describe their impressions and insights with regard to Viva’s
behavior afterwards. Upon entering the room they should move
to a position marked on the floor. The last instruction was that
participants should try to speak loudly and clearly and in simple,
short sentences in order for the robot to understand them well
and that they could see when Viva was listening, by a green light
in its eyes. The experimenter then accompanied the participant to
the lab living room, started the camera, instructed the participant
to take off the mask in order for the robot to see their face, and
left the room. As depicted in Figure 9B, the lab living room was
furnished with a sofa and TV screen, a cupboard, the robot’s
charging station, as well as a table and SoftBank’s Pepper robot.
A microphone, used for users’ speech input was placed on top
of the table and the interaction was filmed by a camera placed
behind the table.

The interaction was not scripted but unfolded through
the robot interacting autonomously with the participants.
That is, the robot was able to select strategies, execute
the corresponding behaviors, and communicate with
the users via dialog. The following strategies were
available to the robot: StrategyIdle, StrategyInitiateContact,
StrategyGreeting, StrategyAcquaintWithUser, StrategyLoosenUp,
StrategyChargeBattery. As the robot’s perception did not yet
account for recognition of a user’s presence in the room, this
memory value was manually set to true, once the experimenter
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FIGURE 7 | The content of ExplanationInfo (middle column) and the source messages from which the relevant information are extracted (right column).

had left the lab and the participant was alone in the room with
the robot, setting the preconditon for the StrategyInitiateContact.
Due to the restricted interaction time during which the robot was
fully operable, the robot’s energy status was not updated based on
its actual battery status. Therefore, in order to evoke the selection
of this strategy, experimenters decided to manually send an
event that increased the robot’s need for energy after some time.
An example video of the interaction (with the researcher in the
participant role) can be accessed online14.

A protocol of the interaction including all selected
strategies and dialog events was stored. In the post-interaction
questionnaire (implemented in soscisurvey15), participants’
input on how they perceived the robot’s behavior and
explanations was gathered via quantitative items, as well as
open questions. Robot’s behavior was rated by participants with
regard to intentionality, understandability, surprisingness, and
desirability. Regarding the robot, ratings of likeability (five
items, adapted from Reysen, 2005), multidimensional trust (five
items, adapted from Bernotat et al., 2017), and intelligence (five
items from Bartneck et al., 2009) were gathered. The robot’s
behavior explanations were rated with regard to their general
understandability, the extent to which they adequately justify
the behavior, as well as help the user understand why the robot
behaved as it did. All items are gathered on 7-point Likert scales.
Further, participants were invited to report moments they found
particularly natural, unnatural, or striking and give feedback on
how to improve the interaction and the robot’s functionality in
the future.

5.2. Analysis and Discussion of Results
In total, 12 participants took part in the interaction with the
robot. One interaction had to be canceled due to a system failure
and was thus excluded from the analysis. This led to a total of
N = 11 complete interactions and datasets. Participants (six

14https://youtu.be/yHl-hTbRECQ
15https://www.soscisurvey.de/

males, five females) were between 23 and 34 years old (M =

27.64, SD = 3.5). 5 participants were students and the majority
of the participants had not interacted with a social robot prior
to this interaction (N = 8). Quantitative data was analyzed using
JASP16. The average duration of interaction was 07:09 min (min
05:20, max 09:26).

5.2.1. Autonomous Social Behavior Generation
In order to analyze fulfillment of the architectural and functional
requirements (1) sensing and processing multimodal information
about the social context and (3) fluently adapt its behavior to
dynamic changes in the social interaction context, the data stored
in the interaction protocol was analyzed: The robot selected
adequate behavioral strategies based on the current interaction
mode. To start off the interaction manually, the StrategyIdle
was set to success and the memory event (agent_detected)
was sent to the robot once a participant was present and
after the experimenter had left the room. The robot was
able to process this information, leading to a change in its
interaction mode from Alone to Co-Presence and triggering
the robot to approach the user. In all interactions, the
robot was idling (StrategyIdle) while Alone and once detecting
the user in the room, switched to interaction mode Co-
presence and reliably decided for StrategyInitiateContact and
StrategyGreeting. Subsequently, if the robot was able to detect
the user’s face, it switched to the interaction mode Interaction
and selected the now available StrategyAcquaintWithUser. If
not, the robot remained in the interaction mode Co-Presence
and started with StrategyLoosenUp, followed by re-starting
the gaze behavior and selecting the StrategyAcquaintWithUser,
if the users’ face was in view now and the interaction
mode thus changed to Interaction. Upon reception of the
energy_drop event, the robot’s need for energy increased,
leading to the selection of the StrategyChargeBattery. The robot
was further able to sense and process verbal input, as well as

16https://jasp-stats.org/
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FIGURE 8 | A sequence diagram showing the interaction between different components of the architecture to initiate a Strategy (high-level socio-interactive behavior)

and simultaneously extract the information necessary for explaining this behavior (Requirement 4).

FIGURE 9 | The experimental setup and procedure including (A) the participant being introduced to the robot and the task by the experimenter, (B) the actual

human-robot interaction supervised by technicians and, (C) a post-interaction survey taken in a separate room.

visual input about the user’s face, enabling it to successfully
gather user information in the acquaintance dialog during
every interaction.

An assessment of whether the implemented architecture
enabled (2) naturalistic and coherent multimodal behavior
generation is best given from the users’ feedback: Due to the
small amount of participants and a high variability between
the interactions that unfolded autonomously, results from the
analysis of the questionnaire data should be regarded with
care, indicating at best a general direction. Mean ratings of
the behavior and robot ratings were analyzed. Tests against
the scale mean of four reveal that the robot’s behavior was
generally evaluated as intentional [M = 4.73, t(10) =

2.39, p = 0.019, d = 4.69], surprising [M = 5.18, t(10) =

2.55, p < 0.014, d = 3.37], and desirable [M = 4.64,
t(10) = 1.41, p = 0.095, d = 3.09]. Ratings with regard
to the robot’s behaviors’ understandability were not statistically
different from 4. Further, the robot was perceived as likable
[M = 5.24, t(10) = 4.84, p < 0.001, d = 6.18], trustworthy
[M = 4.58, t(10) = 4.58, p = 0.004, d = 7.86] and
intelligent [M = 4.89, t(10) = 4.36, p < 0.001, d = 7.220].
As a response to the question which moments participants
perceived as natural during the interaction, seven participants
referred to the conversation flow and four explicitly named the
nonverbal behavior, suggesting that the multimodal behavior
generation was overall perceived as naturalistic. When asked
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about unnatural behavior, five participants referred to the verbal
interaction being not entirely intuitive, referring to difficulties
with regard to turn-taking and seven participants referred to
the robot’s stretching or moving away without previous notice
as irritating.

5.2.2. Self-Explanation Generation
The explainability requirements that refer to individual
architecture components (Requirement 1) and their
communication interfaces (Requirement 2) could not be
explicitly tested with the interaction, but are indirectly validated
via assessment of Requirements 3–5. The interaction protocols
reveal that 7 what-, 8 why-, and 1 elaboration- request were
correctly answered. This assesses the robot’s capability to
understand verbal requests from the user, to dynamically select
the correct explanation type, and to retrieve the information
needed for an explanation from within the architecture
(inspectability). The robot was thus, in general, able to deliver
user-centered explanations (Requirement 5), further validating
fulfillment of Requirements 1–4.

Strikingly, out of the 16 correctly identified requests, nine
were uttered while no action (5) or strategy (4) was currently
active, leading to participants receiving a correct, but only
sparsely helpful answer (“I am currently doing nothing/not
pursuing any goal”). While this can be attributed to the
explanation info being updated incrementally and in parallel to
the behavior generation, and attests fulfillment of Requirement
4, the outcome is not desirable and should be incorporated in
the explanation dialog flow model. For instance, in this specific
case, one could switch to past episodes to explain the last active
action/strategy if no active strategy is currently available. This
observation is in line with the survey data: while the robot’s
explanations were rated as understandable [mean statistically
significantly higher than scale mean of 4: M = 5.27, t(10) =

3.55, p = 0.003, d = 4.43], the explanations were not rated
as particularly justifying the robot’s behaviors (M = 4.09) or
helping participants understand why the robot behaved as it did
(M = 4.0).

Interestingly, further inspection of the protocols reveals
that these explanation requests were often uttered in relation
to the robot’s action of driving away from the user. This
behavior was reactive, being directly triggered via an action
command sent from the dialogmanager and thus not represented
in the robot’s self-model for explanation generation. While
this is a shortcoming of the current implementation, it
simultaneously supports the underlying claim that the robot’s
behavior needs to be explainable at any time. Notwithstanding,
the seven explanations uttered while a strategy or behavior
was currently being executed show that the robot was able to
successfully verbalize the current behavior with the adequate
explanation strategy if deliberately chosen via its internal
decision process.

In addition, while the above examples demonstrate that
the robot is in principle able to provide behavioral self-
explanations, a large number of verbal explanation requests by
the user were not correctly identified (7 what, 3 why, and 3
elaboration requests) and were thus not answered correctly.

Improvement of the processing of language-based explanation
request thus proves essential: In addition to the expansion
of NLU training data, it seems indispensable to consider the
socio-interactive context when processing the user’s verbal
input. This goes in hand with participants’ broad consensus
regarding suggestions for improvement: 9 of 11 participants
mentioned insecurities with respect to the verbal interaction
with the robot. Participants reported issues such as non-
intuitive turn-taking due to the robot’s response times and
feeling unsure about conversational roles especially mentioning
switches between system-initiated dialog sequences (for example
during StrategyAcquaintWithUser) and sequences where the
robot did not have the dialog initiative. These difficulties with
the dialog management, the relatively large number of “no
operation” explanations and mis-recognized requests may also
offer an explanation for the overall relatively small number of
elaboration requests.

6. CONCLUSION

In this article, we have presented work toward social
robots capable of giving (self-)explanations of their own
needs-based behavior, at any time during a running
interaction. These explanations are socio-interactively
constructed to effectively fit the current information need
of a human user. To that end we have combined insights
from research on human-robot interaction architectures
as well as explanation generation, in order to derive
concrete requirements for explainable behavior generation
architectures of social robots. We have formulated a socio-
interactive framework for self-explanation generation,
incorporating empirically validated explanation strategies
and closely embedded in the behavior generation
architecture. Further, we have described an implementation
of this architecture realizing this concept and addressing
the requirements.

A first evaluation has proven that the proposed architecture
presents a useful foundation to meet the challenges of explainable
autonomous behavior generation. As previously stated, the
results of this initial experiment were gathered with a confined
user group interacting with the robot in a first basic greeting
use case. Therefore, applicability to divergent target groups and
transferability to more complex use cases need to be assessed in
future experiments. Nevertheless, our results suggest that the
socio-interactive approach is, first, conceptually and technically
feasible and, second, accepted and appreciated by real users:
participants ask what the robot is doing and why it is doing
so, and the robot is able to introspect its reasoning and to
present it in ways that were previously shown to enhance
user understanding and acceptance of the robot’s behavior—
necessary pre-requisites to support user-centered explanation
delivery. At the same time, our evaluation has provided valuable
insights on how to improve the technical realization: while the
robot is able to correctly address users’ explanation requests
in specific situations (behavior is currently being executed,
request is correctly identified, etc.), some explanation requests
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were not adequately answered by the robot (e.g., concerning
reactive behavior). This showcases the necessity to increase
the level of socio-interactivity by linking perception with
explanation generation.

Accordingly, we identify the following starting points to
extend the current implementation: in order to improve the
processing of users’ explanation requests, the NLU needs
to be improved by extending its underlying training data,
and also by grounding it more strongly in the interaction
context. Similarly, the robot’s explanation capabilities need
to be extended such that the robot, in addition to its
deliberately chosen behaviors, is also able to introspect its
reactive nonverbal and verbal behaviors that were executed
as a direct response to events in the environment. This
can be enabled by extending the robot’s self model and
episodic memory to link all behaviors to the (internal or
external) events in their causal history. This leads to another
important extension: giving memory-based explanations for past
behavior, for example if the robot is currently doing nothing,
but executed an action shortly before the user’s explanation
request. For this, the recently closed interaction episode could
be checked. Taking this one step further, explanations could
entail causal links that express events that led to changes
of robot needs, which in turn led to selection of a certain
strategy (akin to Malle, 1999’s) causal history of reasons).
These explanation types would need to be empirically validated
before implementation in the architecture in order to fulfill
Requirement 3.

Similarly, on the behavior generation level, future work needs
to address the robot’s capabilities to perceive its surroundings
and dynamically incorporate changes in the environment in
its behavioral decisions. This includes, but is not limited to,
reliably perceiving visual and auditory stimuli, and linking
them to memory events such as a user being present and,
eventually, the user’s current activity status or information
need. In the long term, behavior selection and execution, as
well as explanation delivery should be adapted to each user
individually. Users’ reactions to the robot’s behavior as well
as timing and type of explanation requests could be used
to learn users’ preferences and shape the robot’s behavior
planning process (Umbrico et al., 2020). This would lead to
differences in the strategy selection or parameterization of
specific actions, considering user traits such as preferences
regarding proxemics. This could increase the social interaction’s
naturalness by balancing the robot and the user’s needs more
harmonically. Eventually, this should lead to a form of “proactive
explainability” of the social robot, in that it may actively offer
explanations to the user, may learn to predict which of its
behavior requires explanations, or may even consider user-
centered estimates of interpretability or explainability in its own
behavioral choices. While aiming at the best possible adaptation
of behavioral and explanatory decisions to the users’ preferences,
the explainability requirements should persist as a crucial
criterion to drive further development: learning approaches
should be incorporated meaningfully, without compromising
inspectability of the robot’s reasoning.

Finally, we underscore the importance of embedding
explanations in a larger framework that accounts for the socio-
interactive mechanisms with which understanding is achieved
(explaining being one of them). The proposed architecture has
proven to be a useful approach to explainable social behavior
generation. At the same time the evaluation has shown that, in
order to exploit the full potential of such an integrated approach,
the socio-interactive capabilities of robots have to be extended
further, enabling more robust perception of the users’ needs
for explanation and thus enabling social robots to optimally
deploy self-explanations, increasing the understandability and
desirability of robot behavior for their human users.
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