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firstname.lastname@fmr.com

Specialty section:

This article was submitted to

Artificial Intelligence in Finance,

a section of the journal

Frontiers in Artificial Intelligence

Received: 02 February 2022

Accepted: 14 June 2022

Published: 12 July 2022

Citation:

Ghosh S, Yadav S, Wang X,

Chakrabarty B and Kadıoğlu S (2022)
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Sequential pattern mining remains a challenging task due to the large number of

redundant candidate patterns and the exponential search space. In addition, further

analysis is still required to map extracted patterns to different outcomes. In this paper,

we introduce a pattern mining framework that operates on semi-structured datasets

and exploits the dichotomy between outcomes. Our approach takes advantage of

constraint reasoning to find sequential patterns that occur frequently and exhibit desired

properties. This allows the creation of novel pattern embeddings that are useful for

knowledge extraction and predictive modeling. Based on dichotomic pattern mining, we

present two real-world applications for customer intent prediction and intrusion detection.

Overall, our approach plays an integrator role between semi-structured sequential data

and machine learning models, improves the performance of the downstream task, and

retains interpretability.

Keywords: dichotomic pattern mining, sequential pattern mining, semi-structured clickstream datasets, digital

behavior analysis, intent prediction, intrusion detection, constraint-based sequential pattern mining, knowledge

extraction and representation

1. INTRODUCTION

Sequential Pattern Mining (SPM) is highly relevant in various practical applications including
the analysis of medical treatment history (Bou Rjeily et al., 2019), customer purchases (Requena
et al., 2020), segmentation (Kuruba Manjunath and Kashef, 2021), call patterns, and digital
clickstream (Agrawal and Srikant, 1995; Srikant and Agrawal, 1996). A recent survey that covers
SPM fundamentals and applications can be found in Gan et al. (2019). In SPM, we are given a
set of sequences that is referred to as sequence database. As shown in the example in Table 1,
each sequence is an ordered set of items. Each item might be associated with a set of attributes
to capture item properties, e.g., price, timestamp. A pattern is a subsequence that occurs in at least
one sequence in the database maintaining the original ordering of items. The number of sequences
that contain a pattern defines the frequency. Given a sequence database, SPM is aimed at finding
patterns that occur more than a certain frequency threshold.
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TABLE 1 | Example sequence database with three sequences and two attributes,

price and timestamp.

Sequence database 〈(item, price, timestamp)〉

〈(A, 5, 1), (A, 5, 1), (B, 3, 2), (A, 8, 3), (D, 2, 3)〉

〈(C, 1, 3), (B, 3, 8), (A, 3, 9)〉

〈(C, 4, 2), (A, 5, 5), (C, 2, 5), (D, 1, 7)〉

In practice, finding the entire set of frequent patterns in
a sequence database is not the ultimate goal. The number of
patterns is typically too large and may not provide significant
insights. It is thus important to search for patterns that are
not only frequent but also capture specific properties of the
application at hand. This has motivated research in Constraint-
based SPM (CSPM) (Pei et al., 2007; Chen et al., 2008).
The goal of CSPM is to incorporate constraint reasoning
into sequential pattern mining to find smaller subsets of
interesting patterns.

As an example, let us consider online retail clickstream
analysis. We might not be interested in all frequent browsing
patterns. For instance, the pattern 〈login, logout〉 is likely to
be frequent but offers little value. Instead, we seek recurring
clickstream patterns with unique properties, e.g., frequent
patterns from sessions where users spend at least a minimum
amount of time on a particular set of items with a specific price
range. Such constraints help reduce the search space for the
mining task and help discover patterns that are more effective in
knowledge discovery than arbitrarily frequent clickstreams.

In this paper, our algorithmic focus is on embedding
constraint-based sequential patterns in a framework that exploits
the dichotomy of positive vs. negative outcomes in user cohorts.
We refer to this framework as Dichotomic Pattern Mining
(DPM) and present it in detail in Section 4. DPM offers several
benefits over SPM and CSPM as discussed in Section 4.1. Our
practical focus is on industry-relevant applications of digital
behavior analysis. Specifically, we consider two scenarios of
predicting the intent of users. The first application is a shopper
vs. non-shopper identification in e-commerce applications. The
second application is the detection of hostile vs non-hostile users
in intrusion detection for security applications. The experimental
results given in Section 7 demonstrate that our DPM framework
yields significant improvements on such prediction tasks when
compared to traditional approaches such as SPM and CSPM
as well as modern machine learning approaches such as
LSTMs (Hochreiter and Schmidhuber, 1997).

More broadly, the analysis of digital behavior is an
integral part of designing online experiences that are geared
toward user needs. Customer intent prediction and intrusion
detection are particularly important knowledge discovery tasks.
Successful applications enabled by DPM hold the potential to
boost performance and security in various domains including
recommendation systems in e-commerce, virtual agents in
retail, and conversational AI across the enterprise. Our paper
contributes to this line of research with the introduction of the
DPM framework and applications on digital behavior analysis.

Overall, our contributions in this paper can be summarized
as follows:

• We introduce the Dichotomic Pattern Mining (DPM)
framework that extends our recent work (Wang and Kadioglu,
2022) with further details and experiments.
• We show how to apply DPM in practice as an integration

technology between raw data andmachine learningmodels for
downstream prediction tasks.
• We demonstrate two successful applications of DPM for

digital behavior analysis on shopping intent prediction
and intrusion detection. We choose these two applications
because (i) we seek real-world dataset for industrially-relevant
applications, and (ii) we seek different behavior characteristics.
The intrusion detection targets a rare-event identification
while the e-commerce dataset is relatively more balanced in
terms of shopping behavior.

In the remainder, firstly we start with an overview of related
topics and we position our work within the literature (Section
2). Secondly we illustrate a pattern mining example (Section 3)
to make the ideas of SPM and CSPM more concrete. We then
present the details of our dichotomic pattern mining framework
and highlight its benefits(Section 4). Next, we share a system
architecture (Section 5) that shows DPM as an integration
technology. We focus on digital behavior analysis (Section 6) and
demonstrate two real-world applications (Section 7) where DPM
serves as an integrator between raw data and machine learning
models in downstream tasks for customer intent prediction and
intruder detection. Finally, we conclude the paper.

2. RELATED WORK

Pattern mining benefits from a wealth of literature and enjoys
several practical applications. Historically, sequential pattern
mining was introduced in the context of market basket
analysis (Agrawal and Srikant, 1995) with several algorithm such
as GSP (Srikant and Agrawal, 1996), PrefixSpan (Pei et al., 2001),
SPADE (Zaki, 2001), and SPAM (Ayres et al., 2002). Mining the
complete set of patterns imposes high computational costs and
contains a large number of redundant patterns. Thus, CSPM is
proposed to alleviate this problem (Bonchi and Lucchese, 2005;
Nijssen and Zimmermann, 2014; Aoga et al., 2017). Constraint
Programming and graphical representation of the sequence
database have been shown to perform well for CSPM (Guns et al.,
2017; Kemmar et al., 2017; Borah and Nath, 2018; Hosseininasab
et al., 2019).

Our proposal for Dichotomic Pattern Mining (DPM) is
related to the supervised descriptive rule discovery (SDRD)
framework (Novak et al., 2009). Specific mining tasks in
SDRD include Emerging Pattern Mining (EPM), Subgroup
Discovery and Contrast set mining. EPM is a data mining task
aimed at the detection of differentiating characteristics between
classes (García-Vico et al., 2017; Pellegrina et al., 2019), where
the discriminative patterns whose support increases significantly
from one class to another are identified. Subgroup discovery
identifies subsets of a dataset according to an interesting behavior
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with respect to certain criteria applied to a property (Atzmueller,
2015). Another closely related approach, contrast set mining,
tries to find patterns with the high difference of support
across different data groups (Bay and Pazzani, 2001). On one
hand, DPM can be seen as a special case of these existing
approaches focused on the dichotomy of positive and negative
outcomes. On the other hand, DPM offers several unique
aspects that contribute to this line of research. First, DPM
employs sequential pattern mining coupled with constraint-
reasoning based on the recent work (Wang and Kadioglu,
2022). This is a unique feature of our application that is not
considered before. Second, we envision DPM as an integration
technology and provide an end-to-end system architecture that
competes with sequence-to-pattern generation and pattern-
to-feature generation. Finally, we focus on the analysis of
digital behavior and utilize our DPM framework for two
real-world applications.

Regarding pattern mining tools to utilize in practice, the
Python tech stack lacks readily available libraries. Although
a few Python libraries exist for SPM (see, e.g., Dagenais,
2016; Gao, 2019), Seq2Pat is the first CSPM library in
Python that supports several anti-monotone and non-
monotone constraint types. Unfortunately, other CSPM
implementations are either not available in Python, hence
missing the opportunity to integrate with ML applications,
or limited to a few constraint types, most commonly, gap,
maximum span, and regular expressions (Yu and Hayato, 2006;
Aoga et al., 2016; Fournier-Viger et al., 2016; Bermingham,
2018). Powered by Seq2Pat, DPM offers a complete
end-to-end solution.

3. ILLUSTRATIVE EXAMPLE

Let us present the running example from Table 1 to make the
idea behind pattern mining more concrete. We first examine
the patterns found by sequential mining and then extend it to
constraint-basedmining.

3.1. Sequential Pattern Mining
In this example, the database is represented as a list of sequences
each with a list of items. There are three sequences over the
item set {A,B,C,D}. Assume we are searching for patterns that
occur in at least two sequences. This is typically referred to as
the minimum frequency threshold. When we are not enforcing
any constraints, we discover three patterns {[A,D], [B,A], [C,A]}
subject to minimum frequency threshold. Notice that each
pattern occurs in exactly two sequences satisfying the minimum
frequency. More specifically;

• The pattern [A,D] is a subsequence of the first and the
third sequence.
• The pattern [B,A] is a subsequence of the first and the

second sequence.
• The pattern [C,A] is a subsequence of the second and the

third sequence.

3.2. Constraint-Based Sequential Pattern
Mining
Next, we extend the example with more data to introduce
various constraints to enforce desired properties on resulting
patterns. As shown in Table 1, we incorporate two attributes;
price and timestamp. Conceptually, the idea is to capture
frequent patterns in the database from users who have
spent at least a minimum amount of time on certain
items within specific price ranges. For instance, we can
introduce a constraint to restrict the average price of items
in a pattern to be between the range [3,4]. The task now
becomes constraint-based sequential pattern mining. Initially,
we found three patterns {[A,D], [B,A], [C,A]} with a frequency
threshold of two. When we introduce the average price
[A,D] is the only remaining pattern that meets the constraint
with the same support. The other patterns do not satisfy
the conditions.

Let us examine the details of constraint satisfaction that
is entailed for the first pattern. The important observation is
that the first sequence in the database exhibits three different
subsequences of [A,D]. Notice the subsequences exhibit different
price averages. In the first sequence, the first and the second
occurrence of [A,D] has price_average([5, 2]) = 3.5 while
the third occurrence has price_average([8, 2]) = 5. The
first two subsequences are feasible with respect to the price
constraint, while the third subsequence is infeasible. One
satisfying subsequence suffices for constraint feasibility. Hence
the first sequence supports the pattern [A,D]. Similarly, the
last sequence in the database satisfies the constraint with
price_average([5, 1]) = 3 for the [A,D] pattern. Two sequences
supporting the pattern for the price average meet the minimum
required frequency condition. The other patterns do not satisfy
the constraints and frequency conditions.

The technology behind our approach for constraint-based
sequential pattern mining is based on Multi-valued Decision
Diagrams (MDDs) (Bergman et al., 2016). MDDs are widely
used as efficient data structures (Wegener, 2000) and for discrete
optimization (Bergman et al., 2016). More recently, MDDs were
utilized for CSPM (Hosseininasab et al., 2019) to encode the
sequences and associated attributes of the sequence databases.
The MDD approach accommodates multiple item attributes,
such as price and timestamp in our running example, and
various constraint types, such as the average constraint among
others. The approach is shown to be competitive with or
superior to existing CSPM algorithms in terms of scalability and
efficiency (Hosseininasab et al., 2019). We recently released the
Seq2Pat1 library to make this efficient algorithm accessible to a
broad audience with a user-friendly interface (Wang et al., 2022).

The application of Seq2Pat to address CSPM is an integral
part of our work. In the next section, we present the details of how
to integrate CSPM, via Seq2Pat, into the dichotomic pattern
mining framework.

1https://github.com/fidelity/seq2pat
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FIGURE 1 | Traditional CSPM that operates on the entire sequence database vs. our DPM approach that exploits the dichotomy of outcomes to distinguish unique

positive and negative patterns.

4. DICHOTOMIC PATTERN MINING

We now describe dichotomic pattern mining (DPM2) that
operates over sequence databases augmented with binary labels
denoting positive and negative outcomes. Our experiments in
Section 7, consider customer intent prediction and user intrusion
behavior as the outcome variables.

Algorithm 1 presents our generic approach for dichotomic
pattern mining that encapsulates constraint-based sequential
pattern mining as a sub-procedure. The algorithm receives a
sequence database, SD, containing N sequences {S1, S2, . . . , SN}.
Each sequence represents a customer’s behaviors in time order,
for example, the digital clicks in one session. Sequences are
associated with binary labels, Y, indicating the outcome of the
i-th sequence, Yi ∈ Y where i ∈ {1, 2, · · · ,N}, to be positive (⊤)
or negative (⊥), e.g., purchase or non-purchase.

As in our example in Table 1, the items in each sequence are
associated with a set of attributes A = {A, . . . ,A|A|}. There is a
set of functions Ctype(·) imposed on attributes with a certain type
of operation. For example, Cavg(Aprice) ≥ 20 requires a pattern to
have minimum average price 20. Similarly, there is a minimum
threshold θ as frequency lower bound. Given two sets A and B,
we let A \ B denote removing the elements of A that are also in B
and A ∩ B denote the intersection of the two sets.

Conceptually, our algorithm is straightforward and exploits
the dichotomy of outcomes. In Step 1, we split the sequences into
positive, Pos, and negative Neg sets. In Step 2, we apply CSPM
on each group separately subject to minimum frequency, θ⊤ or
θ⊥, while satisfying constraints, C⊤type(·) or C

⊥
type(·). Notice that

frequent patterns found might overlap. Therefore, we perform
a set difference operation in each direction. This allows us to
distinguish between recurring patterns that uniquely identify the
positive and negative populations. The outputs P of the DPM
algorithm have three sets of patterns, including the frequent

2https://github.com/fidelity/seq2pat/tree/master/notebooks/dichotomic_pattern_

mining.ipynb

Algorithm 1 Dichotomic pattern mining.

Input: Sequence database SD = {S1, S2, . . . , SN}
Input: Binary label for sequences Y, Yi ∈ Y, Yi = {⊤,⊥} and
i ∈ {1, 2, · · · ,N}
Input: Minimum frequency threshold for positive and negative
sets, θ⊤ and θ⊥

Input: Pattern constraints for positive and negative sets, C⊤type(·)

and C⊥type(·)
Output: Frequent pattern sets P
Step 1. Dichotomic split over the dataset
Pos← {SDi | Yi = ⊤}

Neg ← {SDi | Yi = ⊥}

Step 2. Apply constraint-based frequent pattern mining
Posfrequent ← CSPM(Pos, C⊤type(·), θ⊤)

Negfrequent ← CSPM(Neg, C⊥type(·), θ⊥)
Step 3. Find unique patterns and their interaction
Posunique ← Posfrequent \ Negfrequent
Negunique← Negfrequent \ Posfrequent
PNcommon ← Posfrequent ∩ Negfrequent
Step 4. Patterns ready for pattern-to-feature generation
P← {Posunique,Negunique, PNcommon}

Step 5. Return frequent patterns for downstream tasks
return P

patterns that are unique to positive observations, Posunique,
the frequent patterns that are unique to negative observations,
Negunique, and the frequent patterns that are common on both
cases, PNcommon. As outlined in Section 5, downstream ML
models can leverage these patterns as input.

4.1. Benefits of Dichotomic Pattern Mining
The traditional approach to identify recurring patterns consists
of applying (C)SPM on the entire sequence database including
both positive and negative sequences. Figure 1 illustrates a

Frontiers in Artificial Intelligence | www.frontiersin.org 4 July 2022 | Volume 5 | Article 868085

https://github.com/fidelity/seq2pat/tree/master/notebooks/dichotomic_pattern_mining.ipynb
https://github.com/fidelity/seq2pat/tree/master/notebooks/dichotomic_pattern_mining.ipynb
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org
https://www.frontiersin.org/journals/artificial-intelligence#articles


Ghosh et al. Dichotomic Pattern Mining

FIGURE 2 | High-level system architecture for dichotomic pattern mining, embedded with sequence-to-pattern generation, as an integration technology between raw

sequential data, e.g., clickstream, pattern analysis, pattern-to-feature generation, and machine learning models for downstream prediction tasks.

comparison between different pattern mining approaches as in
traditional CSPM vs. our proposal for DPM.

The traditional CSPM serves as a baseline approach while
DPM offers several benefits when compared to its traditional
counterpart. First of all, in many practical scenarios, the classes
of sequences are highly imbalanced. As such, setting a single
static minimum frequency threshold for pattern mining on
the entire sequence database is misleading. More concretely,
setting a higher frequency threshold leads to the exclusion of
useful recurring patterns in the minor class, whereas a lower
threshold keeps too many redundant and arbitrary patterns from
the major class. In both cases, the quality of patterns will be
negatively impacted.

Moreover, DPM is an expressive approach to pattern mining
in which constraint models for each class label can be configured
specifically. Thus it seeks patterns that represent each outcome
more significantly. Finally, from a scalability perspective, the
traditional approach must run on the entire dataset as a single
batch. Contrarily, decomposing the dataset eases the mining
tasks. In fact, the dichotomic CSPMs can be executed in parallel.
Computational complexity of DPM is therefore dependent on
the CSPM algorithm applied to the sequence database, which
depends on the size of the database, the number of constraints,
or the number of attributes (Pei et al., 2007; Hosseininasab
et al., 2019). Overall, we expect DPM to be more efficient in
pattern mining (since it is applied to smaller datasets thanks
to dichotomy) and DPM patterns to be more effective (since it
captures dichotomy uniquely) in downstream consumption.

5. DPM AS AN INTEGRATION
TECHNOLOGY

For sequential pattern mining with constraints, our tool
Seq2Pat is readily available for mining applications

that deal with data encoded as sequences of symbols. For
continuous sequences, such as time series, discretization can be
performed (Lin et al., 2007; Fournier-Viger et al., 2017). Previous
work presents successful applications using streaming data from
MSNBC, an e-commerce website, and online news. These are
considerably large benchmarks with 900 K sequences of length
more than 29 K, containing up to 40 K items (Hosseininasab
et al., 2019).

As illustrated in Figure 2, going beyond pattern mining, we
envision DPM as an integration technology to enable other AI
applications. DPM can be used to capture data characteristics for
downstream AI models. DPM generates succinct representations
from large volumes of data, e.g., digital clickstream activity.
The patterns found then become consumable for subsequent
machine learning models and pattern analysis. This generic
process alleviates manual feature engineering and automates
feature generation. Thus, our algorithm serves as an integration
block between pattern mining algorithms and the subsequent
learning task. In the next section, we present a demonstration of
this integration for digital behavior analysis.

Note that the output of DPM as shown in Algorithm 1

is a set of frequent patterns, P, that provides insights
into how the sequential behavior varies between populations.
Using P, we learn new representations for sequences using
sequence-to-pattern generation. Next, to create a feature vector
for each sequence, we use pattern-to-feature generation to
encode sequences. A typical featurization approach is one-
hot encoding to indicate the existence of patterns. We further
discuss these components on pattern and feature generation in
our computation experiments. Overall, our end-to-end system
architecture yields an automated feature extraction process that is
generic and independent of the machine learning models applied
to pattern embeddings. In the next section, we cover the case for
digital behavior analysis whereby DPM acts as the integrator in
real-world scenarios.
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6. DIGITAL BEHAVIOR ANALYSIS

The application focus is on leveraging DPM to analyze digital
behavior, and in particular, the analysis of large volumes of digital
clickstream data. Clickstream data is ubiquitous, possess unique
properties such as real-time and sequential ordering, and is
challenging to work with as a streaming data source. This type of
dataset is classified as semi-structured data. On the one hand, the
clickstream data provides unstructured text, such as web pages.
On the other hand, it yields sequential information where visits
can be viewed as structured event streams representing customer
journeys. Given the clickstream behavior of a set of users, we are
interested in two specific aspects ranging from population-level
to individual-level information extraction. At the population
level, we are interested in finding the most frequent clickstream
patterns across all users subject to a set of properties of interest.
At the individual level, we are interested in downstream tasks
such as intent prediction. Finally, an overarching theme over both
levels is the interpretability of the results.

Our contribution to digital behavior analysis is to show
that (i) constrained-based sequential pattern mining is effective
in extracting knowledge from semi-structured data and (ii)
DPM serves as an integration technology to enable downstream
applications while retaining interpretability. The main idea
behind our approach is first to capture the population
characteristics and extract succinct representations from large
volumes of digital clickstream activity using DPM. Then, the
patterns found by DPM become consumable in machine learning
models. Overall, our generic framework alleviates manual feature
engineering, automates feature generation, and improves the
performance of downstream tasks.

To demonstrate our approach, we explore two real-world
clickstream datasets with positive and negative intents for
product purchases based on shopping activity and intrusion
behavior based on web visits. We apply our framework to find the
most frequent patterns in digital activity and then leverage them
in machine learning models for intent and intrusion prediction.
Finally, we show how to extract high-level signals from patterns
of interest.

7. COMPUTATIONAL EXPERIMENTS

In the following, we outline the goal of our experiments,
describe the data (Section 7.1), the CSPM constraint models for
sequence-to-pattern generation using Seq2Pat (Section 7.2),
pattern-to-feature generation (Section 7.3), and downstream
prediction models.

We present numeric results that compare the prediction
accuracy on both customer intent prediction and intrusion
datasets experimenting with simple to complex machine
learning models. We also stress test the runtime behavior
of pattern mining as a function of the number of patterns
and constraints (Section 7.5.3). Finally, we study feature
importance to drive insights and explanations from auto-
generated features (Section 7.6).

To demonstrate the effectiveness of our DPM framework, we
consider the following research questions:

Q1: How does DPM perform when compared to a standalone
CSPM that does not exploit the dichotomy in outcomes?

Q2: How does DPM compare with state-of-the-art methods,
such as LSTMs, that are specifically designed for
sequential data?

Q3: How effective is DPM as an integration technology when the
patterns it generates are used in prediction tasks?

To answer the above questions, we design two sets of
experiments. In the first set of experiments, we compare
the performance of DPM and the traditional CSPM applied
to the entire dataset. In this controlled setup, the patterns
found by each method is fed into a Logistic Regression (Cox,
1958) to make downstream predictions. We consider a simple
modeling approach, such as Logistic Regression, to make the
difference between the two approaches more pronounced. As
mentioned in Section 4.1, due to class imbalance, variability
in minimum frequency, and the distinction between constraint
models, we expect DPM to be superior to CSPM in terms of
prediction performance.

In the second set of experiments, we consider an array of
machine learning models with different generalization capacities,
including the state-of-the-art LSTM architecture from Requena
et al. (2020). This allows us to quantify the best possible
prediction performance achieved by DPM and position with
respect to existing work. This also measures the effectiveness
of our approach as an integration technology as well as an
automated feature extractor from raw clickstream datasets. In
these experiments, we expect DPM to be competitive, if not
superior, to the previous literature.

7.1. Clickstream Datasets
We consider two digital clickstream datasets, namely the e-
commerce shopper intent prediction dataset (Requena et al.,
2020) for predicting the purchase intent at the end of a browsing
session and intruder detection dataset (Kahn et al., 2016) for
predicting whether the web session is made by an intruder.

7.1.1. Shopper Intent Prediction Dataset
The dataset contains rich clickstream behavior on online users
browsing a popular fashion e-commerce website (Requena et al.,
2020). It consists of 203,084 shoppers’ click sequences. There
are 8,329 sequences with at least one purchase, while 194,755
sequences lead to no purchase. The sequences are composed of
symbolized events as shown in Table 2 with length L between the

TABLE 2 | The symbols used to depict clickstream events in e-commerce

shopper intent prediction dataset.

Symbol Event

1 Page view

2 Detail (see product page)

3 Add (add product to cart)

4 Remove (remove product from cart)

5 Purchase

6 Click (click on result after search)
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range 5 ≤ L ≤ 155. Sequences leading to purchase are labeled
as positive (+1); otherwise, labeled as negative (0), resulting in a
binary intent classification problem.

7.1.2. Intruder Detection Dataset
The dataset (Kahn et al., 2016) consists of sequences of web pages
visited by users. In addition to this, it contains labels denoting
whether the web sessions were by genuine users or intruders.
It has 253,561 click sequences of users out of which 250,098
instances have more than 1 click per sequence. 247,804 sequences
of genuine users are labeled as positive (+1); the remaining
2,294 sequences are labeled as negative (0), resulting in a binary
intrusion classification problem.

7.2. Sequence-To-Pattern Generation
The Step 2 in Algorithm 1 leaves the choice of the data mining
approach to extract frequent patterns open. As mentioned earlier,
in this step, we utilize the state-of-the-art Seq2Pat (Wang
et al., 2022) to find sequential patterns that occur frequently.
Seq2Pat takes advantage of the multi-valued decision diagram
representation of sequences (Hosseininasab et al., 2019) and
offers a declarative modeling language to support constraint
reasoning. We developed Seq2Pat in a unique collaboration
between academia and industry for large-scale mining operations
to meet enterprise requirements and shared it with the
community as an open-source library. The library is written
in Cython to bring together the efficiency of a low-level
C++ backend and the expressiveness of a high-level Python
public interface (Behnel et al., 2011). Equipped with Seq2Pat,
we next declare our constraint model, Ctype(·), to specify
patterns of interest.

Figure 3 present the CSPM constraint model using the exact
Seq2Pat implementation on the intent prediction dataset. The
clickstream data serves as the sequence database (Line 3). In
addition, we have two attributes for each event: the order in
a sequence, Aorder (Line 5), and the dwell time on a page,
Atime (Line 6). Next, the Seq2Pat engine is created over the
sequence database (Line 9). We then encapsulate this order and
timestamp information in Attribute objects (Line 12–13) so that
the user can interact with the raw data. The attribute object allows
reasoning about the properties of the pattern. We enforce two
constraints to seek interesting patterns. The first condition (Line
16) restricts the span of event order in a pattern to be ≤9. This
ensures the maximum length of a pattern is 10. This condition
is added to the system as a constraint together with the average
constraint on time (Line 17). The average constraint seeks page
views where customers spend at least 20 s. More precisely, we set
Cspan(Aorder) ≤ 9 and Cavg(Atime) ≥ 20(sec). Finally, we set the
minimum frequency threshold θ as the 30% of the total number
of sequences for shopper intent prediction.

For the intruder detection dataset, the Seq2Pat constraint
model for the intruder detection is almost identical, hence we
omit the full implementation details. In this dataset, we seek for
patterns of size ≤10, where the average time spent is at least
0.02 s, and the minimum frequency threshold is set to 0.1% for
intruder detection.

Let us note that we find these values upon exploratory
data analysis on the distribution of the datasets. Notice that

these settings are not hyper-parameters to tune but rather
characteristics of the datasets and a reflection of modeling
preferences when seeking patterns of interest.

With the constraint model in Figure 3, Seq2Pat finds 457
frequent patterns in purchase sequences, Posfrequent , and 236
frequent patterns from the non-purchase sequences, Negfrequent ,
from the e-commerce shopper digital clickstreams. On intruder
detection dataset, Seq2Pat finds 2006 frequent patterns in
intruder sequences and 1006 frequent patterns in non-intruder
sequences. There exists some overlap between Posfrequent and
Negfrequent on both datasets.

7.3. Pattern-To-Feature Generation
Our next task is to convert frequent patterns into features
that can be consumed by prediction models. As shown in the
Venn diagram in Figure 1, DPM framework resorts to finding
the unique patterns and the intersection from positive and
negative outcomes.

In shopper intent prediction, when the sets of patterns from
purchaser and non-purchaser are compared, we find 244 unique
purchaser patterns, Posunique, and 23 unique non-purchaser
patterns,Negunique. The groups share 213 patterns in common. In
combination, we have 480 unique patterns PNunion. To transform
480 unique patterns into a feature space, we consider a binary
representation via one-hot encoding. For each sequence, we
create a 480-dimensional feature vector with a binary indicator
to denote the existence of a pattern.

For intruder detection, we follow the similar feature
generation procedure, but find 1,894 unique intruder patterns,
894 unique non-intruder patterns, with 112 patterns being in
common. In combination, we have 2,900 unique patterns to
create the binary indicator in the second dataset.

7.4. [Q1] Comparison of DPM With CSPM
Let us start by quantifying the added value of DPM as opposed to
applying CSPM on the entire dataset which serves as a baseline.
Let us note that CSPM is a strong baseline. CSPM already
incorporates sequential information and constraint-reasoning.
As such, it is an advancement over classical pattern mining
approaches, which we would like to improve further with DPM.

In this set of experiments, a Logistic Regression (LR) model is
used for the shopper intent prediction and the intruder detection
tasks. In setting this baseline, we consider a standard (logistic)
regression model so that we can attribute the difference in
the results to the choice of pattern mining approach. We first
generate patterns from sequences, as explained in Section 7.2,
and then generate features from patterns, as explained in
Section 7.3. Then, the LR model is trained using either the
extracted features by DPM or CSPM. The goal of this experiment
is to demonstrate that DPM provides the necessary flexibility
in the mining process, especially when sequences are largely
imbalanced in classes. This is inherently the case inmost practical
scenarios such as we have many more visitors than purchasers
in fashion e-commerce and only a fraction of intruders within
regular access patterns. DPM helps to find patterns that
are significantly presented in both major and minor classes,
meanwhile it effectively excludes redundant patterns. Thus DPM
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FIGURE 3 | Seq2Pat model to enforce sequential pattern mining with constraints on the clickstream dataset in fashion e-commerce.

is expected to be superior to standalone CSPM in supporting the
downstream modeling.

7.4.1. Prediction Model
We train a LR model on each of the two used datasets. We use
80% of the data as the train set and 20% as the test set and repeat
this split 10 times for robustness. We compare the average results
for each model based on Precision, Recall, F1 score, and the area
under the ROC curve, aka AUC.

7.4.1.1. Hyper-Parameter Tuning
On both datasets, we apply three-fold cross-validation for hyper-
parameter tuning using the train set. We apply grid search on
the regularization parameter C [0.001, 0.01, 0.1, 1, 10, 100, 1,000]
for LR model. On shopper intent prediction dataset, a final
parameter C is set to be 0.01 for the data using traditional CSPM
features (referred to as LR_CSPM) and 0.1 for the data using
DPM based features (referred to as LR_DPM) since these values
provide the best performance in terms of AUC. On the intruder
detection dataset, C has been set to be 100 and 0.1 for LR_CSPM
and LR_DPM, respectively.

7.4.2. Prediction Performance of DPM and CSPM

Features With Logistic Regression
Table 3 summarizes the averaged performance and standard
deviation of the LR model for LR_CSPM and LR_DPM. The
best performance is marked in bold. We set the minimum
frequency threshold to be 30% for shopper intent prediction and
0.1% for intruder detection. Notice that LR model is not able
to utilize the sequential information of input by default. The
auto-generated features by applying DPM or standalone CSPM

TABLE 3 | Comparison of averaged intent classification performance by using

Logistic Regression model on CSPM and DPM features over 10 random

Train-Test splits.

Model Precision(%) Recall(%) F1(%) AUC(%)

Shopper intent prediction dataset

LR_CSPM 14.04 (±0.56) 36.25 (±4.59) 20.15 (±0.74) 78.67 (±0.38)

LR_DPM 42.15 (±1.5) 63.22 (±3.93) 50.47 (±0.9) 94.28 (±0.17)

Intruder detection dataset

LR_CSPM 6.10 (±1.18) 13.90 (±5.04) 8.07 (±1.12) 76.98 (±0.85)

LR_DPM 30.87 (±6.21) 22.81 (±5.02) 25.25 (±1.32) 87.11 (±0.57)

enable this simple model to tackle the sequential knowledge.
On both shopping and intrusion datasets, LR_DPM consistently
outperforms LR_CSPM on all metrics by a significant margin.
This highlights the effectiveness of DPM to exploit unique
patterns in different classes.

For shopper intent prediction, DPM identifies 480 patterns
while standalone CSPM finds only 236 patterns. Standalone
CSPM is applied on the entire data and sequence classes are
largely imbalanced with only 8,329 out of 203,084 sequences
being positive. As a result, a single frequency threshold becomes
too high to include the patterns that are frequent in positive
sequences. Instead, most mined patterns are restricted to be
the ones from negative sequences. Overall, patterns mined from
the entire dataset does not transform into predictive features
for intent classification. DPM overcomes such performance
deterioration by exploiting the structure of the data.
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Alternatively, we have the option to lower the minimum
frequency to include more patterns, such as by setting the
threshold in standalone CSPM to be 30% of positive sequences,
i.e., 0.01% of the entire set of sequences. Then we obtain 4,615
patterns which bring redundant and arbitrary patterns from
negative sequences since the threshold becomes too low. The
performance is again in favor of DPM. For this dataset, we
conclude that setting a single static frequency threshold, a high
or low value, misguides the feature generation and adversely
impacts the performance of the downstream prediction task.

For the intruder detection dataset, we obtain similar results
as shown in Table 3, The number of patterns decreased from
2,900 by applying DPM to 988 by standalone CSPM with a
minimum frequency threshold being 0.1%. DPM dominates
CSPM performance across all metrics by a large margin again.

To conclude Q1, based on these experiments, we find that
DPM is superior to standalone CSPM. Before proceeding with
further experiments that combine DPM with more sophisticated
models, let us examine the efficiency in terms of runtime in the
next section.

7.4.3. Runtime Performance
We report runtime performance of pattern mining on a machine
with Linux RHEL7 OS, 16-core 2.2 GHz CPU, and 64 GB of
RAM. We apply Seq2Pat to implement DPM and standalone
CSPM. We impose the constraints as described in Section 7.2.
For shopper intent prediction, the runtime of DPM is 117.49
s on positive sequences and 2088.34 s on negative sequences.
Standalone CSPM runs for 2136.09 s. The runtime results are
comparable since it is mostly dominated by the size of the
majority class. For intruder detection, DPM runs for 0.2 s on
positive sequences and 15.21 s on negative sequences while
CSPM runs for 13.82 s. Overall, both DPM and CSPM achieve
similar runtime and they both scale to sequence databases
with 200,000+ and 250,000+ sequences. This is thanks to the
underlying Seq2Pat library for an efficient implementation of
constraint-based sequential pattern mining.

7.5. [Q2 and Q3] DPM as an Integration
Technology and Comparison With the
State-Of-The-Art in Prediction
Performance
The goal of our next set of experiments is to quantify
the effectiveness of DPM as an integration technology
and an automated feature extractor. For that purpose, we
consider an array of machine learning models that are more
sophisticated than Logistic Regression and exhibit varying
generalization capacity.

7.5.1. Prediction Models
As shown in Table 4, we consider four different models with
different strengths using CSPM or DPM features either in
standalone or in combination with LSTM.

1. LightGBM light gradient boosting machines (Ke et al., 2017).
2. Shallow_NN shallow neural network using one

hidden layer.

TABLE 4 | The set of machine learning models considered and their feature

space.

Model Features space

LightGBM_{CSPM, DPM} CSPM or DPM features

Shallow_NN_{CSPM, DPM} CSPM or DPM features

LSTM Clickstream Data

LSTM+{CSPM, DPM} Clickstream data + CSPM or DPM patterns

3. LSTM The state-of-the-art long short-term memory
network (Hochreiter and Schmidhuber, 1997) from Requena
et al. (2020) that uses input sequences as-is. LSTM applies one
hidden layer on the output of the last layer followed by a fully
connected layer to make intent prediction.

4. LSTM+{CSPM,DPM} The LSTMmodel boosted with pattern
embeddings from CSPM or DPM. The model uses the same
architecture with LSTM, with the only difference being that
pattern based features are concatenated to the output of LSTM
and are used together as input of the hidden layer.

Table 4 also shows the different feature spaces used by the
compared models. Note models such as LightGBM and
Shallow_NN cannot operate on semi-structured clickstream
data since they cannot accommodate recurrent sequential
relationships. Contrarily, more sophisticated architectures, such
as LSTM can work directly with the input. For the former,
our approach allows these relatively simpler models to work
with sequence data. For the latter, our approach augments
advanced models by incorporating pattern embeddings into the
feature space. We use the same train-test split as described in the
first set of experiments and repeat it 10 times for robustness.

7.5.1.1. Hyper-Parameter Tuning
Similar to the parameter tuning in previous experiment, we apply
three-fold cross-validation for hyper-parameter tuning using the
train set. We apply grid search on the number of iterations
[400, 600, 800, 1,000] for LightGBM, number of nodes in the
hidden layer [32, 64, 128, 256, 512] for Shallow_NN and LSTM
models, number of LSTM units [16, 32, 64, 128]. We use 10%
of train set as a validation set to determine if training meets
early stop condition. When the loss on validation set stops
decreasing steadily, training is terminated. The validation set is
used to determine a decision boundary on the predictions for
the highest F1 score. The final parameters for shopper intent
predictionmodels are 400 iterations for LightGBM, 64 nodes for
shallow_NN, 32 LSTM units in LSTM models with 64 and 128
nodes in hidden layers. Intruder detection has slightly different
parameters where LightGBM still gets 400 iterations, but the
tuning results have 32 nodes for shallow_NN, 16 and 32 LSTM
units in LSTM and LSTM+{CSPM, DPM} model, respectively,
with each having 32 nodes in hidden layers.

7.5.2. Prediction Performance With Sophisticated

Models
Table 5 presents the average results that compare the
performance of the models on the two datasets. The best
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TABLE 5 | Comparison of averaged prediction performance by different methods over 10 random Train-Test splits.

Model Precision(%) Recall(%) F1(%) AUC(%)

Shopper intent prediction dataset

LightGBM_CSPM 25.11 (±2.25) 33.34 (±3.52) 28.42 (±0.59) 83.81 (±0.43)

LightGBM_DPM 44.70 (±1.92) 63.15 (±4.65) 52.20 (±0.65) 94.98 (±0.15)

Shallow_NN_CSPM 22.62 (±2.06) 37.78 (±3.95) 27.18 (±0.59) 83.17 (±0.45)

Shallow_NN_DPM 44.40 (±2.18) 64.11 (±4.57) 52.31 (±0.54) 95.00 (±0.17)

LSTM 54.96 (± 1.77) 69.53 (±4.31) 61.28 (±0.95) 96.41 (±0.15)

LSTM+CSPM 55.29 (±1.78) 69.10 (±3.00) 61.36 (±0.83) 96.42 (±0.15)

LSTM+DPM 54.35 (±2.40) 73.64 (±4.70) 62.39 (±0.81) 96.76 (±0.12)

Intruder detection dataset

LightGBM_CSPM 7.27 (±1.27) 12.66 (±4.35) 8.94 (±1.39) 77.25 (±0.90)

LightGBM_DPM 32.50 (±3.52) 23.31 (±3.84) 26.81 (±2.47) 86.35 (±0.72)

Shallow_NN_CSPM 6.51 (±1.16) 13.34 (±4.14) 8.50 (±1.21) 77.30 (±0.87)

Shallow_NN_DPM 39.55 (±6.15) 22.28 (±4.14) 27.94 (±2.46) 85.28 (±0.81)

LSTM 42.62 (±6.19) 39.24 (±6.20) 40.31(±0.98) 95.20 (±0.36)

LSTM+CSPM 42.20 (±5.49) 41.52 (±3.64) 41.46 (±1.64) 95.42 (±0.47)

LSTM+DPM 50.81 (±8.24) 35.89 (±3.63) 41.46 (±1.59) 95.14 (±0.26)

performance is marked in bold. For feature space, we either use
the patterns found by CSPM or DPM, the original clickstream
events in the raw data, or their combination. For shopper intent
prediction, using auto-generated DPM features, LightGBM,
and Shallow_NN models achieve a performance that closely
match the results given in the reference work (Requena et al.,
2020). The difference is, models in Requena et al. (2020) use
hand-crafted features, while we automate the feature generation
process here. Notice that without using clickstream events,
the performance of both two models using DPM features
significantly outperform those using CSPM features. When a
more sophisticated model such as LSTM is used, it outperforms
LightGBM and Shallow_NN. When the LSTM model is
combined with CSPM or DPM, LSTM+CSPM achieves the best
Precision among compared models while it achieves a similar
performance with LSTM in terms of other metrics. Compared to
LSTM and LSTM+CSPM, LSTM+DPM yield a substantial increase
in Recall, and consequently, the highest F1 score. LSTM+DPM is
also superior to others in terms of AUC.

On the intruder detection dataset, again automatic feature
extraction provides LightGBM and Shallow_NN an
opportunity to tackle sequential input. As before, LSTM
model using clickstream sequences significantly improves
the prediction performance compared to LightGBM and
Shallow_NN. Further, LSTM+CSPM performs better at Recall,
Precision and slightly improves at AUC. Overall, LSTM+DPM
achieves the best precision performance and the same highest F1
score as LSTM+CSPM.

To conclude Q2 and Q3, based on the results observed in two
different datasets across four modeling choices, we conclude that
the features extracted automatically via DPM boost ML models
in the downstream task for intent and intrusion prediction,
especially for the models such as LightGBM and Shallow_NN
that lack the capability to operate on sequential clickstream data.
Using DPM achieves significantly better performance than using

FIGURE 4 | The runtime (y-axis-left) and the number of patterns found

(y-axis-right) with varying constraints (x-axis) on the fashion e-commerce

dataset. In this setting, the minimum frequency threshold, θ , set to 2, to stress

test runtime performance.

CSPM for these two models. As for the model that can deal with
sequence data such as LSTM, the improvement by using DPM over
CSPM or only clickstream sequence becomes leveled off due to
the sophistication of the model itself, which is as shown in the
intruder detection task, while we observe a clear boost by using
DPM features in the task for intent prediction.

7.5.3. Runtime Performance
Let us complement the model performance results with
observations in the runtime as a function of different constraint
models. We present the results for the fashion e-commerce
dataset only since the findings are similar. We apply Seq2Pat
on the positive set with 8,329 clickstream sequences. We impose
the same types of constraint as described in Section 7.2 while we
vary the constraint on the minimum average time spent on pages.
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FIGURE 5 | SHAP values of auto-generated Seq2Pat features. Top-20 features ranked in descending importance. Color indicates high (in red) or low (in blue) feature

value. Horizontal location indicates the correlation of the feature value to a high or low model prediction.

To stress-test the runtime, we set the minimum frequency θ = 2
which returns almost all the feasible patterns.

Figure 4 shows the runtime in seconds (y-axis-left) and the
number of patterns found (y-axis-right) as the average constraint
increases (x-axis). As the constraint becomes harder to satisfy, the
number of patterns goes down as expected. The runtime for the
hardest case is ∼250 s while we observe speed-up as constraint
reasoning becomes more effective.

7.6. Feature Importance
Finally, we study feature importance to drive high-level insights
and explanations from auto-generated DPM features.We examine
the Shapley value (Lundberg et al., 2020) of features from the
LightGBMmodel in the fashion e-commerce dataset.

Figure 5 shows the top-20 features with the highest impact.
Our observations match previous findings in Requena et al.
(2020). The pattern 〈3, 1, 1〉 provides the most predictive
information, given that the symbol (3) stands for adding a
product. Let us remind that Table 2 describes the meaning of
symbols. Repeated page views as in 〈1, 1, 1, 1, 1, 1, 1〉, or specific
product views, 〈2, 1, 1, 1〉 are indicative of purchase intent,
whereas web exploration visitingmany products, 〈1, 1, 2, 1, 2〉, are

more negatively correlated to a purchase. Interestingly, searching
actions 〈6〉 have minimum impact on buying, raising questions
about the quality of the search and ranking systems. Our frequent
patterns also yield new insights not covered in the existing hand-
crafted analysis. Most notably, we discover that removing a
product but then remaining in the session formore views, 〈4, 1, 1〉
is an important feature, positively correlated with a purchase.
This scenario, where customers have specific product needs, hints
at the missed business opportunity to create incentives such as
prompting virtual chat or personalized promotions.

8. CONCLUSION

Pattern mining is an essential part of data analytics and
knowledge discovery from sequential databases. It is a powerful
tool, especially when combined with constraint reasoning
to specify desired properties. In this paper, we presented a
simple procedure for Dichotomic Pattern Mining that operates
over semi-structured clickstream datasets. The approach
learns new representations of pattern embeddings. This
representation enables simple models, which cannot handle
sequential data by default, to predict from sequences. Moreover,
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it boosts the performance of more complex models with
feature augmentation. Experiments on digital behavior analysis
demonstrate that our approach is an effective integrator between
automated feature generation and downstream tasks. Finally, as
shown in our feature importance analysis, the representations
we learn from pattern embeddings remain interpretable.

We have only considered the dichotomy between binary
classes. Extending Dichtomic Pattern Mining to effectively
deal with multi-class classification problems is a natural next
direction. Additionally, sequence databases reach large-scales
quickly. It remains open whether it is possible to design a
distributed version of CSPM and DPM algorithms so that we can
take advantage of modern architectures, including GPUs, to scale
beyond datasets considered in our experiments.
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