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The medical complexity and high acuity of patients in the cardiac intensive care unit

make for a unique patient population with high morbidity and mortality. While there are

many tools for predictions of mortality in other settings, there is a lack of robust mortality

prediction tools for cardiac intensive care unit patients. The ongoing advances in artificial

intelligence and machine learning also pose a potential asset to the advancement of

mortality prediction. Artificial intelligence algorithms have been developed for application

of electrocardiogram interpretation with promising accuracy and clinical application.

Additionally, artificial intelligence algorithms applied to electrocardiogram interpretation

have been developed to predict various variables such as structural heart disease, left

ventricular systolic dysfunction, and atrial fibrillation. These variables can be used and

applied to new mortality prediction models that are dynamic with the changes in the

patient’s clinical course and may lead to more accurate and reliable mortality prediction.

The application of artificial intelligence to mortality prediction will fill the gaps left by current

mortality prediction tools.

Keywords: electrocardiogram, ECG interpretation, artificial intelligence, mortality prediction, machine learning,

cardiac intensive care unit

INTRODUCTION

The modern cardiac intensive care unit (CICU) has evolved from the original coronary care unit
(CCU) paradigm developed 50 years ago to provide more effective care for patients with acute
myocardial infarction (AMI) (Katz et al., 2010) into an integrated, multidisciplinary unit that
provides comprehensive care to an increasingly diverse and complex patient population. Recent
studies highlight the dramatic changes in the contemporary CICU patient population including a
shift from AMI to circulatory failure and multi-organ dysfunction (Katz et al., 2010; Bohula et al.,
2019; Jentzer et al., 2019c). These studies underscore the substantial complexity of the modern
CICU population and demonstrate the multitude of acute and chronic cardiac and non-cardiac
illnesses suffered by these patients (Katz et al., 2010; Bohula et al., 2019; Jentzer et al., 2019c; Lyle
et al., 2020; Miller et al., 2021). There has been a recent emphasis on outcome prognostication
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and mortality risk stratification in CICU patients (Jentzer
and Rossello, 2021). Risk stratification strategies tailored to
this medically complex patient cohort are necessary to direct
management to improve patient care and reduce mortality
(Miller et al., 2021).

The breadth of diagnostic testing performed in the CICU
(e.g., laboratory and vital sign assessment, cardiac telemetry,
invasive, and non-invasive hemodynamic monitoring) provides
an enormous quantity of data. Previous CICU mortality
prediction studies have failed to fully leverage the complexity of
the data available in the medical record to optimize prediction
performance. This has created a niche for the use of artificial
intelligence (AI) methods to integrate variables to provide risk
predictions. For instance, digitized electrocardiographic data has
been used as a substrate to create deep learning models capable
of diagnostic predictions. By treating the standard 12-lead
electrocardiogram (ECG) as an image and applying deep learning
neural networks to the cardiac biosignal, AI models can discern
the presence or absence of specific underlying cardiac diseases
(Attia et al., 2019a; Tison et al., 2019; Christopoulos et al., 2020;
Gladding et al., 2020; Jentzer et al., 2021a; Kashou et al., 2021).
This diagnostic and prognostic capability may be particularly
valuable to the care of patients in the CICU. In this systematic
review, we explore (i) existing CICUmortality predictionmodels,
(ii) how AI-ECG can be embedded into clinical practice, and (iii)
use of AI-ECG in CICU for mortality prediction.

METHODS

We conducted a thorough literature search using our
institutional database searchwhich includes PubMed, UpToDate,
Catalog, and Google Scholar. Keywords used for the search were:
“artificial intelligence,” “machine learning,” “deep neural
network,” “mortality prediction,” “risk score,” “cardiac intensive
care unit,” “CICU,” “CCU,” and “ECG.” Articles were filtered
to include original studies and meta-analyses. There is limited
work in this field as it relates to AI-ECG, and there is even
less literature in a CICU population. The authors made a
comprehensive review of the limited literature available.

EXISTING CICU MORTALITY PREDICTION
MODELS

Given the high mortality and complexity of patients in the
CICU, a mortality risk stratification tool could guide clinical
decision making during and after hospitalization. Multiple
mortality prediction models for critically ill patients have
been developed in non-CICU settings, including medical
and surgical intensive care units (ICUs). However, these
prediction models were not developed specifically for use in
the CICU and therefore are poorly calibrated for such patients.
Common risk scores in the ICU include the Acute Physiology
and Chronic Health Evaluation (APACHE)-III, APACHE-IV,
Sequential Organ Failure Assessment (SOFA), and Oxford Acute
Severity of Illness Score (OASIS) (Table 1). Analysis of these risk
scores demonstrate inconsistent performance for mortality risk

stratification when applied to the CICU population characterized
by good discrimination but poor calibration (Jentzer et al., 2019a,
2020; Jentzer and Rossello, 2021; Miller et al., 2021). The need for
a CICU-specific mortality prediction tool led to the development
of the Mayo Cardiac Intensive Care Unit Admission Risk Score
(M-CARS), which is the first published risk score designed for
use in CICU patients and outperforms standard severity of illness
scores for prediction of in-hospital mortality in terms of both
discrimination and calibration (Jentzer et al., 2019a).

M-CARS incorporates data available at the time of CICU
admission to predict in-hospital mortality using 7 clinical
variables (Jentzer et al., 2019a). The component variables include
blood urea nitrogen (BUN), anion gap, Braden skin score, red cell
distribution width (RDW), diagnosis of cardiac arrest, diagnosis
of shock, and diagnosis of respiratory failure (Table 2). Variables
are collected at the time of CICU admission with a score ranging
from 0 to 10. In addition, the M-CARS on CICU admission
can predict the likelihood of requiring critical care interventions
during the CICU stay (Breen et al., 2021a). An M-CARS <2
correlates with a patient that typically does not require CICU
level of care based on low mortality (<1% in hospital) and
infrequent need for critical care resources (Jentzer et al., 2019a;
Breen et al., 2021a). A score >6 is associated with a high in-
hospital mortality risk that generally exceeds 50%, with high
resource utilization (Jentzer et al., 2019a; Breen et al., 2021a).
Knowing these risks early in the patient’s hospital course will
allow for additional interventions and collaborations, such as
with palliative care. Notably, an increasing M-CARS is associated
with incrementally higher all-cause mortality out to 1 year after
CICU admission, including among patients surviving to hospital
discharge (Breen et al., 2021c). These findings highlight the
multitude of ways that the prognostic information captured by
the M-CARS can be incorporated into clinical decision-making.

As emphasized by M-CARS, abnormalities in common
laboratory tests at the time of CICU admission have been
associated with higher mortality, including hyponatremia,
hyperkalemia, hypochloremia, hypoalbuminemia, anemia,
elevated RDW, elevated anion gap, and elevated BUN (Jentzer
et al., 2019a; Breen et al., 2020, 2021b; Rayes et al., 2020; Padkins
et al., 2021). One variable utilized in the M-CARS requires
further clarification—the Braden skin score, which is a bedside
nursing tool used to predict the risk of skin pressure injury.
The Braden skin score ranges from six to 23 and is derived
from six individual subscores reflecting different components of
risk; a lower score predicts an increased risk of pressure injury
(Table 3). Prior studies have demonstrated that a lower Braden
skin score at the time of CICU admission is associated with a
higher risk of all-cause mortality (Bergstrom et al., 1987; Jentzer
et al., 2019b). A lower Braden skin score is a proposed marker
of frailty, making the M-CARS novel insofar as it is the first
mortality risk score to include this important construct (Jentzer
et al., 2019a,b).

Prior to the establishment of M-CARS, mortality prediction
tools used in the CICU were disease specific and not necessarily
formulated for the broader CICU patient population. The
Thrombolysis in Myocardial Infarction (TIMI), the Global
Registry of Acute Coronary Events (GRACE), and Zwolle risk
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TABLE 1 | Commonly used risk scores: APACHE-III, APACHE-IV, SOFA, and

OASIS.

APACHE-III Score (0–299) (Knaus et al., 1991).

Variable Points assigned

Age 0–24

Comorbid

condition

0–23

Physiology 0–252

APACHE-IV Score – 129 Variables from the worst values from the

initial 24 h of intensive care unit (ICU) admission (Zimmerman et al.,

2006).

SOFA score calculated on admission and every 48 h until discharge. Initial

and highest scores of more than 11 or mean scores of more than five

correspond to a mortality of more than 80% (Ferreira et al., 2001).

Variable Value Points assigned

PaO2/FiO2 >400 0

301–400 1

≤300 2

101–200 with ventilatory support 3

≤100 with ventilatory support 4

Platelets >150 × 103/mm3 0

101–150 × 103/mm3 1

51–100 × 103/mm3 2

21–50 × 103/mm3 3

≤20 × 103/mm3 4

Bilirubin <1.2 mg/dL 0

1.2–1.9 mg/dL 1

2–5.9 mg/dL 2

6–11.9 mg/dL 3

>12 mg/dL 4

Blood

Pressure

Hypotension absent 0

Mean arterial pressure <70 mmHg 1

On dopamine ≤5 mcg/kg/min or any

dobutamine

2

On dopamine >5 mcg/kg/min, epinephrine

≤0.1 mcg/kg/min, or norepinephrine ≤0.1

mcg/kg/min

3

On dopamine >15 mcg/kg/min, epinephrine

>0.1 mcg/kg/min, or norepinephrine >0.1

mcg/kg/min

4

Glasgow

Coma Score

15 0

13–14 1

10–12 2

6–9 3

<6 4

Creatinine <1.2 mg/dL 0

1.2–1.9 mg/dL 1

2–3.4 mg/dL 2

3.5–4.9 mg/dL or urine output 200–500

mL/day

3

>5 mg/dL or urine output <200 mL/day 4

OASIS scores in the 20th decile correlated with an 18% ICU and 25%

hospital mortality rate and Oasis scores in the 30th decile correlated with a

40% ICU and 49% hospital mortality rate (Johnson et al., 2013).

(Continued)

TABLE 1 | Continued

Variable Value Points assigned

Pre-ICU

Length of

Stay

<0.17 h 5

0.17–4.94 h 3

4.95–24 h 0

24.01–311.8 h 2

>311.8 h 1

Age <24 years 0

24–53 years 3

54–77 years 6

78–89 years 9

>90 years 7

Glasgow

coma score

3–7 10

8-13 4

14 3

15 0

Heart rate <33 beats per minute 4

33–88 beats per minute 0

89–106 beats per minute 1

107–125 beats per minute 3

>125 beats per minute 6

Mean arterial

pressure

<20.65 mmHg 4

20.65–50.99 mmHg 3

51–61.32 mmHg 2

61.33–143.44 mmHg 0

>143.44 mmHg 3

Respiratory

rate

<6 breaths per minute 10

6–12 breaths per minute 1

13–22 breaths per minute 0

23–30 breaths per minute 1

31–44 breaths per minute 6

>44 breaths per minute 9

Temperature <33.22◦C 3

33.22–35.93◦C 4

35.94–36.39◦C 2

36.4–36.88◦C 0

36.89–39.88◦C 2

>39.88 6

Urine output <671 cc/day 10

671–1426.99 cc/day 5

1427–253.99 cc/day 1

2,544–6,896 cc/day 0

>6,896 cc/day 8

Ventilated No 0

Yes 9

Elective

surgery

No 6

Yes 0
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TABLE 2 | Calculating the Mayo Cardiac Intensive Care Unit Admission Risk

Score (M-CARS). Calculated at time of admission; score ranges from 0 to 10.

Variable Value Points assigned

Admission value of BUN >23 mg/dL 1

≤23 mg/dL 0

Admission value of anion gap >14 mmol/L 1

≤14 mmol/L 0

Admission Braden skin score ≤12 2

13–15 1

>15 0

Admission value of RDW >14.3% 1

≤14.3% 0

Admission diagnosis of cardiac arrest Yes 2

No 0

Admission diagnosis of shock Yes 2

No 0

Admission diagnosis of respiratory failure Yes 1

No 0

TABLE 3 | Braden scale for predicting risk of pressure-induced injury.

Variable Value Points assigned

Sensory perception Completely limited 1

Very limited 2

Slightly limited 3

No impairment 4

Moisture Constantly moist 1

Very moist 2

Occasionally moist 3

Rarely moist 4

Activity Bedfast 1

Chairfast 2

Walks occasionally 3

Walks frequently 4

Mobility Completely immobile 1

Very limited 2

Slightly limited 3

No limitation 4

Nutrition Very poor 1

Probably inadequate 2

Adequate 3

Excellent 4

Friction and Shear Problem 1

Potential problem 2

No apparent problem 3

Score of 18 or less indicates high risk of developing pressure sores (Bergstrom et al.,

1987).

scores were developed for patients with AMI or ACS (Antman
et al., 2000; Granger et al., 2003; De Luca et al., 2004) (Table 4).
In patients with acute decompensated HF, several risk scores
help predict short-term mortality. Some of these include the

Enhanced Feedback for Effective Cardiac Treatment (EFFECT),
the Organized Program to Initiate Lifesaving Treatment in
Hospitalized Patients with Heart Failure (OPTIMIZE), and the
Get with the Guidelines—Heart Failure (GWTG-HF) risk scores
(Lee et al., 2003; Abraham et al., 2008; Peterson et al., 2010;
Lyle et al., 2020) (Table 5). These scores are capable of providing
risk stratification amongst unselected CICU patients; however,
their predictive performance is inferior to standard ICU risk
scores when applied to CICU patients, even in those with
HF (Lyle et al., 2020).

AI-ECG IN CLINICAL PRACTICE

The surface ECG is one of the most ubiquitous point-of-
care tests in contemporary CICU practice and remains the
gold standard for diagnosing a variety of clinical syndromes.
As such, leveraging the ECG to provide an assessment of a
patient’s cardiac function would be a powerful tool in the CICU.
Accordingly, recently developed AI-ECG algorithms can identify
various patient characteristics and disease processes based on the
surface 12-lead ECG alone. AI-ECG models have demonstrated
the ability to classify age and sex, as well as the ability to
detect the presence of atrial fibrillation (AF), left ventricular
systolic dysfunction (LVSD), and structural heart diseases (e.g.,
aortic stenosis, amyloidosis, pulmonary arterial hypertension,
mitral valve prolapse, and hypertrophic cardiomyopathy) (Attia
et al., 2019a; Tison et al., 2019; Christopoulos et al., 2020;
Gladding et al., 2020; Jentzer et al., 2021a; Kashou et al.,
2021). While these AI-ECG algorithms were developed based
on large cohorts consisting primarily of outpatients, there is
no reason to suspect that they would not perform well in
CICU patients.

Indeed, a previously developed AI-ECG algorithm can predict
the risk of LVSD in the CICU population (Jentzer et al., 2021a).
The AI-ECG algorithm used in this study to detect LVSD was
derived and validated in almost 100,000 patients from Mayo
Clinic (Attia et al., 2019b). The AI-ECG algorithm was developed
by using the Keras framework with a Tensorflow backend and
Python (Attia et al., 2019b). Half of the sample of the large
data set was used to train the network and the remainder
of the data set to test the network (Attia et al., 2019b). The
original model had a sensitivity of 86.3%, specificity of 85.7%,
and accuracy of 85.7% in the validation cohort including a broad
patient population (Attia et al., 2019b). In a secondary validation
study, 5,680 unique CICU patients with a mean age of 68 ±

15 years (34% females) were included if they underwent an
AI-ECG and transthoracic echocardiogram within seven days
and were not included in the original derivation cohort. The
AI-ECG algorithm was applied to identify the probability of
the presence of LVSD, as defined by a left ventricular ejection
fraction (LVEF) of ≤40% in the CICU cohort and ≤35% in
the original derivation cohort, which was present in 34% of the
CICU patient population as compared to 19.9% for the general
population in which the algorithm was derived and validated
(Attia et al., 2019b; Jentzer et al., 2021a). The AI-ECG had a
sensitivity of 73%, specificity of 78%, negative prediction value
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TABLE 4 | The TIMI, GRACE, and Zwolle risk scores for prediction of outcome in

acute MI/ACS patients.

Higher TIMI risk score correlates with increased number of events at 14 day

including, all-cause mortality, new or recurrent MI, or severe recurrent

ischemia requiring revascularization (Antman et al., 2000).

Variable Value Points

assigned

Age ≥65 1

<65 0

Presence of at least three risk factors

for coronary heart disease

Yes 1

No 0

Prior coronary stenosis of ≥50% Yes 1

No 0

Presence of ST segment deviation on

admission ECG

Yes 1

No 0

At least two anginal episodes in prior

24 h

Yes 1

No 0

Elevated serum cardiac biomarkers Yes 1

No 0

Use of aspirin in prior seven day Yes 1

No 0

A low GRACE score (≤108) correlated with <1% in-hospital death, an

intermediate GRACE score (109–140) correlated with 1–3% in-hospital

death, and a high GRACE score (>140%) correlated with >3% in-hospital

death (Granger et al., 2003).

Variable Value Points

assigned

Age <40 0

40–49 18

50–59 36

60–69 55

70–79 73

80–89 91

≥90 100

Resting heart rate <50 beats

per minute

0

50–69.9

beats per

minute

3

70–89.9

beats per

minute

9

90–109.9

beats per

minute

14

110–149.9

beats per

minute

23

150–199.9

beats per

minute

35

≥200 beats

per minute

43

Systolic blood pressure ≤79.9 mmHg 24

(Continued)

TABLE 4 | Continued

Variable Value Points

assigned

80–99.9

mmHg

22

100–119.9

mmHg

18

120–139.9

mmHg

14

140–159.9

mmHg

10

160–199.9

mmHg

4

≥200 mmHg 0

Initial serum creatinine 0–0.39 mg/dL 1

0.4–0.79

mg/Dl

3

0.8–1.19

mg/dL

5

1.2–1.59

mg/dL

7

1.6–1.99

mg/dL

9

2.0–3.99

mg/dL

15

≥4 mg/dL 20

Other factors History of

heart failure

24

History of MI 12

ST segment

depression

11

Elevated

cardiac

enzymes

15

No in-hospital

percutaneous

coronary

intervention

done

14

Low risk (Zwolle score ≤3) patients undergoing primary percutaneous

coronary intervention had a mortality rate of 0.1% at 2 days and 0.2%

between two and 10 days post-MI (De Luca et al., 2004).

Variable Value Points

assigned

Killip class 1 0

2 4

3–4 9

TIMI flow post intervention 3 0

2 1

0–1 2

Age <60 0

≥60 2

Three-vessel disease No 0

Yes 1

Anterior infarction No 0

Yes 1

Ischemia time ≤4 h 0

>4 h 1
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TABLE 5 | The EFFECT, OPTIMIZE-HF, and GWTG-HF risk scores predict

outcomes in patients with acute decompensated heart failure.

A low risk EFFECT score of <60 corresponds to 0.4% 30-day and

7.8% 1-year mortality. A high risk EFFECT score of >150 corresponds

to 59% 30-day and 78.8% 1-year mortality (Lee et al., 2003).

Variable 30-day score 1-year score

Age +age (in

years)

+age (in

years)

Respiratory rate +rate (in

breaths/minute)

+rate (in

breaths/minute)

Systolic blood pressure ≥180 mmHg −60 −50

160–179 mmHg −55 −45

140–159 mmHg −50 −40

120–139 mmHg −45 −35

100–119 mmHg −40 −30

90–99 mmHg −35 −25

<90 mmHg −30 −20

Urea nitrogen (maximum 60 mg/dL) +level (in

mg/dL)

+level (in

mg/dL)

Sodium concentration <136 mEq/L +10 +10

Cerebrovascular disease +10 +10

Dementia +20 +15

Chronic obstructive pulmonary

disease

+10 +10

Hepatic cirrhosis +25 +35

Cancer +15 +15

Hemoglobin <10.0 g/dL NA +10

The score obtained using the OPTIMIZE-HF risk score is directly

associated with the probability of in-hospital mortality. A score of 70

correlates with 50% mortality and a score of 90 correlates with 90%

mortality (Abraham et al., 2008).

Variable Value Points

assigned

Age 20 0

25 2

30 3

35 5

40 6

45 8

50 9

55 11

60 13

65 14

70 16

75 17

80 19

85 20

90 22

95 24

Heart rate (beats/min) 65 0

70 1

75 1

80 2

(Continued)

TABLE 5 | Continued

Variable Value Points

assigned

85 3

90 4

95 4

100 5

105 6

110 6

Systolic blood pressure (mmHg) 50 22

60 20

70 18

80 16

90 14

100 12

110 10

120 8

130 6

140 4

150 2

160 0

Sodium (mEq/L) 110 13

115 11

120 9

125 7

130 4

135 2

140 0

145 2

150 4

155 6

160 8

165 10

170 12

Serum creatinine (mg/dL) 0 0

0.5 2

1 5

1.5 7

2 10

2.5 12

3 15

3.5 17

Primary cause of admission Heart failure 0

Other 3

LVSD No 0

Yes 1

The greater the GWTG-HF risk score, the greater the probability of

death. A score of ≥79 correlates with a >50% mortality (Peterson et al.,

2010).

Variable Value Points

assigned

Age ≤19 0

20–29 3

30–39 6

(Continued)
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TABLE 5 | Continued

Variable Value Points

assigned

40–49 8

50–59 11

60–69 14

70–79 17

80–89 19

90–99 22

100–109 25

≥110 28

Heart rate (beats/min) ≤79 0

80–84 1

85–89 3

90–94 4

95–99 5

100–104 6

≥105 8

Systolic blood pressure (mmHg) 50–59 28

60–69 26

70–79 24

80–89 23

90–99 21

100–109 19

110–119 17

120–129 15

130–139 13

140–149 11

150–159 9

160–169 8

170–179 6

180–189 4

190–199 2

≥200 0

Sodium (mEq/L) ≤130 4

131–133 3

134–136 2

137–138 1

≥139 0

Blood urea nitrogen ≤9 0

10–19 2

20–29 4

30–39 6

40–49 8

50–59 9

60–69 11

70–79 13

80–89 15

90–99 17

100–109 19

110–119 21

120–129 23

(Continued)

TABLE 5 | Continued

Variable Value Points

assigned

130–139 25

140–149 27

≥150 28

Black race Yes 0

No 3

Chronic obstructive pulmonary

disease

Yes 2

No 0

of 85%, and overall accuracy of 76% for identifying LVSD in
the CICU population (Jentzer et al., 2021a). This was the first
study to use AI-ECG to predict LVSD in the CICU patient
population and it confirmed the ability of the algorithm to do
so, albeit with a slightly reduced accuracy in the setting of a
higher pre-test probability of LVSD. One CICU subgroup that
demonstrated lower performance of the AI-ECG algorithm was
those admitted with ACS (including those who underwent PCI),
presumably due to the dynamic changes in both the ECG and
LV function by TTE due to myocardial stunning and recovery
(Jentzer et al., 2021a). In this population, there was a lower
probability of LVSD by the AI-ECG algorithm despite similar
mean LVEF compared to the CICU population without ACS
leading to a higher rate of false-negative AI-ECG for LVSD
emphasizing the need to perform TTE when reduced LVEF is
suspected in ACS patients (Jentzer et al., 2021a). Additionally,
the inverse correlation between the AI-ECG predicted probability
of LVSD and LVEF was stronger in patients without ACS than
those with ACS (Jentzer et al., 2021a). It was hypothesized that
this population has dramatic dynamic ECG changes that may
interfere with the AI-ECG algorithm to accurately predict LVSD
(Jentzer et al., 2021a).

In a follow-up study, CICU patients with AF at the time
of TTE were examined to determine whether the presence of
AF influences the ability of the AI-ECG to identify LVSD.
This study again used the previously derived AI-ECG algorithm
applied to CICU patients undergoing AI-ECG prediction of
LVSD and TTE in the same day for whom data regarding
cardiac rhythm was also available (Kashou et al., 2021). The AI-
ECG algorithm proved to have an area under the curve (AUC)
for identification of LVSD of 0.79 in patients in AF and 0.82
in patients in sinus rhythm (Kashou et al., 2021). When used
to detect LVSD in patients in AF, the AI-ECG model had an
overall accuracy of 71.4%, sensitivity of 77.5%, specificity of
67.4%, positive predictive value of 62.6%, and negative predictive
value of 81.0% (Kashou et al., 2021). When used to detect
LVSD in patients in sinus rhythm, the AI-ECG model had
an overall accuracy of 76.4%, sensitivity of 67.3%, specificity
of 80.4%, positive predictive value of 60.7%, and negative
predictive value of 84.5% (Kashou et al., 2021). Nonetheless, this
algorithm and application to the CICU population pose a great
advancement to the ability to use AI-ECG in the CICU setting.
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Furthermore, the prediction of LVSD can be used in various
mortality prediction tools to better predict mortality throughout
the patient’s hospitalization as a dynamic variable that can be
quickly and easily obtained.

The ability of the AI-ECG to predict LVSD without a
formal echocardiogram can be used to triage and treat certain
patient populations with suspected LVSD, particularly if they
do not have ACS. This may influence decisions regarding
specific treatments, such as the rate-control drug option for
patients with AF help to identify patients requiring an expedited
formal echocardiogram or detailed point of care cardiac
ultrasound. In many institutions, a timely echocardiogram
cannot be obtained, especially during off-hours when resources
are limited; furthermore, many acutely ill patients have poor
imaging windows, making detection of LVSD by point-of-
care cardiac ultrasound more challenging. An AI-ECG, on
the other hand, can provide diagnostic predictions in a
matter of seconds. AI-ECG may serve as a non-invasive,
inexpensive, and rapid diagnostic and screening tool in such
circumstances. Potential future applications could include early
diagnosis of shock to allow targeted intervention, diagnosis
of heart failure and prediction of decompensation, as well as
differentiation of cardiogenic vs. non-cardiogenic pulmonary
edema among others.

AI-ECG FOR MORTALITY PREDICTION

Despite recent advances in bedside mortality prediction
tools in the CICU, these models and clinical biomarkers
are not without limitations, including the need to
obtain blood samples and run laboratory assays. An
additional limitation is the lack of integration of cardiac
function markers, which may be an essential component
of risk stratification in CICU patients (Jentzer et al.,
2019a). The AI-ECG presumably identifies electrical
signals reflecting underlying myocardial disease that
may contribute to increased mortality. Therefore, AI-
ECG algorithms that can predict underlying myocardial
disease such as AF and LVSD may be used to construct
models that aid in mortality prediction. This might
then identify high-risk patients who may benefit from
more invasive and extensive testing early in their CICU
admission (Jentzer et al., 2021b).

Another CICU study demonstrated that an AI-ECG algorithm
designed to predict LVSD could identify impacts of myopathic
processes on cardiac electrical activity and predict outcomes
based on these changes prior to the development of mechanical
dysfunction (Jentzer et al., 2021b). This study population
included 11,266 adults with a mean age of 67.6 ± 15 years and
37.3% female admitted to the Mayo Clinic Rochester CICU from
January 1, 2007 to April 30, 2018. They applied the established
ECG algorithm that was designed to predict the probability of
LVSD to the first ECG performed after CICU admission to
determine whether the probability of LVSD identified by AI-
ECG was associated with clinical outcomes. They observed that
a higher probability of LVSD provided by the AI-ECG was

associated with an increased risk of hospital mortality and 1-
year mortality even after adjustment for standard prognostic
variables (Jentzer et al., 2021b). This was true even though the
AI-ECG algorithm was imperfect at detecting echocardiographic
LVSD. The added mortality risk associated with a higher AI-
ECG LVSD probability was not entirely explained by the presence
of reduced LVEF by echocardiography. Importantly, the AI-
ECG had an even stronger association with mortality in patients
without significant LVSD by echocardiography, implying that
the AI-ECG was likely identifying subclinical myocardial disease
that carried prognostic information (Jentzer et al., 2021b). A
higher AI-ECG LVSD probability prediction was associated
with increased risk of hospital and 1-year mortality even after
stratification by echocardiographic LVEF (Jentzer et al., 2021b).
Upon further analysis of the 1-year mortality prediction, patients
with a true positive AI-ECG (i.e., both the AI-ECG and the
TTE showed LVSD) had a higher 1-year mortality than patients
with either a false negative AI-ECG or a false positive AI-
ECG; patients with a true negative AI-ECG (i.e., both the AI-
ECG and the TTE showed no evidence of LVSD) had the
lowest mortality (Jentzer et al., 2021b). The patients with either
false positive or false negative AI-ECG results, in which there
was a discordance between LVSD by AI-ECG and by TTE,
had similar outcomes (Jentzer et al., 2021b). This highlights
the clinical relevance of the ECG features identified by the
AI-ECG algorithm, which carry as much prognostic relevance
as the LVEF itself and contribute incrementally to outcome
prediction (Jentzer et al., 2021b). One limitation is that it is
unclear which ECG features were considered significant by
the AI-ECG algorithm; thus, it makes it difficult to identify
potential features contributing to the AI-ECG predictions
(Jentzer et al., 2021b). Considering that the AI-ECG algorithm
used in this analysis was not designed to predict mortality, it is
remarkable that the same ECG features that predict LVSD also
predict mortality.

Other analyses have emphasized the power of an AI-ECG
algorithm to predict mortality outside of the CICU setting.
Raghunath et al. demonstrated that the AI-ECG was able
to predict 1-year mortality even in patients with a “normal”
ECG by cardiologist interpretation (Raghunath et al., 2020).
This large study trained an AI-ECG algorithm on 1,169,662
resting ECGs from 253,397 patients including predominantly
outpatients. The AI model used in this study was implemented
using Keras with a Tensorflow backend in Python and was
thoroughly trained using the sample size and then tested for
validation. It was ensured that ECGs used for training were
not also used for testing (Raghunath et al., 2020). The model
was able to predict 1-year all-cause mortality in this population
with an AUC of 0.876, even when the ECG was interpreted
as “normal” by expert cardiologist interpretation (Raghunath
et al., 2020). This work highlights the importance of mortality
prediction and the false reassurance a normal ECG may provide
clinicians regarding the presence of prognostically-important
underlying cardiac disease. If an AI-ECG algorithm could
perform as well for predicting mortality in CICU patients as this
algorithm did in a mixed cohort, then the level of performance
would meet or exceed that demonstrated for any published
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TABLE 6 | Summary of mentioned prediction tools.

Prediction tool Assessment population

Braden skin score Predict risk of skin pressure injury in admitted

patients

TIMI, GRACE, and

Zwolle risk scores

Developed for patients with AMI or ACS

EFFECT, OPTIMIZE,

GWTG-HF

Developed for patients with acute decompensated

HF

M-CARS Mortality prediction tool designed for CICU patient

populations

Jentzer et al., 2021a
Predict the risk of LVSD in CICU patients using

AI-ECG

Kashou et al., 2021
Prediction of LVSD in patients with AF in the CICU

using AI-ECG

Jentzer et al., 2021b
Prediction of outcomes based on prediction of

LVSD using AI-ECG

Raghunath et al., 2020
Use of AI-ECG to predict mortality, not limited to the

CICU patient population

ICU or CICU risk score. These studies further substantiate
the idea that the use of AI-ECG algorithms may improve
mortality prediction.

LIMITATIONS AND FUTURE DIRECTIONS

While the advancements of artificial intelligence and its
application to the CICU and specifically to mortality prediction
is an ever-growing field, there are some limitations to its
implementation to mortality prediction. AI-based models are
heavily reliant on input data. Because there is so much input
data available in the CICU, models can become compromised
if the wrong data is used for model development. A thorough
evaluation of potential data points must be considered prior
to model development and multiple models may have to be
developed to identify the optimal data points which may be
time and cost consuming. An additional important aspect
to consider with AI-based mortality prediction, is ability
to explain the model and its prediction. Current prediction
models provide an explanation for the model’s predictions,
allowing clinicians to trust the data that is yielding from
the use of these models. While AI-based prediction models
have the potential to out-perform traditional predictions, the
features that contribute to the prediction of the AI-ECG
model may not always be clear. This makes its methods
difficult to explain and can be a hindrance to clinical adoption
by practitioners.

Another potential limitation that AI-ECG has compared
to traditional prediction models using risk scores is its
incorporation of active clinical signs (e.g., vital signs and
laboratory values) and patient symptoms in the prediction
model. It is conceivable that integrating dynamic, real-time
clinical and/or laboratory data with AI-ECG data could provide
an even more accurate prediction of mortality, particularly
if a CICU-specific mortality prediction AI-ECG model was
developed. The advantage current prediction tools have over

AI-ECG models is the emphasis on the patient’s clinical factors
such as age, severity of illness, vital signs, laboratory values,
and symptoms. These are dynamic aspects of the patient’s
clinical presentation that are essential in predicting mortality and
outcomes, yet currently available risk scores do not consistently
integrate serial values to enhance risk prediction. If the AI-
ECG algorithm could integrate patient clinical information
in a dynamic fashion, the ability to predict mortality in the
CICU may exceed what is currently available through risk score
assessment. One retrospective study showed that when data from
the electronic medical record and dynamic, serial monitoring of
heart rate and blood pressure were applied to a high-performing
prediction model using AI, sepsis could be predicted 4 h in
advance (Nemati et al., 2018).

Additionally, AI-ECG algorithms could extend to incorporate
continuous telemetry monitoring in CICU patients. The
continuous nature of telemetry would allow the AI-ECG
algorithm to interpret dynamic changes in the cardiac
electrical activity throughout the patient’s CICU course.
Early incorporation of this concept has been shown in studies
in which patterns and changes in continuous telemetry
monitoring are analyzed to predict in hospital cardiac arrest.
One study showed that a predictive model could be used to
predict in hospital cardiac arrest and that trending telemetry
changes was feasible (Do et al., 2019). Similar monitoring
of telemetry changes has shown that machine learning and
AI techniques can be applied to telemetry waveforms to
also predict sepsis (Bravi et al., 2012). Preliminary studies
have also applied AI models to predict hypotension (Chan
et al., 2020). Sequential monitoring of variables used in a risk
score may provide better mortality prediction than a single
snapshot assessment. A similar idea can be considered with
continuous telemetry monitoring with AI capabilities, whereby
dynamic changes in cardiac activity can provide real-time
mortality prediction updates and alerts for impending clinical
events (e.g., predicting the onset of AF) that could guide
management decisions.

An AI-ECG model might also be used in conjunction with
the current prediction models, such as M-CARS, to better risk
stratify CICU patients and predict in-hospital and post-discharge
mortality. To date, no specific AI-ECG algorithm has been
developed to predict mortality in CICU patients, leaving an
opportunity to integrate AI-ECG data with clinical variables for
risk prediction. Regarding the diagnostic performance of AI-
ECG for various cardiac conditions, this needs to be meticulously
compared against gold standard diagnostic criteria and re-
validation may be needed in the CICU population where disease
epidemiology might differ from populations used to derive
models. Furthermore, diagnostic AI-ECG model performance
optimization in CICU patients may require determination of
population-specific cut-offs that could differ from other cohorts.

Ultimately, randomized controlled trials will be needed with
the development of AI-ECG models to assess these models
prospectively and compare then against currently implemented
risk scores. As models begin to develop and prove useful,
additional components and dynamics factors can be used to
augment the prediction models.
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CONCLUSION

The ability to identify occult disease processes and predict
patient outcomes is important in the care of CICU
patients. This capability has clinical benefits that include
early mortality prediction, identification of patients who
may benefit from invasive testing or intervention, and
identification of patient who may not need ICU-level of
care. The interest in predicting outcomes in ICU settings
is exemplified by the recent proliferation of prediction
tools (Table 6). Although many of these tools are valuable,
many lack validation in the CICU population and there is

considerable variability in their performance. Various AI-ECG
algorithms have demonstrated excellent predictive abilities
in the CICU and may fill some of the gaps left by traditional
prediction models.
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