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An increased understanding of the interaction between manure management

and public and environmental health has led to the development of Alternative

Dairy E	uent Management Strategies (ADEMS). The e�ciency of such ADEMS

can be increased using mechanical solid-liquid-separator (SLS) or gravitational

Weeping-Wall (WW) solid separation systems. In this research, using pilot

study data from 96 samples, the chemical, physical, biological, seasonal, and

structural parameters between SLS andWWof ADEM systems were compared.

Parameters including sodium, potassium, total salts, volatile solids, pH, and

E. coli levels were significantly di�erent between the SLS and WW of ADEMS.

The separated solid fraction of the dairy e	uents had the lowest E. coli levels,

which could have beneficial downstream implications in terms of microbial

pollution control. To predict e	uent quality and microbial pollution risk, we

used Escherichia coli as the indicator organism, and a versatile machine

learning, ensemble, stacked, super-learnermodel called E-C-MAN (Escherichia

coli–Manure) was developed. Using pilot data, the E-C-MAN model was

trained, and the trainedmodel was validatedwith the test dataset. These results

demonstrate that the heuristic E-C-MAN ensemble model can provide a pilot

framework toward predicting Escherichia coli levels in manure treated by SLS

or WW systems.

KEYWORDS

dairy agroecosystems, dairymanure, liquid-solid separator, machine learningmodels,

E. coli risks

Introduction

In confined agroecosystems such as intensive dairy farms, significant quantities of

animal wastes are generated that need to be managed efficiently (Van Horn et al., 1994;

Meyer et al., 1997; Neufeld et al., 2017). For example, about half a million cattle can

produce in excess of 27,000 tons of animal waste per day within an area of <26,000

square kilometers (Popova and Morra, 2017). On one hand, these large quantities
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of animal waste and farm effluents are a good source of

nutrients, effluents also poses risk to water and environment.

With an increased interest in the application of treated manure

to grow forage crops as an alternative to chemical fertilizers,

approaches which intend to improve recycling and uses of dairy

manure, bring benefits in terms of economic and environmental

perspectives (Neufeld et al., 2017; Popova and Morra, 2017).

Even though multiple challenges exist toward handling large

quantities of dairy effluents as they could negatively contribute

to water contamination, air pollution, greenhouse gas emission,

and the spread of antimicrobial resistant and pathogenic

bacteria, which could have human, animal, and One Health

implications (Owen and Silver, 2015; Sharma et al., 2017; Vadas

et al., 2017; Niles and Wiltshire, 2019), there are multiple

opportunities and benefits of using manure as fertilizers.

The interaction of manure management practices with

environmental, human, and animal health, has gained

increased attention, and such practices must be constantly

assessed to develop research and educational programs

that implement alternative effluent management techniques

(Meyer et al., 1997). These techniques include manure

digestors, settling ponds, evaporation ponds, and solid-

liquid separators (Meyer et al., 2004; Liu et al., 2017). Most

of these techniques, often implemented in combination,

aim to reduce greenhouse gas emissions, eutrophication

stress, odor, nutrients and microbial communities; and

provide options to recycle dairy effluents for beneficial

purposes (Zhang and Westerman, 1997; Wang et al.,

2020).

The separation of solids manure from flushmanure effluents

in a dairy farm can increase the efficiency of the manure

management process by reducing the excessive total solids,

volatile solids, and microbial communities in flushed manure.

This can assist in reducing the loads in downstream lagoons

and greenhouse gas emission, and improve pumping efficiency,

manure uses for irrigation purposes (Mukhtar et al., 2011;

Neuhaus, 2020; Ellison and Horwath, 2021). A solid-liquid

separation system produces two streams: (1) solid manure

stream, which is composted and dried, and used for fertilizing

crops and bedding material for dairy farms; (2) liquid manure

stream often used for irrigating cropland with manure enriched

with nitrogen and phosphorus (Mukhtar et al., 2011; Vanotti

et al., 2020; Wu and Zhong, 2020). Common approaches

for separating the manure solids from the liquid stream

include sedimentation or gravitational settling and mechanical

screening of solids (Mukhtar et al., 2011).

A mechanical solid-liquid separator with inclined screens

and conveyor scraper separators is called the SLS (Solid Liquid

Separator) System. A gravity separation system with a settling

basin and a large dewatering surface area is called a WW

(Weeping Wall) System. These are two commonly used solid

separation techniques in the dairy farms of California, USA

(Meyer et al., 2004; Mukhtar et al., 2011). In both the SLS and the

WWeffluentmanagement systems, the dairy waste goes through

multiple stages (Figure 1).

These stages include Stage 1 (S1), Flushed Effluent Stage

(effluents are collected after flushing the barns and prior to

separating the solid fraction), and Stage 2 (S2), Separated Liquid

Stage, where liquid fraction is separated from solid fraction) and

liquid fraction is stored in lagoons. In Stage 3 (S3), Separated

Solid Stage, solid fraction of manure separated from liquid and

solid is dried and composted, and Stage 4 (S4), where liquid

manure (after solid settling in lagoons are recycled to dairy

manure to flush dairy barn manure.

Previous studies have demonstrated that the SLS can reduce

the Total Solid (TS) and Volatile Solid (VS) components from

the effluent slurry by 60.9 and 62.8%, respectively (Chastain

et al., 2001). Further, in combination with a two-chambered

settling basin and a lagoon arranged in series, the SLS System

was shown to reduce the TS by up to 93% and the VS by up

to 95.6% from the dairy effluents (Chastain et al., 2001). In a

single stage WW System, results shown to reduce TS by 49–

63%, (Meyer et al., 2004) whereas a two-stage WW System

reduced TS by 35% and VS by 40% (Mukhtar et al., 2011). The

mean electrical conductivity, potassium, calcium, sodium, and

chlorine soluble nutrient concentrations in a single stage WW

remained unchanged between the incoming and outgoing stages

of the WW System (Meyer et al., 2004).

Compared to the physical and chemical characteristics,

there is limited research investigating the effect of the SLS

and WW Systems toward reducing the risk of pathogenic

bacteria in the dairy agroecosystems, though other forms of

solid separation systems have shown variable but occasionally

promising results (Boutilier et al., 2009; Liu et al., 2017; Wang

et al., 2019). For example, one study demonstrated that dairy

manure management practices that separate solid from liquid

waste effectively reduced E. coli concentrations (Howard et al.,

2017). Another non-comparative study on the WW ADEM

demonstrated that it reduced Cryptosporidium oocysts, and the

authors explained that this could be due to the separation of

the oocysts in the liquid component of the manure (Hutchison

et al., 2005). Such studies in related systems provided clues and

directions for our study and its potential results.

In spite of the limited comparative studies in these specific

ADEMS, it is well documented that implementing treatment

methods, effective in reducing potentially pathogenic bacteria in

manure, is important because many outbreaks of gastroenteritis

across humans and animals have been related to livestock

operations (Liu et al., 2017). Fecal coliforms including E.

coli are common indicator organisms that are used to assess

water quality and determine the presence of pathogenic

microorganisms that may cause illness and disease in exposed

human and animal populations (Boutilier et al., 2009). Previous

studies showed that animal waste is one of the major sources

of indicator organisms/E. coli in environment (Malakoff, 2002;

Pandey and Soupir, 2012a). Observing the concentrations/loads
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FIGURE 1

Conceptual flow of manure in the two comparative Dairy E	uent Management Systems found on two partner farms from Central California,

USA. The Dairy E	uent Management System in part (A) includes the Mechanical Solid Liquid Separator (SLS) System and the E	uent

Management System in part (B) includes the gravitational Weeping Wall (WW) System.

of fecal coliforms, and E. coli (indicator organisms) in ambient

water is often used to determine the microbial pollution in

recreational and drinking water, and these strategies helps in

protecting public health, and identifying the water bodies with

potential pollution. Various government agencies including U.S.

Environmental Protection Agencies (U.S. EPA) monitor E. coli

levels in rivers, and lakes to determine the microbial water

quality (Pandey et al., 2012b; Pandey and Soupir, 2013). Though

there is much debate regarding the ability of indicator organisms

to determine the human health risks caused by pathogenic

bacteria, indicator organisms are widely used to determine

microbial quality of water, and food. In environment, it is often

challenging to determine the source of pathogens (animal waste,

wildlife excreta, animal waste), animal waste is considered to be a

leading source of microbial pollution in environment including

ambient water (Malakoff, 2002; Dickerson et al., 2007; Pandey et

al., 2014). In addition to indicator organisms, microbial source

tracking to find the origin of fecal coliform are also used to

reduce to public health risks (Scott et al., 2002; Grave et al., 2007;

Ibekwe et al., 2011; Ma et al., 2014).

To advance our existing understanding in manure

management, in this study, we attempted to bridge the

prevailing knowledge gaps regarding the SLS and WW

Systems. In this pilot scale study, we attempted to: (1) compare
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the similarities and differences in chemical, physical, and

biological parameters across Dairy Effluent Management

Systems containing the two solid separation systems (SLS and

WW); and (2) create a versatile machine learning model using

these parameters to predict the E. coli risk across the SLS and

WW Systems in the dairy effluent systems from two farms in

California, USA.

Materials and methods

Sample collection

In this pilot-scale study, manure characteristic data were

collected from two representative dairy effluent management

systems from two partner dairy farms in Central California,

USA. While one of the effluent management systems included

the SLS solid separation system, the other encompassed the

gravitational WW solid separation system. Within each effluent

management system in the two farms, samples were collected

from the four stages, S1–S4 that have been described in the

introduction (Figure 1). Each of the samples were collected from

the top layer of the various stages and placed in independent

tubes. Subsequently, the samples were maintained on ice during

transportation, and stored in a cold room (4◦C) upon arrival

at the laboratory (Li et al., 2014), till they were processed

for various parameters. Accordingly, a total of 96 manure

samples were collected using a balanced sampling design for

this pilot study. Forty-eight samples were collected from the

Dairy Effluent Management System containing the mechanical

SLS system, while another 48 samples were collected from the

Management System containing the gravitational WW system.

Within each of these two systems, a total of 24 samples were

collected from each of the four stages, S1–S4. These samples were

collected across two seasons. A total of 32 samples were collected

in Spring, between March and May of 2019, whereas 64 samples

were collected in Summer, during the month of June 2019.

Chemical, physical and biological
parameters

A set of chemical, physical, and biological parameters were

calculated for each of the collected samples.

Escherichia coli

Liquid samples (from Stages S1, S2, and S4) were collected

and homogenized. Subsequently, 1ml of each sample was

aliquoted and diluted with 9ml of Millipore-filtered water.

On the other hand, the solid samples (from Stage S3) were

prepared by diluting 5 grams of the solid effluent in 10ml of

Millipore-filtered water. The diluted samples were homogenized

by vortexing for 2min. These samples were serially diluted

(×10, ×10−1, 10−2
×10−3, ×10−4) using Millipore-filtered

water, and 1ml of the serially diluted samples were processed

through a membrane filtration technique following the EPA

method 1,603 (EPA, 2002). A VP-300 Vacuum Pump was used

to create vacuum and a flow rate of 10 ml/cm2 /min. An MCE

White Membrane/Black GridMembrane with 0.22µmpore size

and 28 cm2 area (Sigma-Aldrich, St. Louis, Missouri, USA)

was used for filtering the study samples, and subsequently, the

filter paper was placed in a prepared modified mTEC Agar

(Difco, Sparks, MD, USA) media in a Petri dish. The Petri

dish with filter paper was placed in an incubator at 37◦C for

24 h. Since this medium is selective, it can distinguish E. coli

from other microorganisms. The presence of thermotolerant

Escherichia coli was demonstrated by a chromogenic reaction,

i.e., pink colonies, which were enumerated as Colony Forming

Units per milliliter (CFU/ml). All the samples were filtered after

fresh dilution. Each sample was analyzed in duplicates, and the

experiment was repeated three times.

Total solids and volatile solids

Total Solids (TS) and Volatile Solids (VS) were measured

using the Ignition Method (Clesceri et al., 1998). Initially,

the empty dry crucible weight (W1) was measured, and

subsequently, an ∼10ml or 10 g sample was placed in the

crucible. Then, the combined weight of the wet sample and

crucible was measured (W2). The sample was heated at 104◦C

for 16 h, and then, the weight of dried residue and crucible was

measured (W3). Subsequently, the TS were measured using the

Eq. (1). For measuring VS, the samples that had been dried at

104◦C were placed in a furnace for 4 h at 500◦C. The combined

sample and crucible weight was measured after ignition (W4).

Subsequently, the VS were measured using Eq. (2).

TS =
W3 −W1

W2 −W1
(1)

VS =
W3 −W4

W2 −W1
(2)

Chemical and physical characteristics

The nitrate, chloride, potassium, calcium, sodium, and

total salt content, along with electrical conductivity and pH

were measured for each sample. For liquid samples (collected

from Stages S1, S2, and S4), 5ml of each sample was

transferred to an Eppendorf tube and centrifuged at 5,000

rpm (∼2,432 g)for 5min to separate any suspended solid

content. For solid samples (collected from Stage S3), 1 gm

of each sample was homogenously dispersed in 5ml of water

for 1 h and then separated by centrifugation at 5,000 rpm
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(∼2,432 g) for 5min. Subsequently, 500 µL of supernatant

was taken and placed on sensors for measuring ions. Sensors

for measuring nitrate, potassium, calcium, and salt ions, as

well as electrical conductivity and pH, were obtained from

Horiba (Horiba Limited, Japan). Each sensor was calibrated

prior to measurement using known standards of nitrate,

potassium, calcium, total salts, conductivity solution, and pH.

All the measurements were conducted at room temperature and

repeated three times for each sample.

Comparing dairy e	uent characteristics
across systems, stages, and seasons

Analysis of Variance (ANOVA) tests were used to determine

statistically significant differences amongst the chemical,

physical, and biological parameters between the various

systems, stages, and seasons for the continuous variables.

Using the “arsenal” package in “R” statistical software version

4.0.3, a parameter was considered statistically significant if

the p-value was ≤0.05. Subsequently, in order to visualize

the correlations between the various chemical, physical,

and biological parameters, a correlogram (i.e., correlation

matrix) was constructed using the “corrplot” package in the

“R” statistical software version 4.0.3 (Wei et al., 2017). The

visualization in the correlogram was conducted by employing a

color-coded heat map matrix.

Machine learning models

By using the various chemical, physical, biological,

structural, and seasonal parameters, an assortment of machine

learning models were built and compared to predict E.coli

levels in dairy effluents using various packages through the

“Caret” library in “R” (Kuhn, 2008). The dataset was (a)

preprocessed to make it machine readable, (b) split into

training and test datasets, and subsequently, (c) used to build

and compare various machine learning base-learner and

super-learner algorithms.

Creating a machine-readable dataset

Before building the models, the dataset was described

and processed to make it machine-readable. Initially, the

relationship between each of the chemical, physical, and

biological parameters with the outcome variable, i.e., E. coli

levels (CFU/ml), were visualized. The continuous predictor

variables were plotted using smoothened scatter plots, whereas

the categorical predictor variables were plotted using box-and-

whisker plots. Subsequently, the dataset was analyzed for zero

and near-zero variance predictors, linear dependencies amongst

predictors, and highly correlated predictors. Predictors that have

a single unique value, i.e., zero variance predictors, or predictors

that have a handful of unique values that occur with very low

frequencies, i.e., near-zero variance predictors, could cause some

machine learningmodels to crash or create an undue bias. Linear

dependencies between predictor variables should be identified to

remove redundant variables from the dataset.

Highly correlated predictors could either improve or

decrease the performance of select machine learning algorithms,

and thus, it is important to identify such predictors prior

to building comparative models. In addition to individually

scanning for zero variance predictors, linear dependencies,

and highly correlated predictors, the model variables were

also subject to select normalizing transformations using the

BestNormalize R package in order to improve the efficiency

of the regression machine learning algorithms (Peterson

and Peterson, 2020). After transformation, the success of

the normalizing transformation was determined by various

mechanisms, including creating visual plots, using the Shapiro

test, and by calculating the skewness value.

Splitting the dataset into training and test
datasets

The machine-readable dataset was split into a training and

test dataset. The probability-based createDataPartition function

in the R package caret (Kuhn, 2008) was used to obtain a 80:20

balanced split of the dataset. Using the training dataset, aMissing

Data model, a Dummy Variable model, and a Transformation

model were developed. While the Missing Data model, which

used the K-nearest neighbor (knn) method, was used to impute

missing predictor values and simultaneously, center and scale all

the predictor values. A Dummy Variable model was developed

to create one-hot coded variables for the categorical predictors,

and a Transformation model was used to transform all the

predictor values into a range from 0 to 1. Subsequently, using

these three models, missing data was imputed, dummy variables

were created for categorical predictors, and predictor values

were transformed for both the training dataset and the test

dataset, respectively.

Machine learning algorithms

More than 30 machine learning models, including 28 base-

learner and independent regression models from seven different

families of algorithms (Supplementary Table 1), and multiple

super-learner ensemble stacked models were constructed and

compared. The 28 independent models were included from

the following families: generalized linear models, random

forest models, boosting models, support vector machine (SVM)

models, multivariate adaptive regression splines (MARS), neural

networks, and partial least square models. Each of these models

were trained with the training dataset. In order to optimize each

of these models, the individual models were cross-validated,
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and the constituent model hyper parameters tuned by using a

repeated k-fold cross validation (repeated CV) method with 10

folds and 20 repeats.

Super-learner ensemble models

Multiple stacked super-learner ensemble models were

also constructed by using combinations of the base-learner

regressionmodels inmultiple frameworks, such as a Generalized

Linear Model (GLM) framework. The GLM ensemble were built

using the Root Mean Square Error (RMSE) metric, and cross-

validation was performed by tuning the parameters using a

repeated k-fold cross validated method with 10 folds and 20

repeats. Amongst multiple combinations, the ensemble trials

included GLM ensembles of all the 28 base-learner models,

random forest (RF) ensembles of all the 28 base-learner models,

subsets of the base-learner models, and the seven best-fit models

from the seven different families of machine learning models

used in the present study.

Choosing the model with the highest predictive
capability

The Root Mean Square Error (RMSE) metric, the most

commonly used method for evaluating and comparing a models

predictive capabilities (Kuhn and Johnson, 2013), was used to

select the relatively best model. This metric is a function of

the model residuals, and the square root of the Mean Square

Error (Kuhn and Johnson, 2013). The predictive capability of

a model is negatively correlated with its RMSE value, i.e., the

lower the RMSE values, the higher the predictive capability of

the model. For the final model that was chosen, the values were

reversed transformed.

Relative importance of the individual predictors
in the machine learning model

Subsequently, the relative importance of individual

predictors was calculated for the best fit independent base-

learner model using the LOESS (Locally Estimating Scatter Plot

Smoothening) R-squared variable importance method, where

the R2 statistic is calculated against the intercept only null

model. In order to evaluate the analytical authenticity of the

results, the top two predictors were removed from the data, and

the model was rerun.

Results and discussion

Chemical, physical, and biological
parameters

Chemical, physical and biological parameters were

calculated for each of these 96 samples (Table 1). The Analysis

of Variance (ANOVA) tests demonstrated that potassium, pH,

E. coli, sodium, total salts, and volatile solid levels, in descending

order of significance, were statistically different (p ≤ 0.05)

between the Management Systems containing the SLS and the

WW Systems. Calcium, nitrates, sodium, potassium, total solids,

volatile solids, and E. coli levels were significantly different in at

least one of the four different stages, S1, S2, S3, or S4. Similarly,

calcium, nitrates, sodium, potassium, total solids, volatile solids,

E. coli, and total salt levels were also significantly different

in at least one of the eight different combinations of systems

(n = 2) and stages (n = 4). Only E. coli, sodium, potassium,

and volatile solid levels were independently and significantly

different between at least one of the two systems, one of the four

stages, as well as one of the eight system-stage combinations.

None of the variables were significantly different during either

the Spring or the Summer season.

Descriptive correlogram

The correlation matrix (Figure 2) visualizes the strength and

direction of correlation between the various chemical, physical,

and biological parameters analyzed from the collected dairy

effluent samples. The E. coli levels were positively correlated

with potassium (+0.39) and nitrates (+0.26), and negatively

correlated with total solids (−0.30) volatile solids (−0.30), and

pH (−0.22). The sodium levels were positively correlated with

nitrates (+0.44), calcium (+0.33), and total salts (+0.3), and

negatively correlated with total solids (−0.3) and volatile solids

(−0.3). The total solids were positively correlated with volatile

solids (+0.64), and negatively correlated with nitrates (−0.4),

calcium (−0.36), potassium (−0.33), sodium (−0.33), and E.

coli levels (−0.30). The volatile solids were positively correlated

with total solids (+0.64), and negatively correlated with calcium

(−0.47), potassium (−0.43), nitrates (−0.42), sodium (−0.38),

and E. coli (−0.3). Other variables which displayed positive

correlations are nitrates and sodium (+0.44), total salts and

calcium (+0.4), and nitrates and potassium (+0.39).

Machine learning models

Creating a machine-readable dataset

Machine learning models were built to predict E. coli

levels across dairy effluent management systems that included

either the SLS or WW solid separation systems. To develop

a better understanding of the nature of variables that was

going to be used in the final model, the univariate relationship

between individual predictor variables and the l E. coli levels

were visualized using scatter plots fitted with Generalized

Linear Models (with 95% confidence interval) for continuous

variables, and Box-and-whisker plots for categorical variables

(Figure 3). Whereas, potassium, nitrates, calcium, and sodium
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TABLE 1 Descriptive e	uent characteristics in dairy e	uent management systems.

Parameter Dairy effluent management systems

Mechanical solid-liquid separator (SLS) Gravitational weeping wall solid separator (WW)

Stages Stages

S1 S2 S3 S4 S1 S2 S3 S4

Total salts*# (%) 0.12 (0.11) 0.11 (0.11) 0.04 (0.04) 0.12 (0.09) 0.06 (0.03) 0.08 (0.06) 0.07 (0.08) 0.05 (0.01)

Calcium# (mg/mL) 488.31 (132.84) 524.44 (131.67) 196.50 (140.58) 505.56 (104.69) 378.89 (70.73) 418.50 (68.92) 293.89 (79.75) 413.61 (115.61)

Nitrate# (mg/mL) 667.50 (263.35) 574.17 (191.16) 208.17 (263.6) 562.78 (196.32) 594.44 (241.93) 565.83 (223.81) 397.22 (179.52) 702.78 (332.06)

Sodium*# (mg/mL) 481.11 (171.60) 549.67 (269.43) 201.08 (181.83) 536.11 (275.50) 370.83 (99.65) 383.06 (77.78) 262.33 (81.57) 319.72 (78.296)

Potassium*# (mg/mL) 805.28 (228.25) 786.03 (171.54) 218.42 (95.85) 683.89 (219.60) 1,412.50 (512.82) 1,359.17 (471.60) 835.28 (255.43) 1,439.72 (503.24)

pH* 7.10 (0.18) 7.11 (0.16) 7.06 (0.11) 7.16 (0.10) 7.17 (0.27) 7.24 (0.14) 7.24 (0.27) 7.30 (0.34)

EC (mS/cm) 1.28 (0.13) 1.32 (0.14) 1.23 (0.13) 1.28 (0.16) 1.27 (0.11) 1.34 (0.08) 1.34 (0.08) 1.26 (0.07)

TS# (%) 2.98 (3.41) 4.87 (6.44) 32.17 (29.77) 2.83 (3.24) 1.40 (0.63) 2.44 (4.29) 21.31 (13.72) 4.92 (6.82)

VS*# (%) 1.50 (2.83) 2.39 (5.73) 16.77 (9.97) 1.45 (2.56) 0.56 (0.36) 0.50 (0.40) 6.04 (4.33) 1.80 (2.95)

E. coli*# (CFU/mL) 1,727.99 (1,197.33) 1,691.25 (1,065.55) 150 (88.99) 483.06 (524.22) 3,775 (2,768.7) 2,077.36 (1,684.84) 112.33 (70.02) 2,491.39 (2,286.2)

The values are described as mean values (and standard deviation in brackets). An asterix (*) superscript indicates that the parameter is statistically significantly different between samples

from SLS and WWS, whereas a hashtag (#) superscript indicates that the parameter is significantly different in at least one of the eight combined system (SLS vs. WW) and stage (S1, S2,

S3, or S4) combinations. A parameter is considered to be significantly different if p ≤ 0.05.

CFU/ml, Colony Forming Units per milliliter; TS, Total Solids; VS, Volatile Solids; EC, Electrical conductivity; mS/cm, millisiemens per centimeter.

demonstrated a positive linear relationship with E. coli levels;

total solids, pH, electrical conductivity, and volatile solids

demonstrated a negative linear relationship. The Box-and-

Whisker plots demonstrated that the management systems

with the gravitational WW had relatively higher E. coli levels

compared to the management systems with the mechanical SLS

(Figure 3j), which was reconfirmed to be significantly higher in

the ANOVA test (Table 1). It should be noted here that this result

was at the level of the management regime (WW vs. SLS) and

not at the finer stage setting. With respect to seasons, E. coli

levels were higher in the summer relative to the spring season

(Figure 3k), but this difference was found to be statistically

insignificant in an ANOVA test. Stage S3 had the lowest levels

of E. coli with a highly compact distribution spread (Figure 3l).

Subsequent analysis demonstrated that the dataset did not

have any zero or near-zero variance predictors. In addition,

there were no linear dependencies or variable combinations

in the dataset, and none of the model variables were highly

correlated, i.e., correlated more than 0.75. In order to increase

the efficiency of the downstream analysis, especially parametric

models, normalizing transformations were performed on the

model variables. Whereas, E. coli, total salts, potassium,

and total solids were transformed using the “OrderNorm”

normalizing transformation (Bartlett, 1947), an ordered quantile

normalizing transformation; Volatile Solids was transformed

using the Standardized Box Cox normalizing transformation

(Box andCox, 1964); sodiumwas transformed using the ArcSinh

normalizing transformation, and pH was transformed using

the Standardized Yeo-Johnson normalizing transformation (Yeo

and Johnson, 2000).

Splitting the dataset into training and test
datasets

The dataset was split into a training and test datasets. In

the training dataset, missing data was imputed for a total of

eight data points each amongst the total solids and volatile solids

variables. There was no missing data in the test dataset. Two,

four, and two dummy variables were created for systems, stages,

and seasons, in both the training and the test datasets. Finally,

the data was transformed by centering, scaling, and restricting

the predictor values to a range between 0 and 1.

Machine learning algorithms

More than thirty Machine Learning algorithms, including

28 base-learner regression models from seven different families

of algorithms, and more than two super-learner stacked

GLM (Generalized Linear Model) and RF (Random Forest)

ensemble models were built and compared using the RMSE

accuracy measure for the transformed E.coli variable in the

training dataset. The code is available on Github and will

be made available upon request. The comparative RMSE

measures for the 28 base-learner independent regression

models are plotted as Box-and-whisker plots in Figure 4.

Amongst the 28 independent regression machine learning

models, the Ranger model (with model parameters: mtry

= 15, split rule = extra trees, and minimum node size

= 5) had the lowest mean RMSE value of 0.57, followed

by the SVM Radial model (with model parameters: epsilon

= 0.1 and cost = 2, and hyperparameters: sigma = 0.04)

with a mean RMSE value of 0.58. In addition to these two
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FIGURE 2

Correlogram showing the correlation matrix between the various dairy e	uent parameters. The positive correlations and negative correlations

are colored blue and red, respectively. The intensity and size of the circle are proportional to the correlation coe�cients. Abbreviations used: TS,

Total Solids; VS, Volatile Solids; K, Potassium; NO3, nitrates; Na, Sodium; Ca, Calcium; Salt, Total Salts; EC, Electrical Conductivity. The image was

generated using the “Corrplot” package in R version 4.0.3.

machine learning models, other base-learner models with a

relatively low RMSE value included the SVM Radial Sigma

(RMSE = 0.58), SVM Radial Cost (RMSE = 0.59), and

the qrf (RMSE = 0.61) models. The results of the base-

learner models demonstrated that the Random Forest and

Support Vector Machine (SVM) family of machine learning

algorithms performed the best amongst the seven families for

our study dataset.

When the variable importance was calculated by using

the LOESS smoother non-parametric model, stage S3 and

total solids were found to be the two most important

predictor variables (Table 2). Amongst the various predictors,

Stage S3, i.e., Separated Solid Stage (i.e., solid fraction of

the separated effluents) had the highest predictive value.

Statistically, this was likely because it was relatively lower in

both its central tendency and dispersion measures, as well
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FIGURE 3

Descriptive univariate graphs of model variables visualizing the relationship between the individual predictor variables and the outcome variable

(live E. coli levels). The continuous variables have been mapped as scatterplots in graphs (a–i), which include (a) potassium, (b) nitrates, (c)

calcium, (d) sodium, (e) total salts/salt, (f) electrical conductivity, (g) pH, (h) total solids/TS, and (i) volatile solids/VS. Each univariate scatterplot

has been fit using a smoothened conditional mean in the form of Generalized Linear Models (GLM) with a 95% confidence interval. A blue line

indicates a positive relationship (a–e), red line indicates a negative relationship (f–i), and the gray shaded area denotes the 95% confidence

interval for each GLM that has been fit to the data points in the graph.

as offering minimal overlap with the other stages (Figure 3l).

The relatively lower E. coli levels in S3 is hypothesized

due to the generation of heat during the separation process

(Howard et al., 2017) and/or the separation of E. coli in

the separated liquid fraction (S2) of the manure. These

hypotheses will need to be tested in future studies. The

second most important predictor, total solid, is likely related

to the Stage S3 variable, since the TS values in Stage S3

is high, which means that the moisture content was low.

Due to this relationship between S3 and TS, the hypotheses

that need to be tested in further studies are also similar,

including the generation of heat during the process, which

leads to high total solids value. Statistically, the relationship

between total solids and E. coli follows a negative binomial

distribution, and thus, there is high variability of E. coli

levels for lower total solid content, but low variability and

levels of E. coli for higher total solids content. When the

same best fit independent base-learner model, i.e., Ranger, was

rerun without these two predictor variables, the performance

dropped by more than 15% (from an RMSE value of

0.57 to 0.66); thus, demonstrating the importance of these

top two predictors.

Super-learner ensemble models

of the multiple stacked ensemble machine learning models

that were attempted, a Generalized Linear Model comprising

of 26 base-learner algorithms (Supplementary Table 1) from

seven different families, including three Generalized Linear

Models, two Partial Least Square models, eight Random Forest

models, three Boosting models, six Support Vector Machine

models, one Multivariate Adaptive Regression Splines model,

and three Neural Network models, provided the best fit

since it yielded the lowest RMSE value of 0.51 (with an

R2 = 0.71) for the transformed E.coli dependent variable.

The other ensemble models that were attempted, such as the

28-model GLM ensemble and the 7-model GLM ensemble,

yielded an RMSE value of 0.52 (R2 = 0.71) and 0.56 (R2 =

0.67), respectively.

E-C-man model

Amongst all the various machine learning models that were

attempted, including the various base learner regression models

and the super-learner ensemble models, the GLM ensemble

super-learner model with the 26 base-learner algorithms had
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FIGURE 4

Box-and-Whisker plots comparing the Root Mean Square Error (RMSE) values of the 28 base-learner independent machine learning algorithms

used to train the data in predicting live E. coli levels in Dairy E	uent Management Systems. The plots display the median with a horizontal line,

the 25th and 75th percentiles with the lower and upper box limits, the extreme observations with the bars, and the outlier data as dots. These

RMSE values pertain to transformed data.
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TABLE 2 Variable importance of the regression predictors, scaled to a

maximum value of 100, calculated by fitting a non-parametric LOESS

R-squared model between the outcome and the prediction variables.

Variable Importance

Stage: S3 100

Total solids 86.25

Nitrates 79.89

Volatile solids 72.75

Calcium 70.39

Sodium 70.04

Potassium 46.43

Total salts 45.09

Season: spring 44.45

Season: summer 44.45

Stage: S1 30.96

Electrical conductivity 26.79

Treatment: SLS 11.59

Treatment: weeping wall 11.59

Stage: S2 9.31

pH 5.17

Stage: S4 0.00

Values generated using the “varImp” function from the “caret” package, R statistical

software version 4.0.3.

the lowest RMSE value of 0.51 for the transformed E.coli

variable. This was better than the 28 model GLM ensemble

(RMSE = 0.52) or the best-fit independent machine learning

base-learner Ranger model (parameters: mtry = 15, split rule

= extra trees, and minimum node size = 5; RMSE = 0.57).

Thus, we propose to name this “26 base learner ensemble”

model as the “E-C-MAN” (E. coli Manure) Ensemble Model

(Figure 5). In the E-C-MAN model, the constituent Ranger,

enet, svm Radial Sigma, and cforest algorithms were found

to be the most important base-learner predictors. The E-C-

MAN model was further validated with the test dataset to

provide an RMSE value of 0.72 (and an R2 of 0.65). The final

values were reverse transformed to get RMSE values of 2,100

CFU/ml for the training dataset and 2,420 CFU/ml for the

test dataset.

Though a previous study had built a Random Forest

machine learning model to predict E. coli in soil amended

with untreated animal manure (Pang et al., 2020), this is the

first study which has used machine learning to predict E. coli

levels directly in WW and SLS ADEMS. Using machine learning

models to predict bacteria, compared to other techniques such

as survival modeling, offers both advantages and disadvantages.

Machine learning models are both powerful and versatile.

Also, since we used a wide array of parametric and non-

parametric models in our study, we were not limited by

inherent assumptions associated while using a single model.

In addition, machine learning models can be continuously

improved with additional data. On the flip side, machine

learning models are time consuming and could be error prone,

especially if the input data is not accurate, reliable, or based

on plausibility.

Within the scope of these advantages and disadvantages, our

machine learning results demonstrate that the heuristic E-C-

MAN ensemble model can be used to predict Escherichia coli

levels in Dairy Effluent Management Systems that include the

SLS or the WW solid separation systems; which can be used as

an indicator to monitor effluent quality and coliform risk across

the system.

Successful completion of study objective
1: Comparing SLS and WW ADEMS using
pilot data

Our study found multiple similarities and differences while

using pilot data to compare the SLS and WW ADEMS in the

two dairy farms of California, USA. One of the most applicable

results was that the E. coli level in both the SLS and WW

ADEMS was significantly lower in Stage S3, i.e., separated

solid stage of the two ADEMS. In fact, both the ADEMS had

comparable levels of E. coli in their S3 stage. Since the S3

stage or the separated solid component of the manure can

be processed further and used for fertilization purposes, the

decreased levels of E. coli, which was used as an indicator

for measuring effluent quality and coliform risk in our study,

is suggestive of lower public, veterinary, environmental, and

One Health downstream challenges. However, we would like

to offer a note of caution and mention that these observations

need to be followed up by further studies, including studies

that look at other pathogens, to ensure that the results found

in this study are replicable across different pathogens and

health systems.

This study also found that, when data from all the stages

were merged and analyzed at the level of the management

system (SLS vs. WW), the WW had significantly higher E.

coli levels compared to the SLS. Upon taking a deeper dive

into the data, we realize that this difference is likely a result

of the more than the five- and two-fold higher E. coli levels

present in Stage S4 and S1, respectively, of the WW ADEMS

compared to the SLS ADEMS. For example, while WW S4 had

relatively higher E. coli levels [mean = 2,491.39, and standard

deviation = 2,286.2)], SLS S4 has lower levels (mean = 483.06,

and standard deviation = 524.22). There could be multiple

explanations for this difference in S4 values between the two

systems. (1) it could be an inherent difference between the

two systems. (2) it could be a farm specific management factor

since the SLS occasionally (and rarely) dilutes their S4 with

effluents from the milk plant directly, which might have ended

up diluting the E. coli levels from the lagoons. (3) it could be
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FIGURE 5

Visual representation of the E-C-MAN stacked ensemble Generalized Linear Model that was built using 17 chemical, physical, structural, and

seasonal input variables to predict Escherichia coli levels (Colony Forming Units per milliliter, CFU/ml) in Dairy E	uent Management Systems

that utilized either the gravitational Weeping Wall (WW) or the mechanical Solid-Liquid Separator (SLS) systems. The E-C-MAN model comprised

of 26 base-learner regression models, whose individual outputs were stacked in a Generalized Linear Ensemble Model to predict E. coli levels.

a difference that randomly occurred due to chance/probability.

However, in the absence of data, these and other potential causes

need to be investigated further by collecting more covariant

data such as the management regimes at the level of the

individual farm.

At this point, it is important to note that we processed

all the samples together at the end of the field season to

ensure that there were minimal variations with respect to the

laboratory processing of all the samples. Though this could

have created a bias in downstream technical analysis, especially

involving the laboratory processing for the biological (E. coli)

parameter (Boutilier et al., 2009), we believe that the bias is

likely to be uniform across the samples collected during the

different systems and stages at any one chronological time of

collection, and thus, not have any differential effect toward the

various comparisons. In addition to the results with respect to

E. coli, our study also found that significant differences were

observed in potassium, pH, sodium, total salts, volatile solids,

and E. coli levels between the SLS and WW systems, while the

differences were found to be significant in the calcium, nitrates,

sodium, potassium, total solids, volatile solids, and E. coli levels

in at least one of the four different stages, S1–S4, across the

two ADEMS.

Successful completion of study objective
2: Building a pilot predictive machine
learning model

This study also successfully created a pilot versatile

machine learning model called E-C-MAN that used the

chemical, physical, biological, structural, and seasonal

parameters to predict the E. coli levels across the SLS and

WW ADEMS from two dairy farms in California, USA.

The model was selected after training and comparing over

30 different machine learning models, and further tested

to internally validate the results. Resources permitting,

we would like to build on this study by increasing

our data input and externally validating the model in

future studies, which will increase the prediction value of

the model.

Our machine learning analysis highlighted the importance

of Stage S3 (separated solids) and the total solid parameter

in predicting the E. coli levels across the two ADEMS.

Since these variables are also important for downstream

applications such as fertilization, this was an important result

that needs to be investigated further for public, veterinary,

environmental, and One Health reasons. Though this model
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was a theoretical endeavor to better understand and predict

the E. coli dynamics in SLS and WW of the ADEMS, we

hope that it can also be applicable in the field with further

tweaking. For example, we hope that it can be applied,

either in its present or reoriented form, in systems made

by the manufacturer of WW and SLS ADEMS to predict

E. coli values using automatically calculated chemical and

physical parameters, with seasonal and structural input. To

conclude, we believe that this model improves the knowledge

base regarding the prediction of E. coli as an indicator

organism for effluent quality and coliform risk in alternate

dairy effluent management systems, for multiple stakeholders,

including farmers, researchers, scientists, funding agencies, and

regulatory bodies.

Conclusions

This study was successful in its primary goal of bridging the

existing knowledge gap with respect to the mechanical Solid-

Liquid-Separator (SLS) and gravitational Weeping Wall (WW)

Alternate Dairy Effluent Management Systems (ADEMS), and

completing both its objectives, i.e., using pilot data and (1)

comparing the similarities and differences in chemical, physical,

and biological parameters across the SLS and WW ADEMS,

and (2) creating a versatile machine learning model using these

parameters, along with structural and seasonal parameters, to

predict the E. coli risk across the SLS and WW ADEMS from

two dairy farms in California, USA. The study found that

many similarities and differences exist between the SLS and

WW ADEMS. In both the ADEMS, Stage S3 or the Separated

Solids Stage, was found to have significantly lower E. coli

levels, which could have important downstream implications

as a manure source. With respect to the other parameters,

sodium, potassium, total salts, volatile solids, pH, and E. coli

levels were significantly different between the SLS and WW

ADEMS. Further, these E. coli levels were used as an indicator

organism to predict effluent quality and coliform risk by

building an ensemble, stacked, E-C-MAN model. This study

provides additional information about about the intersection

between manure management and effluent quality. Given the

increased pilot knowledge generated by this study on SLS

and WW ADEMS, including the comparative similarities,

differences, and E. coli prediction capabilities, we hope that

future studies will build upon this pilot study to benefit the

multiple stakeholders who are associated with the WW and

SLS ADEMS.
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