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This study describes accurate, computationally e�cient models that can

be implemented for practical use in predicting frost events for point-scale

agricultural applications. Frost damage in agriculture is a costly burden to

farmers and global food security alike. Timely prediction of frost events is

important to reduce the cost of agricultural frost damage and traditional

numerical weather forecasts are often inaccurate at the field-scale in complex

terrain. In this paper, we developed machine learning (ML) algorithms for

the prediction of such frost events near Alcalde, NM at the point-scale.

ML algorithms investigated include deep neural network, convolution neural

networks, and random forest models at lead-times of 6–48h. Our results

show promising accuracy (6-h prediction RMSE = 1.53–1.72◦C) for use in

frost and minimum temperature prediction applications. Seasonal di�erences

in model predictions resulted in a slight negative bias during Spring and

Summer months and a positive bias in Fall and Winter months. Additionally,

we tested the model transferability by continuing training and testing using

data from sensors at a nearby farm. We calculated the feature importance

of the random forest models and were able to determine which parameters

provided the models with the most useful information for predictions. We

determined that soil temperature is a key parameter in longer term predictions

(>24h), while other temperature related parameters provide the majority of

information for shorter term predictions. The model error compared favorable

to previous ML based frost studies and outperformed the physically based High

Resolution Rapid Refresh forecasting systemmaking our ML-models attractive

for deployment toward real-time monitoring of frost events and damage at

commercial farming operations.
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1. Introduction

Damage to agricultural crops from frost is a major economic

issue for farmers around the world. Annual frost damage to

crops in the United States accounts for more economic losses

than any other natural weather hazard. For example, a single

frost event in 1990 caused losses in excess of $700 million

(Attaway, 1997; Snyder et al., 2005). Agricultural operations in

New Mexico, where the diurnal temperature variability during

the late spring can exceed 30◦C, are particularly prone to such

frost events. New Mexico supports a large stone-fruit and tree

nut industry, accounting for $210 million in sales annually

and 8.1% of the total agricultural sales in the state, second

only to livestock and dairy products (USDA and NASS, 2019).

Among naturally occurring plant species, it has been shown

that increasing spring temperature fluctuations due to climate

change could increase frost damage in the future (Augspurger,

2013). Despite greater risks, sales from New Mexico’s fruit and

nut industry nearly doubled from 2012 to 2017, underscoring

the importance of these crops to the region (USDA and NASS,

2019).

Typical frost mitigation techniques include the use of wind

machines, sprinkler systems, burning fuel, and the heating of

enclosed spaces such as greenhouses. However, these systems

are costly to implement and operate and can cut into the profit

margins of the crop producer, which is particularly restrictive

for the small-scale farmer. Further compounding this issue,

the farmer implementing such a mitigation system must also

consider correctly identifying a damaging frost event to avoid

expenditures on operating these systems when they are not

needed. Thus, accurate meteorological information and frost

forecasts can be extremely valuable (Katz et al., 1982; Cerdá et al.,

2018).

Traditional temperature forecasts are derived from

numerical weather models. For example, the model used by

the National Weather Service (NWS) enables provision of

temperature forecasts at a 12-km spatial resolution (48-h MAE

= 2.48–3.12◦C) (Baars and Mass, 2005), but these are not

suitable for use at the scale of a specific farm site. Forecasts are

frequently downscaled to the location of interest, but may suffer

in accuracy in complex or mountainous terrain (Eccel et al.,

2007; Lundquist et al., 2008; Goger et al., 2016; Strachan and

Daly, 2017). One such model in use by the National Weather

Service (NWS) is the operational North American Mesoscale

model (NAMeso), which provides temperature forecasts at a 12-

and 4-km spatial resolution and was found to have significant

warm biases (7 Kelvin) in regions of valley cold pooling and

temperature inversion in Utah at 12-h lead times (Reeves et al.,

2011). Other numerical models, such as the Weather Research

and Forecasting (WRF) model, offer higher resolution forecasts,

but are computationally costly and rely on large forcing datasets

(Prabha and Hoogenboom, 2008) making them impractical

solutions for individual farmers. Given that frost events are

highly localized, often displaying varying rates of crop mortality

within a single field, these larger scale numerical weather models

may not be able to accurately represent frost patterns at the

sub-field scale suitable for agricultural operations.

Machine Learning (ML) algorithms have been developed

to detect frost events for frost forecasting as well as other

meteorological applications (Kuligowski et al., 1998; Maqsood

et al., 2003; Eccel et al., 2007; Lee et al., 2016). Use of ML

methods trained on local data allows for the development of

site-specific models to avoid factors such as the existence of

complex terrain from impeding model accuracy as they do in

existing larger scale numerical weather models. Previous studies

where ML was employed to predict frost have yielded positive

results in complex terrain (Ghielmi and Eccel, 2006; Eccel et al.,

2007), and determined how integration of data from nearby

weather station data may yield improved model predictions

(Diedrichs et al., 2018). However, many ML frost prediction

studies have either focused on classification of frost events

(Möller-Acuña et al., 2017; Tamura et al., 2020; Noh et al., 2021)

which, depending on the stage of bud development, may not

be the most useful for characterizing actual crop mortality. For

example, although the occurrence of frost may be enough to kill

crops that are in the latter stages of bud development where

flowers have started to form, temperatures lower than freezing

are needed to destroy crops in earlier bud stages (e.g., bud

swelling) (Salazar-Gutiérrez et al., 2016). As such, temperature

and the severity of the frost, and not merely the identification of

frost occurrence, is a better determinate of actual crop mortality

(Warmund et al., 2008). Moreover, this means that temperature

regression models are preferred over frost classification models

for operational use in agriculture. Another missing aspect from

previous studies is the use of prediction windows from both

shorter (<8 h) and longer (24–48 h) lead times to accommodate

appropriate preparations for frostmitigation. Often, a single lead

time is reported (Diedrichs et al., 2018) or model performance is

significantly reduced at longer lead-times (Tamura et al., 2020).

In this study, we develop and evaluate temperature

prediction models using both random forest (RF) and deep

neural network (NN) models. We use meteorological data from

a weather station in Alcalde, NM to predict the overnight

minimum temperature at the weather station site at multiple

prediction lead-times (6–48 h) and across seasons. Further, to

test model transferability to new sites as well as the inherited

learning of the models, we again train and test the models

using temperature data from shorter data collection records

at a nearby farm. We compare our results against forecasts

made by the High-Resolution Rapid Refresh Model (HRRR).

This study differs from those conducted previously concerning

the use of ML models for frost detection by (1) application

of ML regression models to predict temperature and not just

the occurrence of frost, (2) comparing model performance at
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differing lead times and across seasons, and (3) providing an

evaluation of the transferability of models to nearby sites. The

models are designed to have a low computation cost, such that

they can be run locally with limited computation cost relative to

physically based models.

The purpose of this study includes the following:

- Design ML models to predict the minimum daily

temperature at various lead-times and seasons for the

purposes of frost prediction.

- Determine the effectiveness of both RF and DNN models

for frost prediction compared to physics-based models.

- Evaluate the input parameter importance for RF models

based on the calculated feature importance.

- Assess the effectiveness of transfer model learning through

additional training and testing at a nearby farm site.

2. Materials and methods

2.1. Data collection

We used 10 years of historical data at an hourly temporal

resolution from the Natural Resource Conservation Service

weather station in Alcalde, New Mexico to train and test our

ML models (Alcalde Annual Report 2021, 2021). The Alcalde

site is located just East of the Rio Grande River, which provides

the primary source of irrigation for agriculture in the region.

The area is characterized as a high elevation desert environment,

with the station situated in a valley at 1,700m elevation and

surrounding mountains reaching elevations of up to 4,000m.

The climate is cold semi-arid (Köppen Geiger Classification:

BSk), with an annual precipitation of 232 mm/year. The high

elevation and dry climate of the region leads to large daytime to

nighttime temperature swings year-round. During the mid-to-

late boreal Spring, this diurnal temperature variability reaches

30◦C, making crops grown in the area prone to extensive

frost damage.

The Alcalde weather station collects a variety of

meteorological and soil measurements at an hourly frequency.

The parameters we utilized for our frost prediction ML

model included temperature, radiation, relative humidity, soil

temperature, precipitation, wind speed, and wind direction. The

full list of parameters used to develop features for ML models

are provided in Table 1.

Because the minimum hourly temperature is highly variable

(SD = 10.8◦C) and frost mitigation strategies in agriculture are

often implemented on a daily basis, we created rolling 24-h

windows over which we predict the minimum temperature for

that window. The 24-h rolling window size effectively dampens

the predicted temperature, providing accurate temperature

predictions, robust features, and practical information for

frost mitigation.

TABLE 1 The variables recorded by the Alcalde weather station and

used as features in the machine learning (ML) modeling.

Parameter Abbreviation Units

Average temperature TAVG.H ◦C

Maximum temperature TMAX.H ◦C

Minimum temperature TMIN.H ◦C

Instantaneous temperature TOBS.I ◦C

Average wind direction WDIRV.H 0–360◦

Average wind speed WSPDV.H mph

Max. wind speed WSPDX.H mph

Average dew point DPTP.H ◦C

Average precipitation PRCP.H inches

Instantaneous relative humidity RHUM.I %

Average solar radiation SRADV Watts

Instantaneous soil temperature (∼4 in.) STO.I-1 ◦C

Average saturated vapor pressure SVPV.H kPa

Each variable is reported at hourly intervals. Abbreviations for ML analysis and units are

also included.

Additional temperature data was collected using both

sensors at nearby Freshies of New Mexico, LLC (Freshies Farm)

to test the transferability of the ML models developed using

the Alcalde station data. Freshies Farm is located ∼4 miles

Northwest of the Alcalde station and resides within the same

valley along the Rio Grande River. Approximately 2 years of

temperature data collected at a frequency of 10min was used

for model transferability testing. Sensors placed at Freshies farm

recorded temperature at 10min intervals about 2m above the

ground. We use one of these sensors placed outside and away

from obstructions (greenhouses, trees, etc.) to continue to train

the models.

For performance comparison against physics-based models,

we use temperature forecasts produced by the HRRR model.

The HRRR is a physics-based ensemble analysis system for

forecasting temperature and atmospheric systems at a 3 km

spatial resolution with forecasts ranging from 0 to 24 h (Kalina

et al., 2021; Dowell et al., 2022; James et al., 2022). Field-

based validations of the HRRR 6-h forecast yielded a RMSE

of about 2–3◦C (James et al., 2022). Because of the similarities

in spatial and temporal resolutions, the HRRR model offers a

good comparison against our ML models as a benchmark for

forecasts that are publicly available to farmers. We use the 1–

6-h HRRR instantaneous temperature forecast data predicted

at midnight for the period of 2015–2020 for the spatial grid

cell containing the alcalde weather station and compare the

performance against the ML models. We then calculate a

minimum 6-h forecasted temperature using the 6 different

predictions from 1:00 to 6:00 am. To account for elevational

differences within the 3 km grid cell and the height of the

observed temperature instrument (2m), we correct the HRRR
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data for bias using the mean bias error between the Alcalde

observations and the HRRR forecast. We show the bias-

corrected performance of the HRRR forecast against the alcalde

weather station observations.

2.2. Machine learning methods and
analysis

ML model predictions were made using lead-times of 6, 12,

24, 30, 36, and 48 h to predict the minimum temperature. This

means that a 12-h prediction for a 24-h period ending at 6:00

am would be based on a forecast generated at 6:00 pm of the

preceding day. While there is some overlap in the prediction

and observation windows for prediction periods <24 h, these

shorter-term prediction periods were selected because they can

be critical to implementing accurate and cost-effective frost

mitigation strategies for agriculture. We trained each of the

models using the weather station data from Alcalde, NM. For

each data parameter described in Table 1, we calculate the

minimum, maximum, and mean of that parameter over the 24-

h window and then input them as features into the ML models.

Note that the observed values (TOBS, TMAX, TMIN, etc.) are

reported as the maximum, minimum, and average temperature

value over the observation frequency of the Alcalde weather

station and then report the data at that frequency and “OBS,”

“MAX,” and “MIN” here are the values recorded by the weather

station. We generate statistics (max, mean, and min) of these

values over rolling 24-h windows to further expand the data

and allow the algorithms to be trained on the temporal aspects

of the data. We trained the data on the oldest 85% of the

dataset (n ∼= 3,100) and tested the data on the most recent

15% (n ∼= 550). The training for the Alcalde station data was

performed using a time-series cross-validation using threefolds

over the training dataset. The testing dataset was withheld from

this training dataset altogether and assessed after training had

been finalized.

We use the Root Mean Squared Error (RMSE), coefficient of

determination (r2), and F1 score to assess model performance.

The RMSE is a useful aggregate for the magnitude of

model error while the r2 value represents the proportion

of the variation in the observed values that is predicted

by the modeled values. The F1 score is a measure of

classification accuracy combining both the model precision

(false negatives) and recall (false positives) and provides a

measure of how the model will perform in a decision-

making framework. For application in frost damage mitigation,

we use 0◦C as a frost threshold to calculate the F1 score.

While we show this metric, the models themselves are

regression models due to the variable temperature at which

a buds may experience frost damage at different stages

in development.

2.2.1. Random forests

We developed a RF regression model using the sci-kit

learn package in Python (Pedregosa et al., 2011). RF models

use an ensemble decision tree classification system and can

be used for either regression or classification. The RF method

was developed by Breiman (2001), which has been expanded

on and is described in depth by Biau and Scornet (2016). A

random forest consists of a large number of decision trees that

are constructed using indpendent random samples from the

training dataset for each tree. The trees are then aggregated

by a process known as bagging, wherein individual trees are

generated using samples from the original dataset and then use

averaging to decide on a final estimator.

The individual decision trees are constructed by splitting

the input data parameters at various nodes parameters

by maximizing the CART-split criterion. The CART-split

criterion (Crawford, 1989; Biau and Scornet, 2016) takes the

following form:

Lreg,n
(

j, z
)

= 1

Nn (A)

n
∑

i=1

(

Yi − YA
)2

1XiǫA

− 1

Nn (A)

n
∑

i=1

(

Yi − YAL 1X
(j)
i <z

− YAR 1
X
(j)
i ≥z

)2

1XiǫA

where,

Lreg , is the CART-criterion function to be maximized.

n, is the number of data samples.

j, is some value from 1 to the number of possible directions

for splitting the data.

z, is the position of the cut along the jth coordinate.

A, is a generic cell or sample of the input data space. A create

the pair.

Nn (A) is the number of data points within A.

Xi, is the input data for the ith tree sample.

Yi, is the target estimate of the ith decision tree.

YA, is the average of Yi such that Xi belongs to A.

AL, is equal to {X ǫ A : x(j) < z}.
AR, is equal to

{

X ǫ A : x(j) ≥ z
}

.

For each sample cell A, the optimal cut is performed by

maximizing Lreg over the number of possible directions for

splitting at each tree and node and the number of all possible

cuts in A.

Here, we use a regression model to predict the 24-h rolling

window minimum temperature. We used a sequence of steps

to develop the RF model. First, we ran the model using the

24-h rolling window time series of the minimum, maximum,

and mean of the raw parameters at the Alcalde station. Next,

we extracted the Gini feature importance metric (Menze et al.,

2009) of the model parameters at each prediction lead-time

window to determine which parameters are relevant within

the prediction model and eliminated the parameters of less

importance, maintaining 90% of the calculated cumulative
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feature importance. Gini importance calculates each feature

importance as the sum of the number of splits that utilize a

feature as a ratio to the number of samples that are being split.

The ability of RF models to rank the importance of features and

parameters further allows us to determine which measurements

are necessary when setting up a meteorological sensor network

that could be used to develop and train ML models for

temperature prediction. It also allows us to understand which

aspects of the weather system might inform model performance

and what processes might be relevant. We calculate and report

the weighted feature importance of our input parameters in each

of the RF models.

Next, we extracted features from the weather station data

which allows us to perform dimensionality reduction on the

time-series data by calculating statistical and spectral features

from the previous n time steps and then feeding these features

into the RF model (Mudunuru et al., 2018; Yuan et al., 2019).

We extracted features using only the relevant parameters as

determined by the previous model run. The expansion of the

data at this step in the feature extraction is large enough such

that elimination of some parameters is necessary before feature

extraction to reduce the training time. Next, we ran the RF

model using the extracted features and again extract each feature

importance. This time, we eliminated only specific features

(not parameters) with low importance based on the extracted

feature importance, while retaining the 20 features of highest

importance. We then ran the model an additional time using

only the desired features to get our final model result. The

feature extraction and dimensionality reduction allow us to

optimize computing resources, reduce overfitting of the model,

and obtain higher accuracy in temperature predictions.

2.2.2. Neural network models

We developed two neural network model configurations; a

fully connected deep neural network (DNN) and a convolution

long-short term memory neural network (CNN). We developed

both models using the Keras package in Python. NN models

are constructed from a series of neural nodes, which contain

a weighted value that adjusts based on the performance of

the model and the signals or connections between nodes.

Nodes are organized into layers with connections between

nodes of each layer. The weights of each node and connection

between nodes are optimized using a gradient descent

optimization algorithm. The Nesterov-accelerated Adaptive

Moment Estimation algorithm, or Nadam, is a gradient decent

optimization algorithm that includes a Nesterov momentum

element as an improvement over the classical momentum

version of the algorithm (known as Adaptive Moment

Estimation or Adam). Gradient descent optimization is a

popular way to iteratively optimize an objective function, and

in this case to optimize the neural networks parameters (node

weights) to minimize the loss. Nadam is described by Dozat

(2016). First, the gradient, g(t), for the previous step is defined

using the previous time-step, t – 1.

g (t) = f
′
(x (t − 1))

Then the two moments, m and n, are defined in equation X

using the gradient and hyperparameters µ and γ .

m (t) = µ ×m (t − 1) + (1− µ) × g (t)

n (t) = γ × n (t − 1) + (1− γ ) × g (t)2

Then the moments are biased corrected to compensate for

the fact that the moments are set to 0 at the start of the descent.

m̂ =
(

µ ×m(t)/(1− µ
)

+
(

(1− µ
)

× g(t)/(1− µ))

n̂ = γ × n (t) / (1− γ )

Finally, the parameter value is set for time t using the bias-

corrected moments, m̂ and n̂, as well as the hyperparameter α

(learning rate parameter). ε is a small constant used to avoid

negative parameter values.

x (t) = x (t − 1) −
(

α × m̂
)

/

(√
n̂+ ε

)

Nadam is used to optimize the search of the parameter space

until the optimal solution is found.

Adaptive Moment Estimation (or Adam) is similar to

Nadam but lacks the Nesteroy momentum element. This

difference manifests in the bias-corrected calculations of m̂ and

n̂ shown below:

m̂ = m (t) / (1− µ)

n̂ = n (t) / (1− γ )

Our DNN model contains 13 dense layers of 39 nodes each,

with an additional output layer of 1 node (20,320 total NN

parameters). 39 nodes are used in each layer, a construction

of one node per input parameter. 13 layers allows for a

sufficiently deep NN that still minimizes overfitting through

cross-validation.Multiple configurations of full connected layers

and nodes were tested, but we found this configuration to

produce the most successful DNN model. We used “elu” as our

activation function, “nadam” as our optimizer, and “log-cosh” as

our loss function.

The CNN model contains two one-dimensional

convolutions layers (16 filters and 8 filters), one LSTM layer

(8 nodes), and an additional two fully connected deep layers

(10 nodes) with a dropout of 0.2 (3,963 total NN parameters).
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FIGURE 1

Performance statistics for the CNN 24-h prediction model as a

function of the number of epochs used by the model.

For the CNN model we use “relu” as the activation functions,

“adam” as our optimizer, and “MSE” as our loss function.

The feature extraction and reduction process used in the

RF modeling should be automated within the NN models. The

construction of the NN nodes, layers, and weights implicitly

develop optimized non-linear relationships between the input

parameters and the desired output analogous to the features

used in the RF models. However, the construction of the NN

model does not inform the direct relationship between the input

parameter and the output objective.

The hyperparameters of both RF and NN models determine

the structure and progression of the model and can be adjusted

to optimize results. Figure 1 shows the CNNmodel performance

against the number of epochs. The number of epochs determines

how many times the entire dataset is passed through the model.

The model RMSE and r2 improve as the number of epochs

increases, but then deteriorate past about 100 epochs. This is

likely due to the overfitting of themodel to the training dataset at

a large number of epochs. Hyperparameters for both RF and NN

models were optimized to achieve a low RMSE when evaluating

the model on the testing dataset and to minimize overfitting of

the training dataset.

2.2.3. Generalization

To test the generalization of the ML models, we continued

training the models on the historical temperature data from a

single sensor at Freshies Farm and tested those models using a

separate subset of the Freshies data. By continuing to train the

Alcalde models on the Freshies data, the models should be able

to adapt to differences in the Freshies data while maintaining

the patterns learned that are similar at each site, thereby

requiring less training data. First, because only temperature

data was available at Freshies Farm, we developed ML models

from only the Alcalde hourly temperature parameters (TOBS,

TMIN, TAVG, and TMAX; Table 1) constructed into 24 h rolling

windows. Then, using the 10-min frequency temperature data

collected at Freshies Farm, we resampled the data into hourly

parameters used at Alcalde and constructed the same 24-h

rolling windows. We then continued to train the models on

the Freshies Farm data, initializing with the weights and forest

structure of the ML models developed using the Alcalde data.

Because of the limited amount of data collected at Freshies Farm,

we perform only a single training-testing split when assessing

the performance at Freshies Farm. Training the models on the

Freshies Farm data allows us to determine the generalization

of our ML models, while also providing practical information

of the length of the temperature record needed to implement

a sensor system integrated with accurate ML models for

temperature predictions on-site.

3. Results

The results of the RF models compare favorably against

previous temperature prediction efforts by machine learning

models (Verdes et al., 2000; Diedrichs et al., 2018, 24-h F1= 0.6–

0.85, RMSE 2–3◦C). Table 2 shows the test statistics at various

prediction lead-times. The 6-h lead-time provided a temperature

prediction with a RMSE of 1.72◦C, while the 24-h prediction

model resulted in a RMSE of 2.37◦C. Predictably, the larger

the prediction lead-time, the worse the model performed. The

largest difference in RMSE between model runs occurs between

24 and 30 h (0.46–0.47◦C), while the difference in RMSE

between 36 and 48 h is relatively small (−0.02–0.17◦C). The
rf model does display some slight overfitting from training to

testing set. However, the standard deviation in cross validation

scores was small relative to the mean error, exhibiting a standard

deviation of ±0.006–0.09◦C RMSE and ±0.007–0.014 r2. The

HRRR model 6-h forecast of minimum temperature resulted in

a RMSE error of 3.05◦C, a r2 value of 0.920, and a F1 score of

0.859 after correcting for bias.

The results of the fully connected DNN models are similar

to that of the RF models and are reported in Table 3. The 6-

h DNN prediction model resulted in a RMSE of 1.58◦C and a

F1 score of 0.94. The standard deviation across the threefolds of

cross validation was also small relative to themean error, ranging

from ±0.014 to 0.029◦C RMSE and ±0.004–0.01 r2. At shorter

lead-times, the DNN model tended to have a lower RMSE than

the RF model but performed worse at 30- and 36-h prediction

intervals. The DNN models resulted in an equal or better r2

value compared to RF models, while the RF models resulted in
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TABLE 2 Statistics for the results of the RF model prediction at various lead-times.

Random forest model statistics

Prediction size (forecast) Train RMSE [◦C] Test RMSE [◦C] Train r
2 Test r2 Train F1 Test F1

6 h 1.56 1.72 0.98 0.98 0.96 0.95

12 h 1.86 2.07 0.98 0.97 0.94 0.94

24 h 2.12 2.37 0.97 0.96 0.94 0.94

30 h 2.45 2.83 0.96 0.94 0.93 0.93

36 h 2.6 3.01 0.95 0.94 0.92 0.92

48 h 2.86 3.16 0.94 0.93 0.91 0.92

Statistics shown include root mean square error (RMSE ◦C), correlation coefficient (r2), and the F1 score. The training statistics for RMSE and r2 are the mean of 3 cross-validation folds.

TABLE 3 Same as Table 2 but for the results of the fully connected DNNmodel predictions.

Fully connected deep neural network model statistics

Prediction size (forecast) Train RMSE [◦C] Test RMSE [◦C] Train r
2 Test r2 Train F1 Test F1

6 h 1.55 1.53 0.99 0.98 0.96 0.96

12 h 1.72 1.84 0.98 0.98 0.96 0.95

24 h 2.06 2.23 0.97 0.96 0.95 0.94

30 h 2.34 2.69 0.96 0.95 0.94 0.92

36 h 2.53 2.96 0.96 0.95 0.94 0.91

48 h 2.7 2.94 0.95 0.94 0.94 0.93

The DNNmodel uses a sequential model with elu activation.

an equal or better F1 score. Table 4 shows the test statistics for

the CNN model. The CNN model again performs similarly to

the RF and DNN models but exhibits slightly less overfitting

than those models. The standard deviation in cross validation

metrics was also comparable with ±0.007–0.09◦C RMSE and

±0.003–0.01 r2. In the following figures, only the CNN results

are represented because of the similarities between the CNN and

DNNmodel results.

The r2 values show that the models are well correlated

with the Alcalde weather station observations (0.92–0.98), and

that the models are effective in capturing the variability of

the minimum temperature. However, for the model to be

operational, it must predict the temperature within an accuracy

that can inform decision making. The models perform generally

well at classifying the frost threshold (0◦C, F1 = 0.9–0.95)

and perform similarly well within the 6- to 24-h window of

prediction (F1 = 0.94–0.95). The recall and precision scores

were found to be comparable (test recall = 0.935–0.979, test

precision = 0.846–0.949) with a slight preference toward false

positive type error. This is encouraging given that the dataset is

not perfectly balanced and contains only about 20% of values

below the 0◦C threshold. High recall scores suggest that the

model is not simply predicting the majority class. This presence

of slightly higher recall scores than precision scores is consistent

across RF (recall = 0.96–0.98, precision = 0.88–0.94) and CNN

(recall= 0.939–0.980, precision= 0.892–0.945) models.

The model experiences larger error when predicting for the

local maxima of minimum temperatures, indicating they could

experience lower classification ability at a warmer minimum

temperature threshold. This is evident in Figure 2, which

shows the chronological model predictions lead-times. Each

of the models underestimates local maxima, while maximizing

precision and sacrificing recall. This is especially evident at larger

lead-times, where the model fails to capture the variability in

the minimum temperature that shorter prediction lead-time

models capture. Furthermore, the NN model shows a larger

amount of variability in its predictions than the RF model. The

RF model, especially at longer lead-times, captures the longer-

term trends but fails to capture the day-to-day variability seen in

the observations.

Figure 3 shows the observed temperature against the model

predicted temperature for both RF and CNN models at 6- and

24-h lead-times. The CNN model slightly outperforms the RF

model, and the RFmodel fails to predict minimum temperatures

above 15◦C. Furthermore, the RF model exhibits biases at both

high and low minimum temperatures, tending to overestimate

at low minimum temperatures and slightly underestimate at

the highest end of minimum temperatures. The RF model does
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TABLE 4 Same as Table 2 but for the results of the CNNmodel predictions.

Convolution LSTM neural network model statistics

Prediction size (forecast) Train RMSE [◦C] Test RMSE [◦C] Train r
2 Test r2 Train F1 Test F1

6 h 1.57 1.57 0.98 0.98 0.95 0.96

12 h 1.83 1.88 0.98 0.98 0.95 0.95

24 h 2.18 2.19 0.97 0.97 0.94 0.95

30 h 2.42 2.66 0.96 0.95 0.94 0.93

36 h 2.57 2.89 0.95 0.95 0.93 0.92

48 h 2.82 3.06 0.95 0.94 0.93 0.93

The CNNmodel uses two convolution layers and one LSTM layer configuration.

FIGURE 2

The time series of temperature prediction and observation at various prediction times (over a span of 3 years) and models. Model predictions

show both training and testing datasets. The inset shows a period of 50 days from 01/29/2019 to 03/20/2019. The orange band is the 90%

confidence interval of the RF model predictions.
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FIGURE 3

Observed and predicted temperatures at 6- and 24-h lead-times for both the RF and CNN models. Statistics for the predictions are included for

each plot for both testing and training datasets. The predictions show good accuracy with low RMSE values.

capture the minimum temperatures well, but is outperformed by

the NN model where there is sparser data at the extrema.

Figures 4, 5 show the monthly probability density

distributions of model error for NN and RF models,

respectively. The cooler months (Oct.–Mar.) for both models

show longer tapered distributions at lead-times >12 h, while

the warmer months (Apr.–Sep.) show more concentrated error

distributions. The warmer months also feature a negative bias,

especially for longer prediction lead-times.

A key functionality of RF modeling is that we can extract

the feature importance (imp) used to determine branching

within the model. Here, we report the Gini importance

metric which is the number of times a feature is used

to split a node weighted by the number of samples split

by the node (Menze et al., 2009). Effectively, this indicates

which input parameters are most useful to predicting the

temperature at various lead-times in the RF models and gives

us insight into which aspects of the weather system may

be influencing the models. Figure 6 is a heatmap showing

the weighted importance of each of the input parameters at

different prediction intervals (refer to Table 1 for parameter

abbreviations). The minimum hourly temperature (TMIN.H)

and the observed instantaneous temperature (TOBS.I) provided

the large majority of information used in the 6-h prediction

model. The instantaneous temperature (TOBS.I, imp = 0.47)

provides slightly more information than the minimum hourly

temperature (TMIN.H, imp = 0.43). All other features that

were tested provided minimal information toward predictions

(imp < 0.05), suggesting that the short-term predictions rely

heavily on utilizing the most recent temperature measurements.
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FIGURE 4

The plot shows the NN model error (Error = modeled – observed) grouped by month. The white dot represents the mean error for the month,

the dark box shows the 25th and 75th percentile. The whiskers extend to the minimum and maximum possible error values. The surrounding

blue polygon represents the probability density of the model error.

Interestingly, the minimum temperature (along with other air

temperature measurements) was deemed important for models

with shorter timescales of <24 h (imp > 43%) but provides far

less information to predictions made 36 h or more in advance

(imp < 6%). The longer timescale models instead rely on the

soil temperature for predictions lead-times of 30 h or more (imp

> 68%).

Results of the temperature-only ML models for both the

Alcalde station and with additional training at Freshies Farm

are shown in Table 5. The temperature-only model on the

Alcalde data performs worse than the full parameter ML model.

However, the reduction in model performance is modest and

the temperature-only models are less prone to overfitting,

experiencing little to no difference in performance between

testing and training. Using the temperature-only models, the

modeled temperature is still highly correlated with the Alcalde

observations (r2 = 0.92–0.98). The results of training and testing

the data on the temperature data from Freshies farm shows that

the models perform much worse when tested on the Freshies

data at lead-times >12 h. Only the 6-h model (RMSE= 1.93◦C)
provides a RMSE of <3◦C (r2 = 0.86–87). At every other

prediction lead-time (12-h +), the model produces poor results

ate Freshies Farm (r2 = 0.26–60) when compared with the

Alcalde tested models (r2 = 0.92–0.97).
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FIGURE 5

Same as Figure 4 but for the RF model results.

Figure 7 shows the model performance of both 24-h RF

and NN full parameter models against the training size of the

data. The models expectedly improve with greater the training

data size. Dramatic reductions in RMSE were observed in both

models with a training size of at least 1,000 samples. Above this

training size, gains in model performance were minimal. The

data record at Freshies Farm is <3 years and thus not yet past

the 1,000 sample threshold where we observe diminishing return

from the Alcalde station data.

The computational time for each ML model type and

prediction lead-time is reported in Table 6 (using a 16 GB RAM,

i7-dual core, 2.8 GHz Laptop). The computational cost of the

models is relatively low, especially in comparison with larger

numerical weather models. The CNN models take by far the

longest amount of time to train (205–264 s), while the DNN

models take a slightly longer time to train (40–53 s) than the

RF models (23–35 s). All three models take little time to run

once they have been trained. For example, to run the DNN

model on the entire Alcalde station time series (10 years of data)

would take 0.03–0.11 s, while the CNN and RFmodels take 0.20–

0.36 and 0.31–0.52 s to run, respectively. The low computational

time demonstrated by these models would be reasonable to

run on a smaller, field-based device such as a Raspberry Pi or

Google TPU.
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FIGURE 6

A heatmap of the weighted model importance of the RF model features (as described in Table 1). The listed values are the sum of all feature

importances for the given input parameter (the actual number of features is much larger after feature engineering on the time-series data). Each

RF model (columns) add up to a total of 100%.

TABLE 5 Testing set statistic for both RF and CNNmodels using only the temperature data from the Alcalde station along with the results from the

same model with additional training on the temperature data from Freshies Farm.

Prediction size (forecast) Convolution neural network Random forest

RMSE [◦C] r
2 RMSE [◦C] r

2

Alcalde Freshies Alcalde Freshies Alcalde Freshies Alcalde Freshies

6 h 1.72 1.97 0.98 0.87 1.79 2 0.98 0.86

12 h 2.17 3.27 0.97 0.6 2.23 3.29 0.96 0.58

24 h 2.38 3.45 0.96 0.53 2.41 3.59 0.96 0.49

30 h 2.92 3.7 0.94 0.43 2.96 3.63 0.94 0.43

36 h 3.11 3.86 0.93 0.33 3.16 4.09 0.93 0.2

48 h 3.26 3.94 0.92 0.29 3.24 3.88 0.92 0.26

4. Discussion

The CNN and DNN model results slightly outperform

the RF model results at each prediction lead-time. As the

prediction lead-time increases, the RF model tends to dampen

the temperature signal, showing less day-to-day fluctuation

than the observed data. This is evident in Figure 5, where the

probability density plot of the 48-g RF model prediction error

is somewhat evenly distributed compared to the 6-h prediction

where the distribution tapers away from the mean error in a

more gaussian-like distribution. At longer timescales the RF

model does an adequate job at capturing the longer-term trend,

but fails to capture the day-to-day variability of the observed

data as shown in the inset of the 36-h RF model in Figure 2.

Meanwhile, the CNN model captures more of the variability

of the observed data, displaying less overfitting, better model

performance metrics, and less seasonal bias than the RF model.

Thus, the CNN model is the preferred model in the context of

this study. The results also show how the prediction accuracy

may vary at different observed temperatures. Generally, the

performance of both models is slightly worse above 10◦C.
The RF model predictions flatten at the highest observed

temperature and does not predict temperature above about

15◦C. This is also evident in the summer months, where the

model underestimates summer temperatures.

Overall, the 6- and 12-h models provided promising results

in frost mitigation applications at the Alcalde station (RMSE

< 2◦C, F1 > 0.95). Due to the localized nature of temperature

in Northern New Mexico and the course spatial resolution of

alternative temperature predictions (1 km-WRF, 3 km-HRRR,

12 km-NAMeso), the ML model predictions are likely an

improvement over existing data available to farmers. The WRF

and NAMeso models were found by one study to have a regional

average RMSE of 2.6–2.88◦C for a 24-h lead time (Raby et al.,

2012), which is slightly worse than the model results for the

Alcalde station (RMSE= 2.19–2.37◦C). Further, The MLmodels

presented outperformed the HRRR model forecast by a large

margin, resulting in an improved 6-h forecast RMSE of about

1.5◦C. Much of the improved performance is likely due to the

scale of the prediction. ML models can predict the temperature
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FIGURE 7

Performance statistics for both RF and CNN models at various

training dataset sizes for 24-h predictions.

at the point of the sensor, while large numerical based weather

models generate forecasts at a much larger grid scale (3 km for

HRRR). Numerical and physically based weathermodels are able

to forecast weather patterns over a much larger area, which is

useful for forecasting larger systems of weather (i.e., pressure

fronts, storm events, etc.). However, for applications of frost

damage where farmers require temperature data at the intra-

field scale, point-scale forecasts from trained ML models may

be more appropriate as demonstrated by this study.

Our models also compare well against previous ML studies

with the purpose of frost prediction and mitigation (Diedrichs

et al., 2018, 24-h F1 = 0.6–0.85, RMSE 2–3◦C). However, the

transfer learning results were not sufficiently accurate given the

shorter data records at Freshies Farm (2 years). More data is

needed at Freshies Farm (3+ years total) for further training of

MLmodels before a frost mitigation system can be implemented.

The relatively poor results of the transfer learning indicate

that the models produced are location dependent and a large

training data record is required to develop forecast models for

specific locations. Theoretically, transfer learning can be used to

transfer a pre-trained ML model to a new but similar location

where data may be sparse. However, the two data collection

sites in this study proved too dissimilar for such a method to

achieve satisfactory results. Our results do indicate that given

a sufficient sample size (1,000+ days) trained ML models can

outperform traditional physically based model forecasts in an

area of complex topography. Further, we expect the addition

of key parameters, such as soil temperature, to improve model

performance at longer lead times for Freshies Farm.

Use of RF models allowed us to determine the weighted

importance of the various input parameters. The results show

that many of the parameters reported by the Alcalde station

are not used by the RF model to predict the temperature.

Precipitation (PRCP), Relative Humidity (RHUM), Wind

Direction (WDIRV), Wind Speed (WSPDV/WSPDX), and Solar

Radiation (SRADV) each account for very little (∼1% or less)

weighted importance in the RF models at every prediction

lead-time. Instead, the temperature parameters account for the

vast majority of model importance, while atmospheric surface

pressure provides some importance to the 24-h model (18.3%).

As was shown for this instance, the variability in the barometric

pressure is often associated with changes in temperature and

has been frequently reported as a main drive of changes in

local weather patterns (Rowson and Colucci, 1992). These

parameter importances can also help to explain the relatively

poor performance of the ML models at Freshies Farm at longer

prediction lead-times. Comparing the model runs using the

Alcalde station data and the Freshies Farm data, the best model

performance at Freshies Farm is at the 6-h prediction lead-

time when temperature data is the most relevant. At 24-h

prediction lead-times, the Alcalde model relies on six separate

input parameters, each exhibiting an importance of 9.9% or

more. Beyond the 24-h lead-time, the Alcalde model relies most

heavily on the soil temperature. Because these other parameters

were not collected at Freshies Farm, ML models at longer lead

times were still reliant exclusively on temperature and thus

exhibited less robust model performance. Previous ML studies

have also reported difficulty in predicting frost at longer intervals

(Tamura et al., 2020) and the addition of soil temperature shows

promise for model improvement over these prediction windows.

The differences in the models’ monthly error distributions

could be caused by the fundamental change to the weather

patterns that occur during the Boreal Summer months. An

important seasonal feature of the Southwest United States is

the North American Monsoon (NAM), which is responsible for

heavy summer rainfall across the region (Adams and Comrie,

1997). Higher atmospheric moisture during this time tends to

dampen the diurnal signal of air temperature and could be

responsible for seasonal differences in model accuracy. While

the RF models attribute low importance to dewpoint (imp =
1.1–2.3%) and relative humidity (imp < 1.0%), those features

could have a larger importance in seasonal models and have

been shown to have higher model importance in other study

locations (Ghielmi and Eccel, 2006; Eccel et al., 2007). Even still,

the NAM activity is highest in July and August, while the largest

negative model bias occurs during the Spring and early Summer
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TABLE 6 The computational time of training and running the model on a single 1.7 GHz Intel Core i7 processor for each ML model type and

prediction lead-time.

Prediction size (forecast) RF CNN DNN

Training time [s] Run time [s] Training time [s] Run time [s] Training time [s] Run time [s]

6 h 34.9 0.52 238.94 0.23 39.89 0.11

12 h 35.5 0.51 261.36 0.36 53.1 0.06

24 h 31.51 0.52 263.88 0.2 46.09 0.05

30 h 33.59 0.51 239.4 0.2 41.33 0.04

36 h 25.65 0.31 204.91 0.21 42.41 0.03

48 h 22.59 0.41 208.13 0.23 40.58 0.04

months. Therefore, the cause of the strong negative bias could

be associate with other factors outside of the NAM.

The highly localized variability in temperature indicated by

our results is likely associated with the complex topography

of the region. The topography in the vicinity of Freshies

Farm is characterized by broad river valleys surrounded by

steep escarpments forming mesas or table mountains. It is

common for cool air to funnel from the mesas and pool in

valleys in patterns related to the local topography, leading

to highly localized spatial patterns in temperature (Burns

and Chemel, 2014). Thus, while the Alcalde station and

Freshies Farm are close geographically, the differences in

temperature variability between sites may in part be due to

different physical characteristics that control the microclimate

of each site. Adding elevation or spatial data as well as

other nearby meteorological data could contribute to better

transfer of ML models to locations located within a larger

network of farms and weather stations. The large datasets

needed (3+ years) to train ML models makes implementing

a frost prediction system at small farms where previous

data may not exist difficult, but transfer learning may

decrease the data collection period needed to implement

such systems. Studies implementing transfer learning and data

augmentation (Diedrichs et al., 2018) approaches have been

minimal, and should be an emphasis for agricultural ML

moving forward.

The models collectively take very little time to run

(0.03–0.52 s) on a 16 GB RAM, i7-dual core, 2.8 GHz

Laptop. The Raspberry Pi 4 specifications [8 GB RAM,

Broadcom BCM2711, Quad core Cortex-A72 (ARM v8),

1.5 GHz] should be sufficient to run the ML models

while being installed on local devices. Similar ML models

in function and application run on a comparable laptop,

took about 10 times the time to run on a Raspberry

Pi 3 (35–40 s; 1 GB RAM, quad-core ARMv8, 1.2 GHz)

compared to the laptop (3–5 s; 16 GB RAM, i7-dual core,

3.1 GHz) (Mudunuru, 2017). Thus, the computational cost

and memory requirements of running pre-trained models

(<100MB) should be small enough to be implemented

in the field and run at the necessary frequency for frost

event detection and prediction and present a large advantage

over physically based weather models which require large

computational power and would be impractical to run at the

point scale for individual farmers. This approach could also

apply to similar applications in edge computing where poor

network quality or large observational datasets make local ML

modeling and data compression extremely valuable (Hu et al.,

2018).

In this study, we were able to develop new ML models

for frost prediction at various prediction lead-times and tested

the performance of each. Overall, our study shows that both

CNN and RF models provide accurate forecasts that improved

with the length of the data record. By producing temperature

regression forecasts rather than frost classification forecasts, we

were able to produce forecast data that is more relevant to

crop damage from frost at various bud development stages.

Previous studies that focus on forecasting the presence or

absence of frost neglect the role that bud stage and hardiness

play in eventual crop damage from frost (Warmund et al.,

2008). The model results were comparable or better than efforts

from previous ML frost forecast studies (Verdes et al., 2000;

Diedrichs et al., 2018) (24-h F1 = 0.39–0.68), although a direct

comparison between studies is difficult due to differences in

methodology, input data, environmental settings of where the

models were applied, and prediction lead-time. Our temperature

predictions also achieved better performance metrics than

available large-scale numerical weather models such as the

HRRR model and compared to models assessed in previous

studies (Raby et al., 2012). Such forecasts could provide accurate

predictions of frost at the point scale in areas of complex

topography where numerical models perform relatively poorly.

Further, these models are computationally efficient such that

they can be incorporated onto a sensor, IoT (internet of things)

device, or local hub, providing greater flexibility regarding the

configuration of the network connection or data stream from

sensor to cloud.
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In continuing this research, we plan to expand the

methodology to a larger network of weather stations and

incorporate topographic and spatial information into our

predictions to better capture the effects of cold-air pooling

over a broad spatial area and improve the results of transfer

learning. Further, our models could be integrated within

an IoT sensor network such that multiple sensors can

be deployed within a single field to better capture frost

variability at the sub-field scale and could be integrated

into a local alarm system to alert Farmers of forecasted

frost events.
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