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Currently, there are many publicly available Next Generation Sequencing

tools developed for variant annotation and classification. However, as modern

sequencing technology produces more and more sequencing data, a more

e�cient analysis program is desired, especially for variant analysis. In this

study, we updated SNPAAMapper, a variant annotation pipeline by converting

perl codes to python for generating annotation output with an improved

computational e�ciency and updated information for broader applicability.

The new pipeline written in Python can classify variants by region (Coding

Sequence, Untranslated Regions, upstream, downstream, intron), predict

amino acid change type (missense, nonsense, etc.), and prioritize mutation

e�ects (e.g., synonymous > non-synonymous) while being faster and more

e�cient. Our new pipeline works in five steps. First, exon annotation files

are generated. Next, the exon annotation files are processed, and gene

mapping and feature information files are produced. Afterward, the python

scrips classify the variants based on genomic regions and predict the amino

acid change category. Lastly, another python script prioritizes and ranks the

mutation e�ects of variants to output the result file. The Python version of

SNPAAMapper accomplished the overall speed by running most annotation

steps in a substantially shorter time. The Python script can classify variants by

region in 53 s compared to 166 s for the Perl script in a test sample run on a

Latitude 7480 Desktop computer with 8GB RAM and an Intel Core i5-6300 CPU

@2.4Ghz. Steps of predicting amino acid change type and prioritizingmutation

e�ects of variants were executed within 1 s for both pipelines. SNPAAMapper-

Python was developed and tested on the ClinVar database, a NCBI database

of information on genomic variation and its relationship to human health.

We believe our developed Python version of SNPAAMapper variant annotation

pipeline will benefit the community by elucidating the variant consequence

and speed up the discovery of causative genetic variants through whole

genome/exome sequencing. Source codes, test data files, instructions, and
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further explanations are available on the web at https://github.com/BaiLab/

SNPAAMapper-Python.

KEYWORDS

Next-Generation Sequencing, SNP, python, mutation, variant annotation, pipeline

Introduction

Next-Generation Sequencing is a technique to

rapidly sequence a genome and was developed because

of the Human Genome Project, which successfully

sequenced a human genome over a period of 23 years

(www.genome.gov/human-genome-project) and cost around

$2.7 billion in 1991 Fiscal Year Dollars, equivalent to $5.6

Billion 2022 Fiscal Year Dollars. Today, a human genome can

be accurately sequenced for as low as $600 (Preston et al., 2022).

In 2013, sequencing a whole human genome took between 1

and 2 days (Lewis, 2013).

With the decreasing cost and increasing availability of the

Next-Generation-Sequencing technique (Barba et al., 2014),

our ability to discover variants in the human genome has

been revolutionized. More variants have been reported and

discovered. Our ability to interpret or annotate these variants

becomes a major gap in effectively using genomics data in

understanding diseases. To address this issue, multiple variant

annotation tools that locate and assign information about

variants have been developed.

One such tool is SNPAAMapper, a variant analysis tool

developed in 2013 in the Perl coding language. SNPAAMapper

contains two general algorithms: one that generates annotation

tables with coding and other information annotated for each

exon, and one that reads the generated annotation tables and

assigns identified variants to the genomic loci and classifies them

by region (Bai and Cavalcoli, 2013).

The original SNPAAMapper used the Perl coding language

to make alignment of input DNA sequences, which may have

sub-optimal performance. This inefficiency and inability to

handle big data in a timely manner placed a hurdle in its

wide applications. In this study, we chose to update and

modify SNPAAMapper to substantially increase the speed of

the program to fulfill the current need of the genomics field.

Additionally, we presented an improved output to facilitate

downstream data processing and analysis.

Methods

Input data acquisition

The reference genomes used in the paper were sourced

from the UCSC genome browser (https://genome.ucsc.edu/).

The UCSC Genome Browser is a web-based tool that allows

researchers to example all 23 chromosomes of the human

genome all the way down to an individual nucleotide. It

also contains data on the genomes of more than a 100 other

organisms. The genome browser was created and maintained

by Jim Kent and David Haussler at UCSC in 2000 as a

resource for the distribution of results from the Human

Genome Project. It was funded by the Howard Hughes

Medical Institute and the National Human Genome Research

Institute (NHGRI) (https://genome.ucsc.edu/goldenPath/

history.html).

When testing our tool, we used both a small test

dataset (number of variants = 80) and data file from

the ClinVar database (https://www.ncbi.nlm.nih.gov/

clinvar/) (number of variants = 1,440,883), a publicly

accessible archive of reports of relationships between human

variations and phenotypes. ClinVar is crowdsourced and

relies on the submission of reports by researchers and

clinical labs. The default format for ClinVar database is

VCF and the database file was downloaded in assembly

GRCh37/hg19 for the human reference genome on May

28, 2022. VCF is the default format for ClinVar to store

and report variants, including point mutations and short

insertions/deletions. In the “INFO” columns, some related

annotation information was also provided by ClinVar, such as

the associated clinical significance, associated diseases, gene

annotation etc.

Algorithm description

The pseudocodes for SNPAAMapper-Python algorithms

are described in Algorithm 1 (see Supplementary materials).

There are two modules of the algorithm: (1) Preprocess the

gene structure to build annotation for each exon; (2) Map

identified variants onto the genomic location and report

the hit class. In the Python version of SNPAAMapper,

the second script for processing exon annotation files and

generating feature start and gene mapping files performs

extremely better than the one in the original Perl version. The

screenshot for SNPAAMapper on the GitHub site is shown in

Figure 1.
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FIGURE 1

Screenshot of the GitHub website of SNPAAMapper-Python.

Usage

As the input, a VCF file is required for annotation. There

are two methods to use the program, an end-to-end option

and a step-by-step option. For the end-to-end option, users

can use the config.txt file to configure the running parameters

and define input files. The running parameters are “vcfFile =

clinvar_20220528.vcf, intronBoundary = 6, geneAnnotation

= ChrAll_knownGene.txt, conversionFile = kgXref.txt,

sequenceFile = hg19_CDSIntronWithSign.txt.out.” Then users

can use command./run_SNPAAMapper-Python.sh config.txt

to generate the final output by running through each step

automatically. This option is recommended for all users by

default. For the step-by-step option, the users will have to

run through the Python scripts step-by-step in the following

orders: (1) Generate exon annotation file; (2) Process exon

annotation files and generate feature start and gene mapping

files (Algorithm_preprocessing_exon_annotation_RR.py);

(3) Classify variants by regions (CDS,

Upstream, Downstream Intron, UTRs...)

(Algorithm_mapping_variants_reporting_class_intronLocation

_updown.py); 4() Predict amino acid change type

(Algorithm_predicting_full_AA_change_samtools_updown.py);

(5) Prioritize mutation effects

(Algorithm_prioritizing_mutation_headerTop_updown.py).

This option is recommended for more advanced users and

for users who are only interested in the intermediate outputs.

The final output will be an annotated variant file, with each

row representing a unique input variant and each column

representing one piece of annotated information.

Results

Annotated file

For each variant in the input VCF file called by SAMTools

(Li et al., 2009), there is a corresponding row in the

output annotated file. The final output will be an annotated

variant file, with each row representing a unique input

variant and each column representing one piece of annotated

information. Specifically, there 21 columns with unique

annotation information. For VCF files containing individual

genotype data, the first column specifies the sample ID. The

other 20 columns are as follows: “Chromosome,” “Variant

Position,” “Gene Symbol,” “UCSC ID,” “Strand,” “AA Position
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TABLE 1 Speed comparison between original and updated

SNPAAMapper for the test dataset.

Steps Python execution time

in seconds

Perl execution time in

seconds

Step 1 13 2

Step 2 16 166

Step 3 2 138

Step 4 62 407

Step 5 1 1

Total 94 714

of Mutation (for CDSHIT),” “Variant Type,” “Amino Acid Ref

(Codon) -> AA SNP (Codon),” “Variant Class,” “Ref AA chain,”

“Alt AA chain,” “Hit Type,” “Known dbSNP,” “Ref nt,” “Alt nt,”

“Quality,” “Depth,” “Allele Freq,” “Read Categories,” and “Info.”

A table with column descriptions for the first 15 columns of

the VCF output file can be found in Supplementary Table 1. The

remaining five columns are variant calling information extracted

from the VCF output file.

ClinVar database

ClinVar is a widely used database that links variants to

their functional importance (pathogenicity) (Landrum et al.,

2015). ClinVar provides a full download of their database

in VCF format. Aside from potential phenotype/clinical

association information, ClinVar provides some basic

annotation for the variants, such as HGVS-nomenclature,

types of variants (single nucleotide variant, indels, etc.),

and functional consequences (missense, UTR, etc.). While

this information is valuable, it is common to expand these

annotations for the clinicians/researchers to better understand

the functional impact of the variants for the purpose of disease

diagnosis, hypothesis-generating/validation.

Currently, ClinVar (20220508) includes 1,440,883 unique

variants that are associated with various diseases. It uses a 5-

category classification system that groups these variants into

pathogenic, likely pathogenic, benign, likely benign, and variant

of uncertain significance.

We first compared the running speed of annotating the test

file using the original and updated SNPAAMapper (Table 1).

We then ran the updated Python version of SNPAAMapper for

entire ClinVar database file and found that our updated version

was able to generate exon annotation file in 48 s; generate feature

start and genemapping files in 49 s; classify variants by regions in

256 s, It took 124,311 s for predicting amino acid change type. It

took 497 s for prioritizing mutation effects. For the Perl version

of SNPAAMapper, it takes more than 2 weeks to run all the

pipeline steps.

Next, we examined the concordance of annotation between

ClinVar and SNPAAMapper-Python. We found that 91.4% of

the variants have concordant annotations between ClinVar and

our tool (Figure 2). Among those variants with discordant

annotations, we found that 48.55% of them are annotated

as non-coding transcripts variants in ClinVar which was not

specifically annotated in SNPAAMapper. Additionally, our tool

provided annotation for 10% of the variants that showed

no annotation in ClinVar, which highlighted the usefulness

of our tool. Importantly, annotations from ClinVar were

buried into the “INFO” column with other information, which

makes parsing and understanding the information much more

difficult, whereas, for our tool, there is a separate column

for each specific annotation. Using position-based annotation

from SNPAAMapper, we examined the distribution of variants

by functional genomics regions (Figure 3). We found that

the majority (661,958 for pathogenic variants and 592,638

for benign variants) of reported variants in ClinVar (n =

947,008), regardless of their pathogenicity, reside in coding

sequences (CDS).

Comparing pathogenic variants (n = 103,909) to benign

ones (n= 340,726), we found that there was a higher percentage

of CDS variants and lower percentages of 3’UTR, 5’UTR,

and other non-coding sequences for pathogenic variants. This

observation illustrated that most of the studies focused on CDS

as variants from this region usually have clearer functional

consequences. Additionally, using the SNPAAMapper’s output,

we can easily examine the distribution of variants across

different genes. For example, gene TTN has the most unique

variants (n = 17,915), while 2,448 genes have only 1

unique variant. These observations highlighted our need for

investigating the under-studied genes to gain a well-rounded

understanding of human genes and genetic mutations. We note

that this gain of knowledge is attributable to the easy-to-use

format of SNPAAMapper’s output.

Finally, we illustrated the importance of including additional

exome-specific annotations to help users interpret their data

using annotated output from the previous step. First, we

looked under the hood for variants residing in CDS. As

illustrated in Figure 4, it is not surprising that the vast

majority of nonsense (NSN) variants are pathogenic, while

most synonymous (SYN) variants are benign. Interestingly,

for nonsynonymous (NSM) variants, we observed a similar

percentage of the reported pathogenic and benign variants.

This highlighted the importance of NSM variants in helping us

interpret sequencing variants. As a result, numerous methods

have been developed to target NSM variants and predict whether

they are functional or not.

Another key strength of our SNPAAMapper pipeline was to

retrieve the most damaging amino acid variants from genomic

variants. This can be used to investigate the property of variants

and their impact on the biochemical and physical properties

of the amino acid and protein. As illustrated in Figure 5, we
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FIGURE 2

Percentage of ClinVar variant region annotation that are concordant with SNPAAMapper-Python.

FIGURE 3

Percentage of ClinVar variants by variant type. Left, Percentage of ClinVar pathogenic variants by variant type; Right, Percentage of ClinVar

benign variants by variant region.

FIGURE 4

Count of pathogenic and benign variants by their functional

annotation. NSN, nonsense; NSM, nonsynonymous; SYN,

synonymous.

plotted the hydropathy of the variants in ClinVar database

grouped by their clinical significance. We found that a change

in hydropathy was more commonly observed in pathogenic

variants. For example, hydrophobic to hydrophilic conversion

was substantially enriched in pathogenic variants. On the other

hand, benign variants were substantially enriched in variants

without pathogenic conversion (hydrophilic to hydrophilic,

etc.). This analysis briefly highlighted the importance of

providing easy-to-access amino acid variants, as their properties

are crucial in understanding the functional consequence of the

underlying genomic variants.

Comparison of performance in run times

We compared the execution time between the original

SNPAAMapper and updated SNPAAMapper-Python using the

same sample VCF file. The updated program runs significantly

faster (8 times) than the original Perl program, with an almost
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FIGURE 5

Percentage of variants grouped by their hydropathy.

10-fold increase in speed. This time increase will be substantially

more prominent when hundreds or thousands of samples

were queried.

Discussion

The biggest difference between the old tool (SNPAAMapper)

and our updated tool (SNPAAMapper-Python) is the change in

the programming language. The former runs on Perl, while the

latter runs in Python, as the name states. To convert the original

Perl pipeline codes, we downloaded and analyzed the original

SNPAAMapper code reported in the paper, which was sourced

from the previous study (Bai and Cavalcoli, 2013).

Our updated program maintains all the previous features

of SNPAAMapper. It grants downstream variant identification

and analysis at a record speed. Our tool is self-sufficient and

lightweight; external alignment tools and such are not necessary

since they are all included in this package. In addition, our

tool preserves the original customizability of SNPAAMapper,

meaning that it can be easily configured for other species and

reference genomes. Another benefit of our program is its greater

compatibility; the popularity and use of the Perl programming

language are rapidly decreasing (https://www.tiobe.com/tiobe-

index/perl/) while the use of Python has been growing at an

extreme rate for the last decade (https://www.tiobe.com/tiobe-

index/python/). We believe that this upgrade is crucial for

researchers due to the impractical run time of the original

SNPAAMapper on a test sample (Table 1).

The python version performs more efficiently than the perl

version. The reason is that we use an optimized Python-built

in module “csv” to read and write tabular data. In particular,

the python version is not using any embedded loop as the

Perl version by iterating over almost approximately a million

rows in the ChrAll_knownGene.txt.exons file for “the number

of chromosomes” (about 60) times. Instead, the python version

iterates only one time.

We used the same dataset tested in SNPAAMapper for both

programs. By running both tools on a Latitude 7480 Desktop

computer with 8GB RAM and an Intel Core i5-6300 CPU

@ 2.4Ghz, we were able to make an accurate comparison of

the execution times for each program. Using this method, we

were also able to make time comparisons for each step of

both programs.

In addition, we also run SNPAAMapper-python on the

ClinVar database file to collect the running statistics. Specifically,

we ran the pipeline on an lntel_Core_i7-4770K_CPU@3.5GHz

Gentoo Linux box to collect running statistics for ClinVar

database file.

Additionally, with the improved output representation,

this update enables easy-to-use output where each column

represents a single piece of information. These improvements

can greatly facilitate downstream analyses and open up

opportunities for users to analyze their data using tools

like Excel, which is expected to accelerate the translation

of information to knowledge. Lastly, our codes are open-

sourced and hosted on GitHub, which enables the continuing

maintenance, updates and improvements from us and all

the users.

We created an end-to-end pipeline with intermediate

outputs. The final output is the one that’s interesting to most of

our users.

To test the ease of use and convenience of our program,

we asked a student to act as a user and attempt to operate our

system. As our tester, we asked the student to document running

statistics and surveyed the practicality of our tool.

Our ultimate goal is to create a very efficient and

multifunctional pipeline which can not only do variant

annotation, but also has multiple functional annotation

databases incorporated into the pipeline. This would require

downloading many databases and consistently formatting them.

In the future, we plan to add additional features/annotations

to the pipeline. Some examples include population allele

frequencies, functional prediction scores etc. This will be

a priority for us. Additionally, we expect to compare the

annotations made by SNPAAMapper with other established

tools in the future version to give users a better understanding

of the performance of our tool. Furthermore, to make

SNPAAMapper more easily accessible to a wider range of

users, we plan to extend our program to support R in

future development.

Data availability statement

The original contributions presented in the study are

included in the article/Supplementary material, further inquiries

can be directed to the corresponding author/s.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2022.991733
https://www.tiobe.com/tiobe-index/perl/
https://www.tiobe.com/tiobe-index/perl/
https://www.tiobe.com/tiobe-index/python/
https://www.tiobe.com/tiobe-index/python/
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Li et al. 10.3389/frai.2022.991733

Author contributions

CL, KM, and YB drafted the manuscript. NX deployed

the SNPAAMapper-Python GitHub website. CF assisted

to modify the pipeline codes. CL has processed the input

files to generate the ClinVar results. AH conducted the

student test runs. XL and YB supervised the project and

provided suggestions and guidance on directions. All

authors participated in the discussions and revisions.

All authors contributed to the article and approved the

submitted version.

Funding

Funding for article processing charge is provided by the

University of South Florida to XL.

Conflict of interest

The authors declare that the research was conducted in

the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed

or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be

found online at: https://www.frontiersin.org/articles/10.3389/

frai.2022.991733/full#supplementary-material

SUPPLEMENTARY FIGURE 1

Algorithm for classifying variants by genomic regions for

SNPAAMapper-Python.

SUPPLEMENTARY TABLE 1

Column description for the first 15 columns of the VCF output file.

References

Bai, Y., and Cavalcoli, J. (2013). SNPAAMapper: An efficient genome-wide SNP
variant analysis pipeline for next-generation sequencing data. Bioinformation 9,
870–872. doi: 10.6026/97320630009870

Barba, M., Czosnek, H., and Hadidi, A. (2014). Historical perspective,
development and applications of next-generation sequencing in plant virology.
Viruses 6, 106–136. doi: 10.3390/v6010106

Landrum, M., Lee, J., Benson, M., Brown, G., Chao, C., Chitipiralla, S., et al.
(2015). ClinVar: public archive of interpretations of clinically relevant variants.
Nucl. Acids Res. 44, D862–D868. doi: 10.1093/nar/gkv1222

Lewis, T. (2013). Human Genome Project Marks 10th Anniversary.
livescience.com. Available online at: https://www.livescience.com/28708-human-
genome-project-anniversary.html (accessed July 11, 2022).

Li, H. B., Handsaker, A., Wysoker, T., Fennell, J., Ruan, N., Homer, G., et al.
(2009). The Sequence Alignment/Map Format and SAMtools. Bioinformatics 25,
2078–2079. doi: 10.1093/bioinformatics/btp352

Preston, J., VanZeeland, A., and Peiffer A. (2022). Innovation at Illumina: The
Road to the $600 Human Genome. Nature.com. Available online at: https://www.
nature.com/articles/d42473-021-00030-9

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2022.991733
https://www.frontiersin.org/articles/10.3389/frai.2022.991733/full#supplementary-material
https://doi.org/10.6026/97320630009870
https://doi.org/10.3390/v6010106
https://doi.org/10.1093/nar/gkv1222
https://www.livescience.com/
https://www.livescience.com/28708-human-genome-project-anniversary.html
https://www.livescience.com/28708-human-genome-project-anniversary.html
https://doi.org/10.1093/bioinformatics/btp352
https://www.nature.com/
https://www.nature.com/articles/d42473-021-00030-9
https://www.nature.com/articles/d42473-021-00030-9
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	SNPAAMapper-Python: A highly efficient genome-wide SNP variant analysis pipeline for Next-Generation Sequencing data
	Introduction
	Methods
	Input data acquisition
	Algorithm description
	Usage

	Results
	Annotated file
	ClinVar database
	Comparison of performance in run times

	Discussion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


