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implications for multimodal AI
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Human communication often combines imagery and text into integrated

presentations, especially online. In this paper, we show how image–text

coherence relations can be used to model the pragmatics of image–text

presentations in AI systems. In contrast to alternative frameworks that characterize

image–text presentations in terms of the priority, relevance, or overlap of

information across modalities, coherence theory postulates that each unit of a

discourse stands in specific pragmatic relations to other parts of the discourse,

with each relation involving its own information goals and inferential connections.

Text accompanying an image may, for example, characterize what’s visible in

the image, explain how the image was obtained, o�er the author’s appraisal

of or reaction to the depicted situation, and so forth. The advantage of

coherence theory is that it provides a simple, robust, and e�ective abstraction

of communicative goals for practical applications. To argue this, we review case

studies describing coherence in image–text data sets, predicting coherence from

few-shot annotations, and coherencemodels of image–text tasks such as caption

generation and caption evaluation.
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1. Introduction

The internet has become a multimodal information ecosystem, where units of

content—news articles, web pages, posts to social media—regularly tie together written

words, emoji and other icons, static and dynamic imagery, and links to yet more multimodal

content. Faced with the heterogeneity of online information, Artificial Intelligence (AI)

researchers have increasingly characterized problems of information access from the

perspective of multimodality: for example, producing text captions that make visual

information more accessible (e.g., Lin et al., 2014; Young et al., 2014); or taking both

text and image content into account in information retrieval (e.g., Funaki and Nakayama,

2015; Chowdhury et al., 2019). At the same time, this heterogeneity has empowered AI

researchers to compile vast multimodal datasets (e.g., Sharma et al., 2018) and to build

large scale “foundation” models (e.g., Lu et al., 2019; Radford et al., 2021) trained to capture

cross-modal patterns and make cross-modal predictions.

Applications of such models, like the DALL-E system for synthesizing imagery from text

(Ramesh et al., 2021), have captured the imagination of researchers and the public alike and

serve as high-profile examples of the ability of representation learning to drive surprisingly

rich AI capabilities.

The rapid progress in multimodal AI brings new urgency to the challenge of better

understanding the data, tasks, model architectures, and performance metrics in the field.

In fact, even the basic data points, “image–text pairs” scraped from the web, as in Radford

et al. (2021), involve diverse and surprising juxtapositions. In Figure 1, for example, we see
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FIGURE 1

People combine text and images creatively to communicate. In these two unrelated image–text pairs, the images provide explanations for what is

described in the text. Image credits: Malihe Alikhani.

image–text pairs where the image depicts the reason for the text

contribution—the depicted traffic is why the author will be late;

the possibility of encountering bears in nature is why repellent

is needed. Though such text is “grounded” in imagery only in

a very abstract way, such inferences seem like common-sense to

human readers. How good then are large vision–language models

at capturing the varied implicit generalizations and relationships

that connect text and imagery? How robust to this variation

are machine learning approaches to using natural language as a

supervision signal for multimodal inference? Can we designmodels

that better understand and reason about these inferential links?

More generally, what concepts and methods are needed for AI

researchers to explore such questions in precise and effective ways?

In this paper, we address these challenges through the lens

of theories of discourse coherence (Phillips, 1977; Hobbs, 1979,

1985; Asher and Lascarides, 2003). Our focus is on image–text

coherence, where we argue that coherence relations that resolve the

interpretation of text segments against juxtaposed imagery offer a

broad and powerful framework to improve AI datasets, models,

and systems so that they can better account for the structural,

logical and purposeful organization of authors’ communicative

contributions to online discourse.

Coherence theory originates in the detailed analysis of the

inferences needed to support text interpretation in knowledge-

based approaches to natural language processing. For example,

this discourse from Hobbs (1985 ex 3) depends on common-sense

knowledge about books are formed and handled:

(1) John took a book from the shelf. He turned to the index.

Coherence here consists of the fact that the first event brings

about the situation in which the second event takes place—a

relationship referred to as Occasion (Hobbs, 1985) or Narration

(Asher and Lascarides, 2003). For coherence theory, establishing

this Occasion relationship guides and prompts key inferences,

including the inference that John’s turning involves opening the

book hemust be holding in his hand to a new page and the inference

that the index refers to the section of this book John exhibits. While

current AI rarely approaches such inferences explicitly, coherence

theory nevertheless remains an influential paradigm that informs a

wide range of AI work on text discourse, as we survey in Section 2.

Interpreting image–text presentations requires analogous

inferences across modalities, including inferences that locate the

viewpoint of imagery (Cumming et al., 2017), identify depicted

objects (Abusch, 2013), and place the ongoing scene in the arc of

the narrative (Cohn, 2013). Some coherence relations link imagery

together (McCloud, 1993). Others guide inferences that enrich the

joint interpretation of communicative actions across modalities

(e.g., Lascarides and Stone, 2009a; Stone and Stojnic, 2015). The

specific case of image–text coherence is the focus of our work here

and underpins the contribution of our research. Section 2 builds

on our review of broader work on coherence in AI to motivate and

characterize image–text coherence.

Having laid out the principles of coherence, we go on to

demonstrate the significance of image–text coherence for state-

of-the-art multimodal AI. Section 3 explores how coherence can

be used to annotate and to analyze image–text datasets. Section 4

illustrates how coherence can be used to make sense of the

representations and learning of different model architectures for

multimodal AI. Section 5 reviews how coherence-aware tasks and

metrics enhance researchers’ ability to build more useful tools

and measure performance in more meaningful ways. We close by

suggesting some key directions for building on these successes in

future research.

2. Coherence in image–text
presentations

We begin with an overview of coherence theory. We

have two aims. Our first aim is to present the motivations,

analyses, and principles of coherence theory as an approach to

multimodal discourse. Like text discourse, we argue, multimodal

discourse recruits numerous fine-grained inferences to enrich

the interpretation of communicative contributions in context;
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what unifies these inferences is the need to establish coherence

relations that organize the contributions of parts of the discourse

into an integrated whole. It may seem counterintuitive that such

an approach—a theory devised to address abstract foundational

questions about meaning—should pave the way for concrete

progress in AI. Our second aim, then, is to explain why

the constructs of coherence theory have such direct, practical

implications for AI methodology in general, and for multimodal

AI in particular.

2.1. Coherence: The key ideas

Authors have different purposes in presenting information. The

writer of Example (2), for example, uses the second sentence to offer

an explanation of why the first event came about.

(2) Max spilt a bucket of water. He tripped on his shoelace.

Such relationships are central to making sense of the author’s

message. The second sentence of Example (2) works as an

explanation, for example, only because we understand He as

Max, his as Max’s, the shoelace as that of one of the shoes

Max must be wearing, and the event where He tripped as

located temporally immediately prior to the spilling. Coherence

theory counsels that we take a fundamentally relational view

of actions in discourse. Successive actions in discourse don’t

express independent propositions or act unassisted to influence the

audience: discourse contributions build on one another. Coherence

relations specify how they do this. (Our discussion of Examples 2–4

follows Kehler, 2002; Asher and Lascarides, 2003). We counsel AI

researchers also to take a relational approach to discourse actions.

One lesson of our experiments in Section 4 is that AI architectures

should not assume that discourse actions stand on their own.

Instead, AI architectures should learn about discourse actions via

their latent relation to other discourse actions in the context.

After all, relationships vary. Here are variants of Example (2)

where the followup sentences make contributions of very different

kinds.

(3) Max spilt a bucket of water. He spilt it all over the rug.

(4) Max spilt a bucket of water. John dropped a jar of cookies.

In Example (3), we find what Hobbs (1985) calls Expansion. We

learn more about the initial event, its context and consequences.

In Example (4), we find what Kehler (2002) calls Resemblance.

The author presents another event as notable for its similarity

and difference to the first. Coherence theorists have elegant ways

to systematize the diversity of such relational interpretations in

a rational taxonomy. For Kehler (2002), for example, Examples

(2–4) illustrate Cause-Effect, Contiguity, and Resemblance relations

(respectively), each a manifestation of the relationality and fitness

of human thought. At the same time, AI research is increasingly

successful at standardizing guidelines for annotators to classify the

relations found in specific examples.

Strikingly, these different relations are not encoded directly in

the linguistic forms and structures that make up Examples (2–

4). Of course, the forms of referring expressions in 3 are the

pronouns that you’d expect if this was a straightforward extended

description of a single scene; the structure of Example (4) also

exhibits the syntactic and semantic parallels you’d expect if the

author wanted to facilitate a comparison. In that sense, linguistic

form corroborates coherence. But form does not signal coherence—

there are no words or constructions that give decisive evidence

about what the author has in mind. Ambiguity is pervasive. A

consonant lesson of Section 5 is that AI researchers should be

skeptical that models and metrics learn and respect coherence. If

coherence matters, rather than hoping learning methods capture

it automatically, we recommend designers solve coherence-aware

tasks and assess systems on coherence-aware metrics.

Alternative coherence relations provide broad organizing

frameworks for interpretation, rather than clearly demarcated

elements of form or content. Nevertheless, ambiguities in

coherence often correlate transparently with clear interpretive

differences. Smyth (1994) uses Example (5), to illustrate the

connection between coherence and coreference.

(5) Phil tickled Stanley, and Liz poked him.

Coherence could organize (Example 5) in two ways. The

second sentence could describe Liz’s contingent reaction to the

tickling. This suggests that Liz poked Phil, perhaps expressing

disapproval of his action. Alternatively, the two sentences could

describe similar events. That suggests that Stanley is the object

of both tickling and poking. Asking how him is interpreted

indirectly answers questions about coherence. Similarly, we can

easily appreciate the different coherence relations in Examples

(2–4) by considering when we understand the second event to

have occurred: before the first, simultaneous to it, or at any time

on the same relevant occasion. As we explore in Section 3, such

interpretive effects enable AI researchers to approach coherence

through a surprisingly diverse set of methodologies for data

annotation and analysis.

Imagery, like language, must be understood by inference,

and scholars have long argued that the interpretation of visual

communication also aims to establish coherence. McCloud (1993),

for example, argues that coherence relations between panels

underpin storytelling in comics. Abusch (2013) makes an analogy

between the persistence of individuals across panels in comics and

the phenomenon of coreference in text discourse. Cumming et al.

(2017) show how film viewers rely on coherence relations to infer

the spatial relationships implicitly connecting the viewpoints of

successive shots. In all cases, viewers must draw inferences about

what objects imagery is depicting, where, and when—just as in

they must draw inferences to understand linguistic content. In

all cases, they use coherence to do it. Koby Leff’s video essay

presents a particularly clear visual explanation of the phenomenon;

Alikhani and Stone (2018) analyze a case study of coherent visual

communication in computational terms.

Text communication and visual communication thus share

common principles of coherence, but we see the overarching

role of coherence especially vividly when we consider the

coherent relationships between text and imagery. Authors regularly

juxtapose text and imagery to present their ideas. When we

establish the coherence of such presentations, we can find that

text relates to imagery; the text may describe how the imagery

was obtained, what it shows, what its context is, or what its
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implications are. Conversely, we can use coherent links to text to

establish what imagery depicts: perhaps a representative moment

during the event described by the text, or perhaps a telling

moment as the event got underway, or achieved its results.

Such interpretations attest to the importance of the cross-modal

coherence relations which we illustrated already with Figure 1 in

the introduction. Coherence relations can provide a framework

for ways that we pose questions about commonsense inferences in

image–text presentations.

In fact, cross-modal coherence relations have a long history in

the analysis of face-to-face communication (Engle, 2001; Lascarides

and Stone, 2009a; Stone and Stojnic, 2015; Hunter et al., 2018;

Hunter, 2019), as a formal tool to operationalize cognitive scientists’

view that speakers use diverse modalities, including speech and

coverbal gesture, to present integrated messages (McNeill, 1992;

Bavelas and Chovil, 2000; Kendon, 2004). Image–text coherence

is less well studied (the work of Feiner and McKeown, 1991, who

used a taxonomy of cross-modal coherence relations to inform

the automated synthesis of multimodal documents, is a prescient

exception), but it provides new illustrations of the key principles

of coherence.

Consider the images of Figure 2 for example.

Both images are associated with the summary “looking out the

window” but the text gets two qualitatively different interpretations.

At left we have view of a cat through glass. It’s the cat that’s looking

out the window. This is a characteristic example of a coherence

relation we have called Visible (Alikhani et al., 2020); as we review

in more detail in Section 3, we attribute many unique features of

common image–caption corpora in AI research to the distinctive

inferential character of text that supplies Visible information.

At right of Figure 2, meanwhile, we have a view of a window,

framed to draw attention to the landscaped scene outside. The

image features no gazing subject. It’s the camera that’s looking

out the window. This is an example of a different coherence

relation we have called Meta (Alikhani et al., 2020); utterances

often get their coherence through Meta-talk by characterizing

related communicative actions rather than by amplifying the

communicated content of related segments (Hobbs, 1985; Sanders

et al., 1992; Asher and Lascarides, 2003). Meta text doesn’t

summarize the visual information in the image like a typical

caption would, but in some genres authors often supply Meta

text to accompany their imagery. Such ambiguities in image–text

coherence mirror the ambiguities found in text–text coherence.

Text that accompanies imagery can provide qualitatively different

kinds of information about the image it amplifies; theremay be little

surface-level information that reveals the contribution that text is

making. Thus, there is a crucial but implicit role for coherence in

interpreting image–text presentations, one that we argue impacts

the data, models, tasks, and metrics of multimodal AI systems.

2.2. The methodology of coherence

Because of the ambiguity of coherence, annotated data is

indispensable for AI experiments, whether in training models of

coherence by supervised learning or in evaluating the predictions

of unsupervised methods. Our work on text–image coherence is

inspired by the success of analogous approaches to text discourse,

particularly the theoretical work of Asher and Lascarides (2003)

and the empirical work of Prasad et al. (2008).

To start, we need a framework that systematically organizes

coherence relations based on their implications for the structure,

content, and purpose of the discourse. Asher and Lascarides

(2003) introduce such a taxonomy of coherence relations between

discourse segments, as part of their Segmented Discourse

Representation Theory, or SDRT. The simplest relations are based

on reference to shared entities: Examples include Expansion (as

in Example 3) when a second discourse unit amplifies and

expands on what’s described in the first unit, and Narration (as

in one interpretation of Example 5), when a second discourse

segment describes an event that follows the one described in the

first segment.

SDRT also involves relations at proposition level, such as the

Parallel relation that connects two discourse segments that express

propositions that make similar claims about similar entities (as in

one interpretation of Example 5).

Finally, SDRT includes relations that describe the intents

and goals of the utterances—these are particularly important

in interactive relationships such as Correction and Clarification

Request that connect utterances by different speakers.

To annotate these relations, researchers have mapped out

structured, multifaceted, hierarchical annotation guidelines

(Prasad et al., 2008; Rohde et al., 2018; Alikhani et al., 2019). In

general, specifying coherence relations first requires deciding how

discourse elements attach into an ongoing discourse structure;

see especially Webber et al. (2003). For each discourse unit, we

need to describe what other units it’s related to by coherent links.

Connecting a discourse segment to a related segment can create

a sibling (coordination) or a child (subordination), generating a

hierarchical structure. Different discourse frameworks model the

structure of the discourse differently. Some of them only capture

shallow relations, while others, like SDRT, use more complex and

hierarchical graphs.1 In extended multimodal presentations, like

blog posts involving multiple images interleaved with extended

textual descriptions (Alikhani and Stone, 2018) or contributions to

spoken conversation including multiple utterances and co-verbal

gestures performed in synchrony (Lascarides and Stone, 2009a),

it’s routine for each contribution to attach both to a synchronous

contribution across modalities and a previous contribution in the

same modality.

Our work on image–text coherence relations highlights

cases whose discourse structure is relatively clear—for example,

images together with their ALT-TEXT, an auxiliary record that is

understood as providing subordinate, supplementary information

to accompany the image. In more complex presentations, the

question of multimodal discourse structure is a challenging issue

ripe for further research.

Given an attachment, researchers first decide which of the

top-level categories describes the relationship between the two

segments (Prasad et al., 2008; Hunter et al., 2018). We have found

1 Researchers in text discourse often focus on tree discourse structures

(Hobbs, 1985; Kehler, 2002) but the analysis of multimodal discourse benefits

from appealing to more flexible structures (Hunter et al., 2018).
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FIGURE 2

Two di�erent ways of interpreting “looking out the window” as a specification of an image. (Left) Visual information describing the pose and activity

of the subject in a photograph of a cat by Cristie Guevara (CC Public Domain 1.0 via publicdomainpictures.net). (Right) Meta-level information

describing the camera viewpoint in a photograph of the Phoenix Art Museum by Chanel Wheeler (CC BY-SA 2.0 via Wikimedia Commons).

it helpful to give annotators the option of specifying multiple

top-level relations. Given a relation, we can then “drill down”

to characterize the relationships in more detail. Webber et al.

(2019) describes the hierarchical decisions that annotators must

make to resolve the coherence relations defined for the Penn

Discourse Treebank.

We can sometimes extend coherence annotation protocols to

multimodal discourse by building on relationships that have been

studied in text. The Narration relation (Hobbs, 1985; Asher and

Lascarides, 2003) is a case in point. In multimodal discourse,

two images are connected by the Narration relation when the

second image shows the subsequent event of what’s depicted

in the first image. We can even find Narration from text to

images and vice versa. An image can show what happened right

after the text it elaborates, and text can report what happened

right after the image it modifies. More generally, Narration is

one of a family of coherence relations expressing contingent

temporal connections that link an event to its preparatory process,

its culmination, or its result state. These relationships can be

found between when–clauses and main clauses in discourse

(Moens and Steedman, 1988), between successive clauses in

discourse (Webber, 1987), or between related text and imagery

(Alikhani and Stone, 2018).

In other cases, we need new relations to describe inferences

between text and images. In postulating such relations, we can

draw valuable insights from research that explores how linguistic

content can be related to other kinds of visual content. Engle

(2001), for example, present a number of semantic relationships

between speech and coverbal gesture, showing not only that

gesture has a characteristic ability to relate to accompanying

speech by Depiction, but that such relations combine with familiar

relations from textual discourse such as Exemplification. Stone and

Stojnic (2015), meanwhile, study how physical demonstrations are

connected to speech and gesture, and appeal to relations such

as Summary—where an utterance is understood to characterize a

visible situation—and Compliance—where an event is understood

to meet an expectation for action established by a previous

utterance. As our empirical results in Section 3 make clear,

presentations with different purposes and genres naturally feature

distinctive relations, so we should expect future research to lead to

broader perspectives on the range of possible coherence relations in

multimodal communication.

Despite the many open questions about the structure

and relations exhibited by coherent multimodal discourse,

AI researchers can nevertheless make practical progress with

coherence-based approaches. For text–image coherence, we have

used a restricted list of relations to annotate data at scale

(Figure 3), analyse large multimodal datasets, design coherence-

aware models and evaluate our framework. Our taxonomy includes

five relations—Visible, Action, Subjective, Story and Meta—any

subset of which can define the coherent use of text to amplify on

image content.

The Visible relation holds when the text presents information

that is depicted in the image. This is similar to the Restatement

relations in text (Prasad et al., 2008) in text, but here the content of

an image overlaps with the content of its accompanying text. When

the image depicts a moment or a snapshot of an action described

in text, the pairs are connected with Action relation. The Action

relation is analogous to Elaboration relations described in Prasad

et al. (2008) for text.

The text and image are related with the Subjective relation when

the overlapping information described in text sometimes includes

an evaluative statement or a reaction to the content of the image.

This is similar to Evaluation relations in text (Hobbs, 1985).

Similar to the Occasion relation of Hobbs (1985) that holds

when a discourse unit provides the background for another

discourse segment, sometimes the text provides a free-standing

description of the occasion depicted in the image. We call this

a Story coherence relation. Sometimes the text goes beyond just

providing information about what’s depicted in the image or the

occasion. It describes how, when, or where the image was taken

by explaining the presentation and production procedures. In such

cases, we argue the text and the image are connected with a Meta

coherence relation.

2.3. Why coherence?

The communicative functions of images and text inmultimodal

communication can be analyzed from several different perspectives.

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2023.1048874
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Alikhani et al. 10.3389/frai.2023.1048874

FIGURE 3

Captions from left to right: A man sitting in front of a bunch of fruits. A woman is traveling on a train. The new manager of the team. The view from

the bridge. Text and images are linked together using a constrained set of coherence relations, which can summarize the structural, logical and

purposeful relationships between the contributions of text and the contributions of images. Examples from the Conceptual Captions dataset

(Sharma, 2020) that include Creative Commons Licensed image–text pairs.

For example, Kruk et al. (2019) and Shuster et al. (2019) focus

on the emotions evoked by presentations, Guo et al. (2019) study

genre and style, and Otto et al. (2019) and Vempala and Preoţiuc-

Pietro (2019) assess how text and images might be complementary

or redundant.

The main contrast with our approach is that none of these

frameworks try to model information-level inferences between

text and images. An image might be a uniquely effective way to

prompt emotion for example, but it would be surprising if our

cognitive mechanisms could resolve ambiguity in the image (or

in the accompanying text) to foster such affective engagement.

Similarly, regardless of how we resolve their ambiguities, we will

be able to classify related text and imagery as either complementary

or redundant.

In text discourse, information structure is an alternative

to coherence theory that provides yet another perspective to

relate meaning to communicative goals. Information structure

is a dimension of pragmatic meaning in language that helps

explain variation in word order, intonation, and other linguistic

cues that mark the relationship between utterances and their

context (van Kuppevelt, 1995; Roberts, 2012). A key construct

in theories of information structure is the “question under

discussion,” or QUD; utterances relate to the context in part by

addressing the QUD. Information structure describes how an

utterance is partitioned into material that evokes the question

under discussion and the material that supplies the answer.

Although information structure is signaled grammatically, the

point of emphasis of the speaker often has to be inferred

(Bolinger, 1972). This makes information structure and coherence

complementary: in particular, Hunter and Abrusán (2017) argue

that coherence provides a flexible and perspicuous way of

mapping the inferences involved in disambiguating information

structure and reconstructing the QUD. Coherence is especially

natural when we consdier how approaches should generalize to

multimodal discourse, because there isn’t anything analogous to

information structure in a photograph, map, or diagram. Even

the emphasis you find in gesture is very different structurally

and compositionally from information structure in language

(Kendon, 2004). Neither QUD nor the frameworks that prioritize

ways that images serve complementary roles for text would

give insights into inferences that connect the content of text

and imagery. They do not provide a framework that can

support data creation and model designs that we describe in the

next section.

3. Coherence as a framework for
analyzing image–text datasets

Our first argument for the utility of the coherence framework

comes in characterizing AI datasets. Coherence relations

can provide information about the inferential and linguistic

characteristics of image–text corpora. In particular, coherence

sheds light on how genres vary and how linguistic form is likely to

change across datasets. In addition to characterizing the challenges

of image–text inference, such results can also inform AI research

by helping to define the domain adaptation that will be necessary to

generalize machine learning results from one image–text collection

to otheres.

In this section, we first describe the Clue dataset, which is

the largest image-text dataset annotated with coherence relations.

Then we discuss empirical studies that support the importance

of coherence relations and their associated linguistic constructs in

supporting commonsense inference. Finally, we discuss results on

the correlations of coherence relations and genre, and the use of

coherence relations to diagnose mismatches between image–text

corpora and machine learning models.

3.1. Clue: A dataset of image–text
coherence relations

Alikhani et al. (2020) presented Clue that provides a protocol

for annotating coherence relations in text and imagery. They used

the protocol to annotate from the 10,000 image-text pairs from

the Conceptual Captions (Sharma et al., 2018) and Open Images

(Kuznetsova et al., 2020) datasets. Half of these pairs include

captions generated by models and half of them are captions that

users have written for the images. Guidelines are described in

details in Alikhani et al. (2020).

Figure 4 shows the statistics over the resulting annotations

presented in Alikhani et al. (2020). We can see that models

struggle to generate subjective or story-like captions. The rate of

captions and images with the Meta relation however is higher
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FIGURE 4

The distribution of coherence relations in our dataset.

in text generated by models that signals the potential context

hallucination problem.

3.2. Coherence predicts linguistic form

Alikhani and Stone (2019) present an empirical investigation

and argue that we can learn new perspectives on commonsense

inference by correlating coherence relations with linguistic

constructs. In particular, they report that visible descriptions are

very distinctive. They only describe what’s depicted in the image

in a restricted way.

They observed that the rate of captions that describe ongoing

events (atelic events) is drastically higher than the rate of captions

that describe events with end points (telic events). This is the

difference between arriving at an event (telic) and standing

somewhere (atelic). stative descriptions are also very common in

captions. Many captions describe quality, condition or the state

of what’s depicted in the image. Examples include the kids are

happy or green bananas are on the table. Alikhani and Stone

(2019) argue that these captions are connected to images by

the illustration or visible relation. They study the following

datasets with different types of textual descriptions with images:

(1) Google’s Conceptual Captions (CC) (Sharma et al., 2018) (2)

Flickr30K (Flickr) (Young et al., 2014) (3) Visual Storytelling

(VIST) (Huang et al., 2016) (4) the Recipe dataset (Yagcioglu

et al., 2018). While Flickr and COCO are captaining corpora, VIST

includes story-like descriptions for connecting five images and CC

pairs web images with relevant text from associated ALT-TEXT

HTML attributes.

They studied 1,000 random image-text pairs from each of the

discussed datasets. Over 94% of the text in caption corpora such as

Flicker and COCO include atelic events. However, the rate drops

to 40% in other image-text corpora, such as the multimodal recipe

dataset. Alikhani and Stone (2019) includes the experiments and

statistics details.

3.3. Coherence relations indicate Genre

AI models do not, by default, exhibit the behavior of the texts

that they are trained on. As we can see in Figure 4, machine-

generated text includes more captions with the meta relation in

comparison with text written by humans. This is one of the main

sources of the hallucination problem when the model includes

information in generated text that may not necessarily be true.

Information about the background or context of the image that is

not depicted in the image. The coherence framework can help us

identify, characterize and address these issues.

Coherence relations indicate discourse goals. Figure 5 shows

that the labels that our dataset presents correlate with the genre

under which the captions have been produced, which means that

text and images from different types of publications have different

distributions of relations. For example, captions from a news

website such as daily mail are more story-like, whereas Getty

Images posts often include Visible captions.2

4. Using coherence to critique
image–text models

In the previous Section, we discussed how coherence

defines what linguistic forms and inferences go into text–image

interpretation.We also discussed how the framework could identify

weaknesses in machine learning models trained on image-text

corpora. In this Section, we study how different model architectures

and trainingmechanisms can capture coherence to various degrees.

We first present the details of our computational experiments

then move on to describe the results and discussions. Our

computational investigations reveal that large multimodal models

cannot accurately represent coherence relations. They fail to reason

2 Getty Images: http://www.overleaf.com.

Daily Mail: https://www.dailymail.co.uk/ushome/index.html.
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FIGURE 5

Di�erent websites have di�erent types of image–caption pairs

(Alikhani et al., 2020).

flexibly about the links that connect text–image pairs in the same

way we described in our data.

4.1. Experiment structure

In this section, we describe our experimental setup, the problem

formulation and then go on to describe the insights we draw from

our results.

We investigate whether the two most recent and successful

versions of these models, VilBERT (Lu et al., 2019) and CLIP

(Radford et al., 2021) can implicitly learn coherence relations in

image–text presentations during the pre-training process.

VilBERT is a transfomer based model pre-trained on the

Conceptual Captions dataset. It is inspired from the BERT

architecture and takes as input a sequence of image blocks and

text tokens belonging to the image caption. Image blocks and

text sequence are separated by a special token. It is trained using

two proxy tasks: masked multi-modal modeling and multi-modal

alignment prediction and then the learned weights. It relies on the

self-attention mechanism of transformer architecture to learn the

relations between different parts of an image and the corresponding

textual tokens.

CLIP is trained using contrastive learning to maximize

similarity text and image pairs. Unlike VilBERT, it has two separate

encoders for the text and visual data. Visual encoder is either

a variation of ResNet architecture or a visual transformer while

the text encoder is based on the transformer architecture. A dot

product between the text and image representations is used to

compute the similarity and then loss is computed using the binary

cross entropy objective.

4.1.1. Problem formulation
The problem is structured in the form of a classification task

where goal of the model is to classify the representation hi as a

coherence relation. We measure the model performance using the

F1metric as it is a well-known metric for measuring a classification

model performance.

Formally, speaking, we define a function fθp as a pre-trained

model which maps an input pair (xi, vi) to a vector hi in

a d dimensional representation space Rd, where θp represents

the pre-trained weights, xi and vi represent the text sample

and its corresponding image respectively. To check whether the

representation hi has a certain information, we can define a

linear probe flin which takes hi as input and outputs a probability

distribution P(li|hi) over a given set of n labels li ∈ L. By tuning the

weights associated with the linear probe W, we can learn whether

the representation hi to identify different classes li ∈ L.

P(li|hi) = flin(fθp (xi, vi))

flin(hi) = σ (Whi + b)

Li =
1

n

∑

lj∈L

−log(P(lj|hi))

(1)

Where Li is the cross entropy loss signal associated with the

image-text pairs and their corresponding labels, and σ represents

the sigmoid function. Since the parameters θp associated with the

pre-trained model are frozen, the linear probe can only make use of

information encoded in the representation hi.

To discern if the representations hi encode the discourse

relation information, we compare probes for the above mentioned

models with the probes trained using representations from

ResNet and BERT. In addition, we also fine-tune the pre-

trained model weights θ to observe the improvements when the

representations hi are also fine-tuned. Our hypothesis is that pre-

trained representations containing signals for identifying discourse

relations should outperform the baselines and show competitive

performance when compared to the models obtained using fine-

tuned representations.

4.1.2. Experiment parameters
As described in the Section 4.2, we fine-tune the models in two

ways. When the pre-trained weights are frozen and only the probe

weights are trained, we rely on a batch size of 64 and a learning

rate of 5 ∗ 10−3. However, when the we run the experiments to

fine-tune the pre-trained weights we rely on a batch size of 8 and a

learning rate of 10−5. In both cases, the weights are optimized using

the Adam optimizer and a small regularization weight of 10−5 is

utilized to prevent model from overfitting the data.

4.2. Results

To conduct our experiments we split the 5760 image-text

pairs into train, validation and test ratios of 0.85, 0.075, 0.075

respectively. The idea of our evaluation setup is to investigate

whether the representations learned by the pre-trained models

encode the discourse relations between image-text pairs. We do

so by comparing the performance of fine-tuned models with

their respective linear probes. If the fine-tuned models perform

better than their respective linear probes it shows that pre-trained
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TABLE 1 This table shows the F1 score averages and their breakdowns obtained by the linear probes for di�erent visual-linguistic architectures.

Metrics

Macro average Micro average

Model F1 Precision Recall F1 Precision Recall

CLIP 0.466 0.468 0.571 0.762 0.744 0.781

VilBERTVil 0.582 0.545 0.712 0.780 0.758 0.804

VilBERTLinguistic 0.635 0.601 0.713 0.808 0.796 0.820

Resnet 0.333 0.337 0.345 0.682 0.617 0.763

BERT 0.623 0.590 0.776 0.798 0.791 0.804

BERT + Resnet 0.637 0.614 0.712 0.794 0.798 0.789

Macro average gives equal weights to the model performance in each class and hence represents the effect of imbalance while micro average represents the overall average performance.

The difference in performance highlights that representations learned by some model architecture are better suited for the purpose of identifying discourse relations; VilBERTLinguistic

representations in this case.

FIGURE 6

This figure highlights the change in macro F1 scores when the model weights are fine-tuned during the training process. In all cases, the

performance for the fine-tuned models improves by a significant margin reflecting that pre-trained representations do not encode information

necessary to identify discourse relations.

representations lack key information which would have allowed

them to identify coherence relations and vice versa.

As stated earlier we build probes for two pre-trained models—

CLIP and Vilbert. For the pre-trained Vilbert weights, we

build two probes: for the visual-linguistic representations and

linguistic representations outputted by the model. Visual-linguistic

representations are obtained by combining the visual and linguistic

representations, and linguistic representations use co-attention

mechanism with image representations to represent relations

between image and text pairs. For the CLIP model, we concatenate

the visual and text representations to obtain the representation for

image-text pair.

We present the linear probe performance based on the F1

average scores (macro and micro) and their breakdown in the

Table 1. These results highlight the capability of representations

learned by different architectures in encoding information

necessary to identify discourse relations. Our results show that

the probe for linguistic representations learned by the VilBERT

using co-attention with image representations (VilBERTLinguistic)

shows better performance when compared to the probes for other

architecture including visual-linguistic variation of VilBERT. This

could be a signal that architectures which try to learn fine-grained

relations between image-text pairs are more suited to learning

discourse relations.

When compared with the baseline probes, specifically BERT

probe, the performance of the best pre-trained visual-linguisitic

probes is similar in terms of the F1 score achieved as shown in

the Table 1. This highlights that pre-trained models are unable to

make use of the visual information in a meaningful manner to

successfully encode the relations between the image-text pairs in

the higher dimensional embedding space.

When the pre-trained model weights are fine-tuned we see a

significant increase in the macro F1 score as shown in the Figure 6.

Even though the best performance after fine-tuning is achieved

by the VilBERTLinguistic model, it only lags behind the BERT

+ Resnet performance by a slight margin of 3%. This provides

evidence that pre-training with large corpora of image-text pairs

does not implicitly allow models like VilBERT and CLIP to encode

discourse relations in the higher dimensional embedding space

and calls for the exploration of techniques which explicitly utilize
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discourse relations to learn models whose predictions are in-line

with human judgements.

5. Using coherence to define and
evaluate AI systems

In this section, we discuss ways to use the dataset andmodels we

discussed in the previous sections in designingmultimodal systems.

Previous works have shown the utility of using the coherence

framework in design image retrieval models (Alikhani et al.,

2022), caption generation models (Alikhani et al., 2020), automatic

evaluation (Inan et al., 2021), and diagram understanding (Hiippala

et al., 2021).

Can a coherence-aware model present information that is

aligned with the goal of the discourse? Can a coherence-aware

model significantly improve caption quality? Can we design

automatic learned generation metrics that can evaluate the output

of coherence-aware generation models?

5.1. Generating coherent captions

Can we design controllable image description generation

models that can generate captions with respect to different

coherence relations? Alikhani et al. (2020) introduced such

controllable model using the Clue dataset. They used Transformer

Networks (Vaswani et al., 2017) and designed a generation model

that can output captions using a sequence-generation approach.

The result is a sequence of sub-tokens that create the desired

caption. The input includes different images features and the target

coherence relation label. The relation label is the start token of the

Transformer decoder.

The proposed model is able to reduce noise by around 30%

from the generated captions overall. It includes substantially

fewer irrelevant captions, and it can respect the discourse goals

by generating captions connected to the image by the desired

coherence relations. The success rates of the model when it was

asked to generate visible, meta, story and subjective captions ware

respectively 79.85%, 46.49%, 58.8% and 45.00%. The details can be

found in Alikhani et al. (2020).

5.2. Coherence-aware learned evaluation
metrics

As we observed in the previous section, image captioning

metrics have struggled to give accurate learned estimates of the

semantic and pragmatic success of output text. Inan et al. (2021)

proposed the first discourse-aware learned metric for evaluating

such properties in image descriptions. The goal of the metric is

to output a score that reflects the quality of the generated caption

given the image, coherence relation and the reference caption. In

what follows we review the proposed model and results.

They worked with 1,000 image text pairs from the Conceptual

Captions (CC) training dataset (Ng et al., 2020) and collected

ratings for them. They use the cc imges as inputs to caption

generation model presented by Alikhani et al. (2020). The

model generates coherence-aware descriptions for these images in

different coherence classes. Then, they asked the annotators to write

Visible captions for 1,000 images from the OpenImages dataset

(Kuznetsova et al., 2020) and called the dataset COIN (Corpus of

OpenImages with Natural descriptions).

The proposed approach has two versions—a baseline Vanilla

version and a ViLBERT-based model. Both are trained on

RaCCoon training data with normalized human annotated rating

to obtain themodel’s target score. Details of the dataset and ablation

studies are available here (Inan et al., 2021). Table 2 presents the

results of the COIN-based study. The last row shows the Kendall

correlation coefficient between the scores assigned by users and

the metric. The N-gram based metrics cannot adapt to the out-

of-domain ground-truth captions from COIN which results in low

correlation coefficients. The CIDEr scores have negative correlation

coefficients which indicate negative association with user ratings.

BLEURT and BERTScore do a much better job in comparison with

CIDEr and N-gram based metrics but they are still agnostic to the

coherence relation label. Our proposed model which is coherence-

aware has the highest correlation scores with user judgments.

6. Conclusion

When authors combine text and imagery, they use the

different modalities of communication in concert: common

principles of coherence relate communicative actions together,

guide interpretive inferences, and resolve ambiguities. In this paper,

we have described how the well-known theory of coherence in

text discourse extends to image–text presentations and can guide

AI research on mulitmodal communication. While we have thus

far offered a range of findings to show the potential benefits of

coherence in multimodal AI, we are optimistic for further research

progress in all of these areas.

In particular, we have seen that coherence relations offer

important tools to analyze data sets; coherence relations can allow

us to quantify differences in language use across different corpora

and even to explain the distribution of linguistic phenomena in

corpora as a function of the distinctive character of coherence

in corpora. Work on taxonomies of coherence relations for

multimodal discourse is in its infancy. New genres and tasks

could highlight the importance of additional relations or further

distinctions in how text relates to imagery. Conversely, we have said

little about imagery that gets its coherence from accompanying text.

Alikhani et al. (2019) annotates the inferences that ground imagery

in a specific domain through particular temporal, spatial, and

logical connections, rather than through a traditional taxonomy of

coherence relations. It is an open question whether coherence can

be systematized more generally across images and text. Another

challenge is accounting for the structure of multimodal discourse,

particularly for presentations that involve relations within and

across modalities. Multimodal analyses of situated conversations

have revealed many complexities (Lascarides and Stone, 2009b;

Hunter et al., 2018).

We have also seen that coherence relations also offer a valuable

lens to critique and improve the architecture of machine learning

models. Models that build in an assumption that text and imagery

relate in simple, uniform ways, are less effective in capturing

coherence than models that allow for more flexibility. Research
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in large vision–language models, however, has overwhelmingly

designed around capturing the relationships between image

content and Visible text. Relaxing this assumption offers exciting

prospects for learning more powerful representations of the

meanings of image–text presentations.

Finally, we have offered an example of coherence-aware tasks

and evaluation metrics. Since current AI technology struggles with

coherence, we need to take coherence into account from the start

as we design and test AI systems. AI researchers still face many

challenges in extending information and interaction tasks from

their origins in text processing to multimodal communication.

All of these domains, we believe, offer fruitful settings to pursue

coherence-aware methodologies.
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