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In recent years, several deep learning approaches have been successfully applied

in the field of medical image analysis. More specifically, di�erent deep neural

network architectures have been proposed and assessed for the detection of various

pathologies based on chest X-ray images. While the performed assessments have

shown very promising results, most of them consist in training and evaluating

the performance of the proposed approaches on a single data set. However, the

generalization of such models is quite limited in a cross-domain setting, since

a significant performance degradation can be observed when these models are

evaluated on data sets stemming from di�erent medical centers or recorded under

di�erent protocols. The performance degradation is mostly caused by the domain

shift between the training set and the evaluation set. To alleviate this problem, di�erent

unsupervised domain adaptation approaches are proposed and evaluated in the

current work, for the detection of cardiomegaly based on chest X-ray images, in a

cross-domain setting. The proposed approaches generate domain invariant feature

representations by adapting the parameters of a model optimized on a large set of

labeled samples, to a set of unlabeled images stemming from a di�erent data set. The

performed evaluation points to the e�ectiveness of the proposed approaches, since

the adapted models outperform optimized models which are directly applied to the

evaluation sets without any form of domain adaptation.
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1. Introduction

Although there have been several breakthroughs in the area of medical image analysis based

on deep neural networks in the recent years, there are still a lot of issues to be dealt with in

order for this specific type of technology to be effectively applied in a clinical setting. One of

these issues is related to the generalization ability of trained deep neural networks on medical

images stemming from different medical centers or recorded with different protocols. This

is of particular interest in cases where the images share the same labels but have dissimilar

appearances due to the different protocols used to record the data. The domain shift occurring in

such settings causes a huge performance degradation of the optimized models, thus preventing a

widespread adoption of such approaches in health care. Hence, a lot of efforts are being pulled in

the specific area of domain adaptation (Ben-David et al., 2010) in order to alleviate this specific

issue. The aim of domain adaptation is to effectively adapt a trained model to a data set whose

data distribution is dissimilar to the one of the set used to optimize the model. Moreover, deep

neural networks rely on a huge amount of annotated data in order to be effectively trained.

However, such an annotation process is a very laborious task. Therefore, unsupervised domain

adaptation approaches are proposed in order not only to adapt trained models to new data sets,
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but also in order to significantly reduce the cost of manual annotation

needed for an effective optimization of an inference model. In the

current work, unsupervised domain adaptation approaches are

proposed and assessed for the detection of cardiomegaly in chest

X-ray images. The objective of the conducted experiments is the

adaptation of a deep neural network optimized on a huge set

of labeled chest X-rays, on another set of unlabeled radiographs

stemming from a different medical center. The classification

task consists of the discrimination between posteroanterior

chest radiographs of patients suffering from cardiomegaly and

posteroanterior radiographs of healthy patients.

The remainder of the work is organized as follows. In

Section 2, a summary of recent related works regarding the

automatic detection of cardiomegaly, as well as unsupervised

domain adaptation applied to medical image analysis is provided.

A description of the proposed unsupervised domain adaptation

approaches is subsequently provided in Section 3. The data used

for the assessment of the proposed approaches as well as the

corresponding experimental settings are described in Section 4.

The results of the performed assessments are presented in Section

5, followed by a discussion of the presented results in Section 6.

The work is subsequently concluded in Section 7 by summarizing

the main findings of the conducted experiments and providing an

outlook on potential future works.

2. Related works

Cardiomegaly refers to an abnormally enlarged heart, that can

be caused by several factors and medical conditions such as high

blood pressure, congenital heart disorders, coronary artery disease

or pulmonary diseases, among others (Felker et al., 2000). In a

clinical setting, one of the most commonly applied approach for the

detection of cardiomegaly consists of measuring and interpreting the

cardiothoracic ratio (CTR) (Danzer, 1919) of a posteroanterior (PA)

chest radiograph. The CTR is defined as the ratio of heart to internal

thoracic diameter, with a value higher than 0.50 usually pointing at a

case of cardiomegaly, even though values up to 0.55 are considered

by some radiologists as borderline (Pouraliakbar, 2018; Simkus

et al., 2021). Despite its inherent simplicity, this specific approach

still requires some manual computation of the CTR, followed by

its interpretation in concordance with the corresponding chest

radiograph by an expert. The resulting interpretation is therefore

very subjective, while the entire process is time-consuming, and

might also introduce discrepancies across different interpreters.

Thus, in the last decades, several approaches in the domain

of medical image processing involving Deep Neural Networks

(DNNs) (LeCun et al., 2015), have been proposed in order to

automatically perform the detection of instances of cardiomegaly

based on chest radiographs. Such a system can assist clinicians in the

diagnosis process by improving the efficiency of the interpretation

process as well as significantly reducing the discrepancy among the

resulting interpretations.

Two major categories of automatic cardiomegaly detection

approaches emerge from the current literature: the first category

consists of segmentation based approaches, which are characterized

by the use of deep segmentation networks for the extraction

of both thoracic and cardiac areas of interest. Subsequently, the

CTR is computed based on the extracted areas of interest and a

specific threshold is used to discriminate between normal instances

and cardiomegaly instances. Que et al. (2018), propose a DNN

architecture named CardioXNet for the detection of cardiomegaly

from chest X-rays (CXRs). The architecture consists of a combination

of two specific segmentation models (which are basically U-net

DNNs Ronneberger et al., 2015) trained in an end-to-end manner to

extract both cardiac and thoracic areas of the CXRs, respectively. The

extracted regions of interest are subsequently used to compute the

CTR and a threshold of 0.50 is used in order to distinguish between

normal and cardiomegaly instances. A similar approach consisting

of optimizing 2 distinctive segmentation models in order to extract

both cardiac and thoracic areas of interest before computing the CTR

is proposed by Lee et al. (2021).

The second category consists of classification based approaches,

which do not involve any cardiac area or thoracic area segmentation

process, nor a computation of the CTR. Such approaches rely

on the optimization of specific feature representations stemming

from the chest radiographs, for the discrimination between normal

instances and cardiomegaly instances. Zhou et al. (2019) propose a

transfer learning approach consisting of an ensemble of three DNNs

(ResNet50 He et al., 2016, InceptionV3 Szegedy et al., 2016, Xception

Chollet, 2017) pre-trained on the ImageNet data set (Krizhevsky et al.,

2012). The features consisting of the output specific to the top fully

connected layer of each single model are extracted and concatenated,

before being fed into subsequent fully connected layers to generate

the final output. Similarly, different authors (Bougias et al., 2020;

Cardenas et al., 2020) evaluate several pre-trained DNNs for the

detection of cardiomegaly based on transfer learning approaches,

including such models as VGG16 and VGG19 (Simonyan and

Zisserman, 2015), MobileNet (Howard et al., 2017), DenseNet121

(Huang et al., 2017), and EfficientNetB2 (Tan and Le, 2019). Bougias

et al. (2020) replace the top fully connected layers of each pre-trained

model by a logistic regression classifier before proceeding with the

optimization of the resulting architecture. Meanwhile, Cardenas

et al. (2020) replace the entire fully connected layers of each pre-

trained model by a customized 3-layer multilayer perceptron (MLP).

Uniquely the weights specific to the MLP are subsequently optimized

during the training process. In contrast to the previous category of

approaches, there is no segmentation involved and the performance

of the proposed architecture is closely linked to the discrimination

ability of the pre-trained models.

Sogancioglu et al. (2020), perform a comparison of both

segmentation based cardiomegaly detection approaches and

classification based detection approaches. The authors propose

a segmentation based approach that relies on the optimization

of U-net models for the extraction of both thoracic and cardiac

regions of interest. Based on these areas of interest the CTR is

computed and a threshold of 0.50 is applied to detect cases of

cardiomegaly. The proposed classification approach relies on transfer

learning to perform the inference task. Pre-trained models are

fine-tuned and subsequently used to perform the classification task.

The evaluation performed by the authors hints at segmentation

approaches potentially outperforming classification approaches.

Meanwhile, Grant et al. (2021) propose an innovative multi-modal

approach consisting of simultaneously optimizing a deep neural

network on both chest radiographs and non-imaging intensive care

unit (ICU) data. These ICU data consist of vital sign values (e.g.,

heart rate, respiration rate), laboratory values (e.g., hemoglobin,

glucose) and patient metadata (e.g., age, gender, ethnicity). The
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performed evaluation not only shows that non-imaging ICU data can

be used to detect cardiomegaly instances at a certain extent, but also

that the combination of non-imaging data with CXRs can improve

the overall discrimination performance of an inference model.

These approaches have proven to be able to perform an automatic

detection of cardiomegaly instances at a great extent. However,

a significant performance degradation can be observed, when the

optimized architectures are applied to data sets stemming from

different clinical institutions or acquired with different protocols.

This is mostly due to the domain shift observed in the new data sets.

The assumption behind the ability of a machine learning inference

model (DNNs in this specific case) to generalize to unseen samples

is that both the training set and evaluation set are independent and

identically distributed. However, depending on several factors such

as dissimilar data recording procedures, the data distribution of the

evaluation set can significantly differ from the data distribution of

the training set, thus causing the observed performance degradation

when evaluating the optimized model on the evaluation set. Hence,

various domain adaptation (DA) approaches (Kouw and Loog, 2021)

have been proposed in order to specifically deal with the domain

shift between the training set and the evaluation set. In this setting,

the training set is sampled from a specific source domain S and the

evaluation set stems from a different but related target domain T . The

goal of DA approaches is to optimize amodel from the source domain

in such a way that it generalizes in a target domain, by minimizing

the difference between the data distribution of both domains. Kouw

and Loog (2021) define three specific categories of DA approaches:

first, sample-based approaches which consist of weighting individual

samples from the source domain during the optimization process

of a model based on the relevance of these samples for the target

domain. Such approaches as data importance-weighting (Cortes and

Mohri, 2014) or class importance-weighting (Lipton et al., 2018)

belong to this category; second, feature-based approaches which

consist of optimizing domain invariant feature representations in

such a way that a model trained in the source domain can easily be

applied to the target domain without any significant performance

degradation. This category encompasses such approaches as the

Domain-Adversarial Neural Network (DANN) (Ganin et al., 2016)

or the deep reconstruction-classification network (DRCN) (Ghifary

et al., 2016); third, inference-based approaches which incorporate

the adaptation procedure into the parameter optimization process

through the use of specific constraints during the optimization

procedure. Such approaches as Cycle Self-Training (CST) (Liu et al.,

2021) or Minimax Entropy (MME) (Saito et al., 2019) belong to

this category.

Domain adaptation approaches have been developed and applied

to the analysis of chest X-ray images in a cross-domain setting

such as in the work of Tang et al. (2019), where the authors

propose a task-oriented unsupervised adversarial network (TUNA-

Net) for pneumonia recognition in cross-domain chest X-ray

images, which is basically a cycle-consistent generative adversarial

network. Zhang et al. (2022) propose an unsupervised domain

adaptation approach for the cross-domain classification of thorax

diseases, characterized by the application of three specific types

of constraints [Domain-Invariance (DI), Instance-Invariance (II),

and Pertubation-Invariance (PI)] for the optimization of domain

invariant feature representations. Meanwhile, Pham et al. (2021)

propose an unsupervised adversarial domain adaptation method for

multi-label classification tasks. We refer the reader to the works

presented by Çalli et al. (2021) and Guan and Liu (2022) for further

insights into deep learning approaches as well as DA approaches

applied in the area of medical image analysis.

In the current work, unsupervised domain adaptation approaches

are proposed and evaluated in a cross-domain setting for the

detection of cardiomegaly instances based on posteroanterior

chest radiographs. The described approaches aim to improve the

generalization ability of specific deep neural networks by performing

the models’ optimization on a large set of labeled samples (Source

Domain S), and adapting the optimized models to another set of

samples (Target Domain T ) stemming from a different medical

center. The source domain consists of the publicly available PadChest

data set (Bustos et al., 2020), which is a large set of labeled CXR images

stemming from the San Juan Hospital in Spain. The evaluation of

the approaches is performed on two different target domains: first

a significantly smaller custom set of chest radiographs collected at

the department of diagnostic and interventional radiology of the

Ulm University Medical Center in Germany, and second, a publicly

available OpenI (Demner-Fushman et al., 2012) data set (Demner-

Fushman et al., 2016) consisting of CXR images collected from

various hospitals of the Indiana School of Medicine in the United

States of America. Since the size of the OpenI data set is significantly

higher as the size of the set stemming from the Ulm University

Medical Center, similar evaluation experiments are performed using

the OpenI data set as the source domain.

3. Methodology

In the current settings, a data set X of size n stemming from the

source domain S , with its corresponding set of labels Y , is given.

Likewise, an unlabeled data set Z of size m, stemming from the

target domain is also given. However, both source and target domains

share an identical label space. The goal of the proposed unsupervised

domain adaptation approaches is to improve the generalization

ability of an inference model fS :X → Y trained on the source

domain, on the target domain by utilizing both labeled samples

drawn from the source domain and unlabeled samples drawn from

the target domain.

The first approach depicted in Figure 1A consists of a Deep

Reconstruction Domain Adaptation (DRDA) approach and is

inspired by the work presented in Ghifary et al. (2016). A shared

encoder E extracts features from samples drawn from both source

and target domains. The extracted features from the labeled samples

of the source domain are subsequently fed into a classification model

CS to generate the corresponding labels. Concurrently, the features

extracted from the unlabeled samples of the target domain are fed

into a decoder DT in order to reconstruct the corresponding CXR.

During back-propagation, the classifier’s weights θCS
are updated

based on the corresponding classification loss function LC , while

the encoder’s weights θDT
are updated using a corresponding

reconstruction loss LT . The encoder’s weights are updated with the

following loss function:

L = λcLC + λrLR (1)

with λc + λr = 1. By jointly optimizing the encoder, as well

as the source domain classifier and the target domain decoder, a

feature representation is generated which is able to perform the
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FIGURE 1

Proposed approaches. (A) Training with deep reconstruction domain adaptation (DRDA): E: Encoder (a single encoder is used to extract the features from

both source and target domains’ samples); θE : weights of the encoder; CS : Source domain classifier; θCS
: weights of the classifier; DT : Target Domain

Decoder; θDT
: weights of the decoder. (B) Training with regularized deep reconstruction domain adaptation (RDRDA): E: Encoder (a single encoder is

used to extract the features from both source and target domains’ samples); CS : Source domain classifier; DT : Target Domain Decoder; D: Domain

Discriminator; θD : weights of the domain discriminator. (C) Testing: during this phase, both optimized encoder and source domain classifier are used to

perform the classification of unseen samples from the target domain.

discrimination between the classes of the source domain, while

encoding useful features from the target domain. Therefore, both

optimized encoder and source domain classifier can subsequently be

combined as a model and evaluated on unlabeled samples drawn

from the target domain (see Figure 1C).

The DRDA approach is subsequently extended to a Regularized

Deep Reconstruction Domain Adaptation (RDRDA) approach by

adding an adversarial loss characterized by a Domain Discriminator

model D as depicted in Figure 1B. The regularization performed

through the additional adversarial loss adds an additional constraint

to the features generated by the encoder. The extracted features

should not only be optimized in order to perform both the

classification of samples from the source domain as well as the

reconstruction of the samples from the target domain, but also the

discriminator should not be able to distinguish between the features

of the samples from either domains, thus reinforcing the domain

invariance characteristic of the extracted features. The domain

discriminator model takes as input the features extracted from both

source and target domains’ samples and performs a discrimination

between both domains (the samples from the source domain are

labeled as 1, while the samples of the target domain are labeled as 0).

Its weights θD , are optimized using the corresponding classification

loss function LD . An adversarial loss Ladv is subsequently used

additionally in order to perform the optimization of the encoder’s

weights, with the corresponding final loss formulated as follows:

L = λcLC + λrLR + λdLadv (2)

with λc + λr + λd = 1. Following the optimization of the models,

the resulting domain invariant feature representations can be used in

order to perform the classification task in the target domain.

In the current work, the source domain classification loss LC is a

categorical cross-entropy loss, while the domain discrimination loss

LD is a binary cross-entropy loss. Furthermore, the target domain

reconstruction loss LR is basically a mean-squared-error loss:

LC =
1

bs

bs
∑

k=1



wk



−

c
∑

j=1

yk,jlog(ŷk,j)







 ,

with ŷk =
(

ŷk,1, . . . , ŷk,j, . . . , ŷk,c
)

= CS (E(xk)) (3)

LD = −
1

bs





bs
∑

k=1

log(D(E(xk)))+

bs
∑

k=1

log(1−D(E(zk)))



 (4)

LR =
1

bs

bs
∑

k=1

∥

∥zk −DT (E(zk))
∥

∥

2
2

(5)

with yk =
(

yk,1, . . . , yk,j, . . . , yk,c
)

∈ Y (c being the number of classes),

xk ∈ X , wk corresponding to the weight of the sample xk (in order

to deal with data imbalance), zk ∈ Z , ∀k, and bs ∈ N>0 standing

for batch size. The adversarial loss is basically an inverted label loss as

proposed in Tzeng et al. (2017) and is defined as follows:

Ladv = −
1

bs

bs
∑

k=1

log(D(E(zk))). (6)

By optimizing the weights of the encoder based on the adversarial

loss, the discriminator is unable to distinguish between samples

stemming from either source or target domains, thus the encoder

generates domain invariant feature representations.
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TABLE 1 Data distribution.

CXR PadChest CXR OpenI CXR Ulm

Training
set

Validation
set

Testing
set

Training
set

Validation
set

Testing
set

Training
set

Validation
set

Testing
set

Cardiomegaly 1, 712 214 214 167 83 84 39 20 20

Normal 6, 966 871 871 697 350 349 26 13 13

Total 8, 678 1, 085 1, 085 864 433 433 65 33 33

Following some stratified random sampling of the datasets, the data distribution of both cardiomegaly and normal classes for each dataset is depicted.

4. Materials and experimental settings

In the following section, a description of the data sets used for

the evaluation of the proposed approaches is provided. The data pre-

processing steps applied to the CXRs are subsequently described,

followed by a description of the experimental settings.

4.1. Chest X-rays data sets

The evaluation of the domain adaptation approaches is

performed on three CXR data sets. The largest one consists of

the publicly available Pathology Detection in Chest radiographs

(PadChest) data set (Bustos et al., 2020). It consists of 160, 868

CXRs from 69, 882 patients, recorded at the San Juan Hospital

in Spain between 2009 and 2017. The CXRs were recorded in

six different positions, including standing posteroanterior (PA) and

lateral (L) views, anteroposterior (AP) supine and erect views,

lordotic and oblique sternum views. Around 27% of the entire

data set was manually annotated by trained physicians into a

total of around 170 distinct categories of radiographic findings,

including cardiomegaly. Cases where no anomalies were found

were subsequently annotated as normal CXRs. The remaining 73%

of the data set was automatically annotated using an attention-

based recurrent neural network (trained using the set of manually

annotated CXRs). In the current work, experiments are performed

based uniquely on manually annotated CXRs recorded in a standing

posteroanterior view. Furthermore, models are optimized on a

training set consisting of uniquely two categories of CXRs, namely

cardiomegaly and normal, since the focus of the current work is

on the detection of instances of cardiomegaly. A stratified random

sampling is applied on the resulting data set (manually labeled PA

CXRs of cardiomegaly and normal instances) in order to generate

the training, validation and testing sets used in the subsequent

experiments to perform the evaluation of the proposed approaches.

Around 10% of the entire data set is used as testing set, 10% of the

entire data set is used as validation set, and the remaining 80% is used

as training set. The resulting data distribution is depicted in Table 1.

The second data set consists of the publicly available Indiana

University chest X-ray Collection (Demner-Fushman et al., 2016).

It consists of around 7, 470 manually labeled CXRs, recorded in

both lateral and PA views and stemming from various hospitals

of the Indiana University School of Medicine, in the USA. The

data set is extracted from the National Library of Medicine (NLM)

using the Open Access Biomedical Search Engine (OpenI) (Demner-

Fushman et al., 2012). OpenI constitutes a multi-modal web-based

data retrieval system that enables the search and retrieval of medical

images (such as magnetic resonance imaging (MRI), X-ray images,

computed tomography (CT) scans, ultrasound images) using a

combination of textual and visual queries. As mentioned earlier, the

current work focuses on the detection of cardiomegaly based on PA

CXRs. Thus, the data retrieved for the evaluation of the proposed

approaches consist of PA CXRs labeled as cardiomegaly or normal.

Following a stratified random sampling of the retrieved data, around

25% of the data is used as testing material, while 25% of the data is

used as validation set. The training set consists of the remaining 50%

(see Table 1 for the corresponding data distribution).

The third data set consists of manually annotated PA CXRs

from a total of 131 patients (31 female and 100 male), collected

within a study at the Department of Diagnostic and Interventional

Radiology of the Ulm University Medical Center, in Germany. The

study was compliant with regards to the health insurance portability

and accountability act (HIPAA). The ethics board of the Medical

Faculty and the University Hospital approved this retrospective data

evaluation study and waived the informed consent requirement (No.

115/21). Two radiologists verified and relabeled the data set. Images

were labeled as cases of cardiomegaly based on a CTR threshold of

0.55. A stratified random sampling of the data set in training (50%

of the entire data set), validation (25% of the data set) and testing

(25% of the data set) sets is performed and subsequently used for the

evaluation of the proposed approaches. The data distribution of the

resulting sets is depicted in Table 1.

4.2. Data pre-processing

Before being fed into the designed neural networks, CXRs have

to be pre-processed in order to significantly reduce the amount of

noise within the images, which hinders an optimal optimization of

the parameters of the neural networks, resulting into overall sub-

optimal classification performances. Moreover, since the data used

for the evaluation of the trained deep neural networks stem from

another domain, the pre-processing steps also help homogenizing

the structure of the data at a certain extent (since the data stemming

from both source and target domains go through the exact same pre-

processing steps). In the current work, the pre-processing consists

of localizing and extracting the chest cavity from each CXR and

subsequently using this specific area to perform the evaluation of

the proposed approaches. First, CXRs are converted into gray-scale

images (see Figure 2A). Secondly, histogram equalization is applied

on the resulting images in order to enhance the images’ contrasts

by applying the contrastive limited adaptive equalization (CLAHE)

approach (Zuiderveld, 1994) (see Figure 2B). The resulting images are

filtered using a 3×3 Gaussian filter. Further noisy details appearing at

the edges of the CXRs are also filtered out by zooming into the images

with a range set as follows [0.1, 0.1]. Furthermore, a binarization of
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FIGURE 2

CXR pre-processing steps. (A) Grayscale CXR. (B) Histogram equalized CXR. (C) Binarized CXR. (D) Lungs localization. (E) Area of interest localization. (F)

Cropped area of interest (pre-processed CXR).

the filtered images is performed, followed by the application of a set

of morphological transformations (erosion and dilation) using a 3×3

kernel in order to generate masks over the lungs in the CXRs (see

Figure 2C). The contours of the masks are subsequently computed

and bounding rectangles around the resulting contours are generated

(see Figure 2D). The extreme points of the bounding rectangles

are subsequently used to generate a bounding rectangle identifying

the chest cavity (see Figure 2E). This specific area of interest is

subsequently cropped out of each cxr (see Figure 2F), resized to the

shape 299× 299× 3 (the number of channels is obtained through the

duplication of the cropped CXR by the corresponding amount), and

constitutes the input for the designed deep neural networks.

4.3. Experimental settings

In order to perform the assessment of the proposed unsupervised

domain adaptation approaches, several experiments are conducted.

A baseline of the classification performance specific to each data set is

computed by performing a transfer learning classification experiment

using uniquely the labeled training set specific to each data set and

evaluating the trained model on the corresponding testing set

(T → T ). Furthermore, in order to assess the performance

improvement achieved by applying the domain adaptation

approaches, an additional transfer learning classification experiment

is performed by training a model uniquely on a source data set (using

uniquely the corresponding training set) and evaluating the trained

model on the target data set (the evaluation is performed on the

corresponding testing set) (S → T ). This is basically a cross-domain

classification experiment without any domain adaptation involved,

with the source domain being the labeled training set of a specific

data set and the target domain being the testing set of a different

data set. Finally, unsupervised domain adaptation experiments are

conducted by adapting each model using both the labeled training

set of the source domain and the unlabeled training set of the target

domain. The adapted model is subsequently evaluated on the testing

set of the target domain. Since the goal of the current work is to

adapt a model trained on a set of labeled samples to some set of

samples stemming from a different domain, the larger sets are used

as source domains in order for an effective classification model to be

optimized using a large number of labeled samples. The Ulm data

set being particularly small as it can seen in Table 1, we perform the

experiments once using the OpenI CXR data set as source domain

and the Ulm CXR data set as target domain, and twice using the

PadChest data set as source domain, with both OpenI CXR and Ulm

CXR data sets as target domains subsequently. The architectures of

the neural networks designed for the performed experiments are

described as follows:

4.3.1. Encoder (E )
As depicted in Figure 3, the architecture specific to the encoder

involves a backbone consisting of pre-trained convolutional layers,

followed by an additional and single trainable convolutional
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FIGURE 3

Encoder’s architecture.

layer and a subsequent global average pooling (GAP) layer. The

backbone is generated by removing the top fully connected (FC)

layers of a pre-trained deep neural network and freezing the

remaining convolutional layers (which means that the weights of

the corresponding convolutional layers are not modified during

the optimization process). The encoder takes as input a CXR and

generates as output a feature vector that is subsequently fed into

the following module of the classification system. For the current

experiments, four different CNN models trained on the ImageNet

database (Russakovsky et al., 2015) are evaluated as pre-trained base

models (CNN Backbone): ResNet152 (He et al., 2016), DenseNet121

(Huang et al., 2017), Xception (Chollet, 2017), and InceptionV3

(Szegedy et al., 2016). The subsequent trainable layer performs a

convolution operation using a total of 1, 024 filters consisting of 3×3

kernels and 1 × 1 strides, followed by a batch normalization layer

and a subsequent Rectified Linear Unit (ReLU) activation. Following

the subsequent global average pooling, a feature vector of size 1, 024

is generated.

4.3.2. Target domain decoder (DT )
The target decoder takes as input the feature vector generated

by the encoder and reconstructs the corresponding target CXR. The

architecture consists of a series of transposed convolutional layers,

each followed by a ReLU activation except for the last layer where a

linear activation function is applied.

4.3.3. Source domain classifier (CS )
The source classifier takes as input the features specific to the

samples from the source domain and generated by the encoder. The

generated output consists of the class prediction of the corresponding

CXR (cardiomegaly or normal). The architecture of the source

classifier consists of two dense layers (fully connected layers). The

first layer uses a ReLU activation function and the second layer uses a

Softmax activation function.

4.3.4. Domain discriminator (D)
The domain discriminator takes as input the features of the

samples from both domains and performs a discrimination between

the target domain and source domain (samples from the source

domain are labeled as 1 while samples from the target domain are

TABLE 2 Neural networks’ architectures.

Layers No.
Filters/
units

Kernels Strides Padding

Target domain decoder (DT )

Dense 8× 8× 128 − − −

Reshape − − − −

2× Conv2DTranspose 128 (3× 3) (2× 2) −

1× Conv2DTranspose 64 (3× 3) (1× 1) −

1× Conv2DTranspose 64 (3× 3) (2× 2) same

1× Conv2DTranspose 64 (3× 3) (2× 2) −

1× Conv2DTranspose 32 (3× 3) (2× 2) −

1× Conv2DTranspose 32 (3× 3) (1× 1) same

1× Conv2DTranspose 3 (3× 3) (1× 1) same

Source domain classifier (CS )

Dropout − − − −

Dense 512 − − −

Dropout − − − −

Dense 2 − − −

Domain discriminator (D)

Dropout − − − −

Dense 512 − − −

Dropout − − − −

Dense 1 − − −

The dropout rate is set empirically to 0.25.

labeled as 0). Its architecture also consists of two dense layers. The

first layer uses a ReLU activation function and the second layer uses

a Sigmoid activation function. The details of the architectures can be

found in Table 2.

All architectures are trained using the Adaptive Moment

Estimation optimization algorithm (Adam) (Kingma and Ba, 2015)

with a fixed learning rate set to 10−6, for a total of 200 epochs.

Due to memory constraints, each architecture is also trained with a

fixed batch size of 16. During the domain adaptation experiments,
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since the size of the labeled source data set is different from the

one of the unlabeled target data set, batch training is implemented

in such a way that at each single epoch, CXR images are evenly

sampled from each data set (source and target). The same amount

of samples (the specified batch size bs = 16 in the Equations 3–6) is

randomly selected from each data set and fed into the architecture

to optimize its parameters. The next training epoch begins, once

each sample of the training set specific to the source domain has

been used at least once for the optimization of the parameters of the

deep neural network, during a single epoch. In the case of the deep

reconstruction domain adaptation (DRDA) approach, the weighting

parameters defined in Equation (1) are set empirically as follows:

λc = λr = 0.5. In the case of the regularized deep reconstruction

domain adaptation (RDRDA), the weighting parameters defined in

Equation (2) are set empirically as follows: λc = λr = 0.45; λd = 0.1.

The implementation and the evaluation of the proposed approaches

are performedwith the libraries Tensorflow (Abadi et al., 2016), Keras

(Chollet, 2015), and Scikit-learn (Pedregosa et al., 2011).

In order to account for the imbalanced data distribution within

each single labeled training set, samples are weighted as follows.

Given a set of samples X , with the corresponding set of labels Y

such that ‖X‖ = n and ∀yk ∈ Y , yk ∈ {(1, 0) , (0, 1)}: we define

X− = {xk ∈ X | yk = (1, 0)} (n− = ‖X−‖) and X+ = {xk ∈ X |

yk = (0, 1)} (n+ = ‖X+‖):

∀xk ∈ X , wk =

{

n−

n if xk ∈ X+

n+

n otherwise
(7)

wherewk is the weight specific to the sample xk and n = n−+n+. The

performance metrics used to conduct the assessment of the proposed

approaches are defined in Table 3. In the current work, the positive

class consists of samples labeled as cases of cardiomegaly, while the

negative class consists of samples labeled as normal.

5. Results

As described in Table 1, each data set is characteristically skewed,

with the cardiomegaly class being the minority class for both the

PadChest and OpenI data sets, and with similar imbalance ratios:

cardiomegaly instances account for 1712
8678 ≈ 19.73% of the training

set in the case of the PadChest data set, while in the case of the OpenI

data set, a similar ratio of 167
864 ≈ 19.34% can be observed. Concerning

the Ulm data set, normal instances constitute the minority class with

an imbalance ratio of 26
65 ≈ 40%. Since the goal is to optimize a model

TABLE 3 Evaluation metrics.

Sensitivity (Sens) TP
TP+FN

Specificity (Spec) TN
TN+FP

Geometric Mean (G-Mean)
√

Sensitivity× Specificity

Accuracy (Acc) TP+TN
TP+TN+FP+FN

Precision (Prec) TP
TP+FP

F1-Score (F1) 2×Sensitivity×Precision
Sensitivity+Precision

TP, True positive (correctly classified samples of the positive class); FP, False positive (incorrectly

classified samples of the negative class); TN, True negative (correctly classified samples of the

negative class); FN, False negative (incorrectly classified samples of the positive class).

that performs at a satisfactory extent on both majority and minority

classes, the most relevant metrics used to assess the performance

of the proposed approaches consist of the Sensitivity (true positive

rate), Specificity (true negative rate) and the Geometric Mean of

Sensitivity and Specificity (see Table 3). The overall classification

accuracy in the case of imbalanced data sets is unreliable on its own,

since it is biased toward the majority class. Hence, relying on the

classification accuracy alone in order to assess the performance of the

proposed approaches would result in misleading interpretations of

the achieved performances.

The impact of the cropping of the specified area of interest

during the pre-processing of the CXR images (see Section 4.2) can

be seen in Table 4. The depicted results stem from a classification

task, consisting of optimizing a model using both training and

validation sets specific to the PadChest data set. The optimized model

is subsequently applied on the testing set specific to the PadChest data

set. Both optimization and inference tasks are performed twice for

each pre-trained model: firstly with the histogram equalized images

without the cropping step, and secondly with the histogram equalized

and cropped CXR images. While the results are similar in both cases,

there is a slight but systematic performance improvement across

all architectures in terms of G-Mean and area under the receiver

operating characteristic curve (AUC) when the cropping procedure

is additionally applied. These results point at the fact that noisy

information have effectively been removed from the images. Thus, the

proposed pre-processing steps are beneficial for the discrimination

between normal cases and cases of cardiomegaly. However, in cases

where the classification task consists of different types of pathologies

or lung diseases, caution should be applied while defining a specific

area of interest and subsequently cropping the CXR images, in order

to avoid removing potentially useful information from the images

before performing the inference task. The remaining experiments are

performed on the histogram equalized and cropped CXR images.

During the unsupervised domain adaptation experiments, the

described data sets (see Section 4.1) are used either as the source data

set (S) or as the target data set (T ). When used as the source data set,

the training set (with its corresponding labels) specific to the data set

is used throughout the optimization process. However, when used as

target data set, the training set of the corresponding data set is used

throughout the optimization process, without its labels in order to

simulate an unlabeled set of data. The optimized and adapted model

is subsequently evaluated on the testing set of the target data set.

In order to assess the performance of the proposed unsupervised

domain adaptation approaches, further experiments are performed

by optimizing a model on the source data set and applying the

optimized model on the target data set, without any form of

domain adaptation (S → T ). An additional baseline is computed,

by optimizing a model on the target data set and evaluating the

model on the same target data set. In this scenario, the model is

optimized using the training set of the target data set (this time

with its corresponding labels), and subsequently evaluated on the

corresponding testing set of the target data set (T → T ). The results

of the performed unsupervised domain adaptation experiments are

depicted in Table 5.

Concerning the experiments conducted with the Ulm data set

as target domain (T ), it can be observed that uniquely optimizing

a model on the source domain (either the PadChest data set

or the OpenI data set) and applying the model directly on the

target domain without any form of domain adaptation (S → T )
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TABLE 4 Evaluation of the pre-processing steps on the PadChest data set.

ResNet152 DenseNet201 Xception InceptionV3

Pre-processing: Cropping G-Mean AUC G-Mean AUC G-Mean AUC G-Mean AUC

No 88.32% 96.03% 89.69% 96.73% 87.84% 95.30% 87.68% 95.47%

Yes 88.47% 96.05% 90.68% 96.94% 87.90% 95.62% 88.42% 95.86%

The numbers in bold depict the best overall performance across all evaluated architectures in terms of geometric mean (G-Mean) and area under the receiver operating characteristic curve (AUC).

TABLE 5 Classification performance.

ResNet152 DenseNet201 Xception InceptionV3

Sens Spec G-Mean Sens Spec G-Mean Sens Spec G-Mean Sens Spec G-Mean

S: CXR PadChest - T : CXR Ulm

S → T 95.00% 15.38% 38.23% 100% 15.38% 39.22% 100% 15.38% 39.22% 100% 15.38% 39.22%

DRDA 80.00% 46.15% 60.76% 90.00% 38.46% 58.83% 80.00% 46.15% 60.76% 95.00% 53.85% 71.52%

RDRDA 80.00% 46.15% 60.76% 90.00% 53.85% 69.62% 80.00% 46.15% 60.76% 95.00% 38.46% 60.45%

S: CXR OpenI - T : CXR Ulm

S → T 95.00% 07.69% 27.03% 90.00% 23.08% 45.57% 90.00% 30.77% 52.62% 90.00% 30.77% 52.62%

DRDA 75.00% 61.54% 67.94% 75.00% 61.54% 67.94% 70.00% 69.23% 69.61% 85.00% 61.54% 72.32%

RDRDA 80.00% 61.54% 70.17% 60.00% 69.23% 64.45% 75.00% 61.54% 67.94% 85.00% 61.54% 72.32%

T → T 55.00% 76.92% 65.04% 60.00% 69.23% 64.45% 70.00% 69.23% 69.61% 65.00% 69.23% 67.08%

S: CXR PadChest - T : CXR OpenI

S → T 85.71% 88.54% 87.12% 82.14% 90.83% 86.38% 86.90% 81.95% 84.39% 90.48% 88.54% 89.50%

DRDA 86.90% 87.97% 87.43% 89.29% 89.53% 88.77% 86.90% 80.52% 83.65% 91.67% 84.53% 88.02%

RDRDA 89.29% 87.11% 88.19% 85.71% 87.97% 86.83% 86.90% 81.95% 84.39% 92.86% 85.10% 88.90%

T → T 75.00% 91.12% 82.67% 71.43% 93.70% 81.81% 78.57% 87.97% 83.14% 83.33% 89.40% 86.31%

The numbers in bold depict the best overall performance across all evaluated architectures in terms of geometric mean (G-Mean), for each of the pre-trained models.

FIGURE 4

S: CXR PadChest-T : CXR Ulm. (A) ResNet152. (B) DenseNet201. (C) Xception. (D) InceptionV3.

results in very poor classification performances (which is an

observable evidence of the domain shift). The model is biased into

classifying almost every sample as belonging to the positive class

with a Sensitivity rate attaining for some models a value of 100%

while the Specificity rate is below 16%. However, applying either

unsupervised domain adaptation approaches substantially improves

the overall classification performance (see Figures 4, 5 for some

better visualization).

Moreover, the depicted results show that the extent of the overall

performance improvement depends on the pre-trainedmodel used as

backbone for the encoder (E). The best G-Mean performances could

be achieved in both cases (PadChest andOpenI as source domain (S),

respectively) by using a pre-trained InceptionV3 model as backbone.

In the case of the PadChest data set as source domain, a Sensitivity

score of 95.00% and a Specificity score of 53.85% could be achieved,

with an overall G-Mean score of 71.52%. In the case of the OpenI
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dataset, a Sensitivity score of 85.00% and a Specificity score of 61.54%

could be achieved, with an overall G-Mean score of 72.32%. Also,

the performance of both domain adaptation approaches (DRDA and

RDRDA) are very similar throughout the conducted experiments,

even thoughDRDA outperforms RDRDA inmost cases. Moreover, in

both Figures 4, 5, it can be seen that the overall classification accuracy

is concurrently improved with the G-Mean in most cases by applying

either domain adaptation approaches. Meanwhile, models optimized

on the OpenI data set in combination with domain adaptation, not

just outperform those trained uniquely on the Ulm target domain

(T → T ), but also those trained while using the PadChest data set

as source domain and evaluated on the Ulm target domain.

Regarding the experiments conducted with the OpenI data set as

target domain, similar results can be observed. In most cases, either

of the domain adaptation approaches improves the classification

performance in terms of G-Mean (with similar performances across

all the evaluated models as can be seen in Figure 6), with the

exception of experiments performed using a pre-trained InceptionV3

model as backbone. Across all performed experiments, RDRDA

outperformed DRDA in most cases (in contrast to the previous

observation regarding the Ulm data set). Still, the best overall

performance could be achieved by using the InceptionV3 pre-

trained model as backbone for the encoder (with a G-Mean of

89.50% without any form of domain adaptation and 88.90% with the

RDRDA approach).

Additionally, it can also be observed that training the inference

model on the PadChest data set without domain adaptation (S → T )

results in a substantial performance improvement in comparison to

the optimization of the model performed uniquely on the OpenI

target domain (T → T ) (in contrast to the Ulm data set where

the same type of experiments resulted into poor performances, thus

showing the extent of the dissimilarity between the data distribution

of the Ulm data set and the data distribution of either the PadChest

or OpenI data set). This is an indication that the PadChest data set

is very similar to the OpenI data set with regards to the respective

data distributions. This is further supported by the depiction of the

data distribution of both PadChest and OpenI data sets in a two-

dimensional space [generated by applying the t-distributed Stochastic

Neighbor Embedding (t-SNE) (van der Maaten and Hinton, 2008)

visualization approach] in Figure 7. The representation in this case

is generated based on the feature representation stemming from the

first fully connected layer of a classification model trained either

without domain adaptation (S → T ) or with domain adaptation

(RDRDA). Each model is optimized by using the PadChest data set

as the source domain and the OpenI data set as the target domain.

Once the models are optimized, the feature representations of the

respective testing sets are extracted and visualized using the t-SNE

approach. In both cases, it can be observed that the generated feature

representations are rather effective since it is clearly visible that

both negative and positive samples are grouped into two slightly

overlapping clusters. This is true for the source only model as well

as the adapted model, hence the observed similarity of classification

performances. The feature representations of the samples stemming

from either source or target domains are also characterized by a

FIGURE 5

S: CXR OpenI-T : CXR Ulm. (A) ResNet152. (B) DenseNet201. (C) Xception. (D) InceptionV3.

FIGURE 6

S: CXR PadChest-T : CXR OpenI. (A) ResNet152. (B) DenseNet201. (C) Xception. (D) InceptionV3.
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FIGURE 7

Source (S) and target (T ) data distribution using a source only model (S → T ) and a domain adaptation model (RDRDA), respectively. The features

stemming from the first fully connected layer of the classification model are projected into a two-dimensional space using the t-SNE visualization

approach. In this specific case the source domain consists of the PadChest data set and the target domain consists of the OpenI data set.

similar overall sample distribution (see Figure 7), thus pointing at the

similarity of both data sets.

6. Discussion

The previously described results show that in a cross-domain

setting, the domain shift negatively affects the overall performance

of a classification model, particularly in cases where there is a

huge dissimilarity between the data distributions of both the target

domain and the source domain. In such cases, applying a model

previously optimized on the source domain uniquely, without any

form of domain adaptation, would result in very poor classification

performances on the target domain. The proposed unsupervised

domain adaptation approaches can effectively generate domain

invariant feature representations, that can be subsequently and

effectively used in both target and source domains to perform

the underlying classification task. The results of the performed

experiments have shown that the overall performance of the

classification task can be substantially improved by applying

either domain adaptation approaches. Moreover, in most cases,

the unsupervised domain adaptation approaches also outperform

models that are trained on a labeled set stemming from the target

domain. Normally the baseline results (T → T ) are considered as

an upper bound for the domain adaptation results. However, in

the current work, the amount of samples of the target domain is

very small (in particular in the case of the Ulm data set). Hence,

optimizing a deep neural network on such a small set remains

challenging, even with transfer learning approaches. However, both

the PadChest and the OpenI data sets have a significantly higher

amount of labeled samples. Thus, the corresponding adapted models

perform better than a model trained on labeled samples of the

Ulm data set. This observation shows that knowledge can be

transferred and successfully adapted from a source domain (with

a large number of labeled samples) to a specific target domain

with little to none labeled samples. This is particularly interesting

in the area of medical image analysis, since most of the time,

there is a huge amount of unlabeled data available, while the

annotation process is known to be time- and resource-consuming.

Such approaches can be used to adapt models trained on labeled

data sets stemming from different centers and perform the labeling

of a set of unlabeled samples. However, the overall performances of

the presented approaches have to be significantly improved in order

to enable a reliable annotation process. Furthermore, the overall

performance of both unsupervised domain adaptation approaches

are very similar. Overall, the RDRDA however slightly outperforms

the DRDA approach. Since the regularization parameters (λc, λr ,

λd in Equation 2) were chosen empirically, it is believed that an

improved and systematic optimization of these specific parameters

can further improve the performance of the RDRDA approach.

The depicted results also show that the overall performance of

the classification task depends on the pre-trained model used as

an encoder, with the InceptionV3 model outperforming the other

assessed models in most cases. A depiction of the activation map

corresponding to a case of cardiomegaly and generated by using an

RDRDA approach (the InceptionV3 model is used as backbone in

this case) with the OpenI data set as source domain and the Ulm

data set as target domain, is presented in Figure 8. It can be observed

that the output of the model is based on the heart-located region of

the CXR.

7. Conclusion

As a summary, the proposed unsupervised domain adaptation

approaches have proven to be effective in a cross-domain setting

with domain shift, since a substantive performance improvement

can be observed when adapting a model trained on the source

domain to the target domain. In general, both approaches yield

similar results. However, the experimental results show that the

regularized deep reconstruction domain adaptation approach slightly

outperforms its deep reconstruction domain adaptation counterpart.

However, there is still some room for improvement and a thorough

optimization of the regularization parameters of the loss functions

is believed to be able to improve the overall performance of

the RDRDA approach. Even if the proposed approaches are very

simple and straight forward, other approaches involving generative

adversarial networks such as Cycle-Consistent Adversarial Domain
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FIGURE 8

Gradient-weighted class activation mapping based on the RDRDA approach (with the InceptionV3 model as backbone). In this case, the OpenI data set

was used as source domain and the Ulm data set as target domain: (A) Original CXR (Cardiomegaly). (B) Superimposed CXR with the corresponding class

activation map.

Adaptation (CyCADA Hoffman et al., 2018; CycleGAN Zhu et al.,

2017) methods should also be assessed and compared with the

proposed approaches, since they bring more flexibility to the domain

adaptation process and have proven to be very effective in other image

processing areas.
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