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Optimal blending of multiple
independent prediction models

Peter Taraba*

Independent Researcher, Fort Lauderdale, FL, United States

We derive blending coe�cients for the optimal blend of multiple independent
prediction models with normal (Gaussian) distribution as well as the variance of
the final blend. We also provide lower and upper bound estimation for the final
variance and we compare these results with machine learning with counts, where
only binary information (feature says yes or no only) is used for every feature and
the majority of features agreeing together make the decision.
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Introduction

Participants of the Netflix competition used model blending heavily—refer to, for

example Töscher et al. (2009), Amatriain (2013), Xiang and Yang (2009), Coscrato et al.

(2020), Koren (2009), Jahrer et al. (2010), and Bothos et al. (2011). Ensemble modeling

(blending) was popular not only in Netflix competition but is used also on other machine

learning problems such as image processing, for example for CIFAR-10 dataset, refer to

Abouelnaga et al. (2016) and Bruno et al. (2022), for the MNIST dataset refer to Ciresan

et al. (2011). Ensemble modeling is used also in many other fields, for example, refer

to Schuhen et al. (2012) and Ardabili et al. (2020). In this study, we derive blending

coefficients based on variances of different models with only the assumption of model

independence. While the formula for the final variance of the blended model and its

coefficients is already derived in Kay (1993) without a proof (Equations 6.7 and 6.8 in

chapter 6.4), we provide proofs both for the formula for blending coefficients and the

variance of the combined model as well as the lower and upper bound estimate for the

final variance based on the minimal and maximal variance of all the combined models.

We also compare these results with machine learning with counts, where only binary

information is used from the features to make the decision, in the last section and show

very similar conclusions.

Let ŷk,j be a prediction of model k ∈ [1,N] for element j ∈ [1,M], where N

is the number of different independent models and M is the number of measurements

we have:

ŷk,j = yj + rk,j,

where yj is an expected prediction and rk,j is a random variable with normal distribution

Rk ∼ N (0, σ 2
k
), which has a zero average (the expected value of the variable is 0). In

this study, we derive optimal blending coefficients αk such that the blended prediction ŷB
is optimal:

ŷB,j =

N
∑

k=1

αkŷk,j = yj

N
∑

k=1

αk +

N
∑

k=1

αkrk,j = yj +

N
∑

k=1

αkrk,j
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with minimum variance σ 2
B , where

∑N
k=1 αk = 1.

Blending two independent models

Here we present two independent models

ŷ1,j = yj + r1,j

ŷ2,j = yj + r2,j,

where R1 ∼ N (0, σ 2
1 ) and R2 ∼ N (0, σ 2

2 ). We derive α̂ ∈ [0, 1] for

which we get the optimal blending model

ŷB,j = α(yj + r1,j)+ (1− α)(yj + r2,j) = yj + αr1,j

+(1− α)r2,j.

It is well-known fact that a random variable combining two

random variables αR1 + (1 − α)R2, where R1 ∼ N (0, σ 2
1 ),

R2 ∼ N (0, σ 2
2 ) and R1 and R2 are independent, has a normal

distribution N (0, σ 2
B ), where σ 2

B = α2σ 2
1 + (1 − α)2σ 2

2 . For the

mean we get:

E(YB) =
1

M

M
∑

j=1

(αr1,j + (1− α)r2,j)

= αE(R1)+ (1− α)E(R2) = 0

and for the variance we get:

E(Y2
B) =

1

M

M
∑

j=1

(αr1,j + (1− α)r2,j)
2 =

= α2 1

M

M
∑

j=1

r21,j + 2α(1− α)
1

M

M
∑

j=1

r1,jr2,j + (1− α)2
1

M

M
∑

j=1

r22,j.

Finally as R1 and R2 are independent (covariance
1
M

∑

j=1 r1,jr2,j =

0 is zero), we can write:

σ 2
B = E(Y2

B) = α2σ 2
1 + (1− α)2σ 2

2 .

To find the optimal (we are looking for minimal value

and function is convex with one minimum as we have

only α0, α1, and α2 dependencies—quadratic function and

σ 2
1 + σ 2

2 > 0) blending parameter, we compute where a

partial derivative of the new variance of the blended model

is zero:

∂σ 2
B

∂α
= 2α̂σ 2

1 − 2(1− α̂)σ 2
2 = 0,

from which

α̂ =
σ 2
2

σ 2
1 + σ 2

2

(1)

and the optimal variance will be:

σ 2
B (α̂) =

σ 2
1 σ 4

2

(σ 2
1 + σ 2

2 )
2
+

σ 2
2 σ 4

1

(σ 2
1 + σ 2

2 )
2
=

σ 2
1 σ 2

2 (σ
2
1 + σ 2

2 )

(σ 2
1 + σ 2

2 )
2

=
σ 2
1 σ 2

2

σ 2
1 + σ 2

2

(2)

In Figure 1, we show how the variance is changing for different

blending parameters α. Script is in Appendix 1. Blue dot—optimal

value of blending parameter α matches simulation (minimal value

for variance).

Blending three independent models

Now, we consider three independent models

ŷ1,j = yj + r1,j

ŷ2,j = yj + r2,j,

ŷ3,j = yj + r3,j,

where R1 ∼ N (0, σ 2
1 ), R2 ∼ N (0, σ 2

2 ), and R3 ∼ N (0, σ 2
3 ).

Here, we blend optimally the first twomodels from the previous

section:

ŷ4,j = yj + α̂r1,j + (1− α̂)r2,j = yj + r4,j,

where R4 ∼ N (0,
σ 2
1 σ 2

2

σ 2
1+σ 2

2
) and then we find the blending parameter

β̂ for ŷ3,j and ŷ4,j such that

ŷB,j = yj + β̂r3,j + (1− β̂)r4,j. (3)

Based on the Equation (1), we get

β̂ =

σ 2
1 σ 2

2

σ 2
1+σ 2

2

σ 2
3 +

σ 2
1 σ 2

2

σ 2
1+σ 2

2

=
σ 2
1 σ 2

2

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

.

Plugging this back into the Equation (3), we get

ŷB,j = yj +
σ 2
1 σ 2

2

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

r3,j

+(1−
σ 2
1 σ 2

2

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

)r4,j

ŷB,j = yj +
σ 2
1 σ 2

2

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

r3,j

+
(σ 2

1 + σ 2
2 )σ

2
3

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

(α̂r1,j + (1− α̂)r2,j)
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FIGURE 1

Red line—variance for di�erent α. Green line—optimal variance σ 2
B
. Blue dot—optimal α with its value σ 2

B
(α̂). Python script is in Appendix 1.

ŷB,j = yj +
σ 2
1 σ 2

2

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

r3,j

+
(σ 2

1 + σ 2
2 )σ

2
3

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

(
σ 2
2

σ 2
1 + σ 2

2

r1,j + (1−
σ 2
2

σ 2
1 + σ 2

2

)r2,j)

ŷB,j = yj +
σ 2
1 σ 2

2

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

r3,j

+
σ 2
2 σ 2

3

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

r1,j +
σ 2
1 σ 2

3

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

r2,j,

which is symmetrical, meaning model combination order is

irrelevant. Finally for α̂1, α̂2, α̂3, we get:

α̂1 =
σ 2
2 σ 2

3

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

α̂2 =
σ 2
1 σ 2

3

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

α̂3 =
σ 2
1 σ 2

2

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

.

Combining the second and third models first and then combining

the result with the first model would lead to the same

optimal blending parameters. The order of the combination is

inconsequential. Additionally, for the final variance, we get from

Equation (2)

σ 2
B (α̂) =

σ 2
3

σ 2
1 σ 2

2

σ 2
1+σ 2

2

σ 2
3 +

σ 2
1 σ 2

2

σ 2
1+σ 2

2

=
σ 2
1 σ 2

2 σ 2
3

σ 2
1 σ 2

2 + σ 2
1 σ 2

3 + σ 2
2 σ 2

3

.

In Figure 2, we show how variance is changing for different

blending parameters α1 and α2 and α3 = 1− α1 − α2. The script is

in Appendix 2. Blue dot—the optimal value of blending parameters

(α1,α2, 1 − α1 − α2) matches the simulation (minimal value for

variance).

Blending N independent models

Now that we have formulas for two and three different

models, we prove formulas for N independent models with normal

distributions:

ŷk,j = yj + rk,j,

where Rk ∼ N (0, σ 2
k
). We combine these models as follows:
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FIGURE 2

Grid consisting of red dots—variance for di�erent α1 and α2. Grid consisting of green dots—optimal variance σ 2
B
. Blue dot—optimal α1 and α2 and

1− α1 − α2 with its value σ 2
B
(α̂). Python script is in Appendix 2.

ŷB,j =

N
∑

k=1

αkŷk,j,

where
∑N

k=1 αk = 1 and αk > 0 for k ∈ [1,N].

First, we show model independence is still needed.

Lemma 1. Having N independent models with normal distributions

Rk ∼ N (0, σ 2
k
) for k ∈ [1,N], when combined as rB,j =

∑N
k=1 αkrk,j,

variance of RB is σ 2
B =

∑N
k=1 α2

k
σ 2
k
.

Proof:

σ 2
B = E((

N
∑

k=1

αkrk,j)
2)

=
1

M
(

N
∑

k=1

M
∑

j=1

α2
kr

2
k,j + 2

N
∑

k=1

N
∑

l=1
l 6=k

M
∑

j=1

αkαlrk,jrl,j)

=

N
∑

k=1

α2
k

1

M

M
∑

j=1

r2k,j + 2

N
∑

k=1

N
∑

l=1
l 6=k

αkαl
1

M

M
∑

j=1

rk,jrl,j

As models are independent (covariance 1
M

∑M
j=1 rk,jrl,j = 0 is zero

for l 6= k), we get

σ 2
B =

N
∑

k=1

α2
k

1

M

M
∑

j=1

r2k,j =

N
∑

k=1

α2
kσ

2
k ,

which ends the proof.

Theorem 2. Having N independent models with normal

distributions Rk ∼ N (0, σ 2
k
) for k ∈ [1,N], we get an optimal blend

with parameters

α̂k =

∏N
j=1
j6=k

σ 2
j

∑N
i=1

∏N
j=1
j6=i

σ 2
j

,

and these independent models form normal distribution N (0, σ 2
B ),

which has variance

σ 2
B =

∏N
j=1 σ 2

j
∑N

i=1

∏N
j=1
j6=i

σ 2
j

.

Proof: For N = 2, we have shown it in Section 2. Now

we use induction, if it is true for N, then it is true also

for N + 1.
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Remark. We have shown this also for three models in Section

3, but as for induction it is not needed, Section 3 is only

a motivational section for how to derive final formulas for

N models.

We combine two normal distributions N (0,

∏N
j=1 σ 2

j
∑N

i=1

∏N
j=1
j6=i

σ 2
j

)

(assuming it is true for N) and N (0, σ 2
N+1). From Equation (2),

(lemma 1 is incorporated in this equation) we get

σ 2
B =

∏N
j=1 σ 2

j
∑N

i=1

∏N
j=1
j6=i

σ 2
j

σ 2
N+1

∏N
j=1 σ 2

j
∑N

i=1

∏N
j=1
j6=i

σ 2
j

+ σ 2
N+1

=
σ 2
N+1

∏N
j=1 σ 2

j
∏N

j=1 σ 2
j + σ 2

N+1

∑N
i=1

∏N
j=1
j6=i

σ 2
j

=

∏N+1
j=1 σ 2

j
∑N+1

i=1

∏N+1
j=1
j6=i

σ 2
j

and hence, we have shown optimal variance is valid for N+ 1. Now

we must show the same for the optimal coefficients. From Equation

(1), we get

α̂ =
σ 2
N+1

∏N
j=1 σ 2

j
∑N

i=1

∏N
j=1
j6=i

σ 2
j

+ σ 2
N+1

=

σ 2
N+1

∑N
i=1

∏N
j=1
j6=i

σ 2
j

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j

and hence,

α̂N+1 = 1− α̂

= 1−

σ 2
N+1

∑N
i=1

∏N
j=1
j6=i

σ 2
j

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j

=

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j − σ 2

N+1

∑N
i=1

∏N
j=1
j6=i

σ 2
j

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j

=

∏N+1
j=1

j6=N+1

σ 2
j +

∑N
i=1

∏N+1
j=1
j6=i

σ 2
j − σ 2

N+1

∑N
i=1

∏N
j=1
j6=i

σ 2
j

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j

=

∏N+1
j=1

j6=N+1

σ 2
j

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j

,

which proves α̂N+1. Finally to show the same for α̂k

for k ∈ [1,N]:

α̂k = α̂

∏N
j=1
j6=k

σ 2
j

∑N
i=1

∏N
j=1
j6=i

σ 2
j

=

σ 2
N+1

∑N
i=1

∏N
j=1
j6=i

σ 2
j

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j

∏N
j=1
j6=k

σ 2
j

∑N
i=1

∏N
j=1
j6=i

σ 2
j

=
σ 2
N+1

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j

N
∏

j=1
j6=k

σ 2
j

=

∏N+1
j=1
j6=k

σ 2
j

∑N+1
i=1

∏N+1
j=1
j6=i

σ 2
j

,

which ends the proof.

Going to infinity

If we can generate infinite independent models with

distributions Ri ∼ N (0, σ 2) (same variance), the final variance

will be

σ 2
B = lim

N→+∞

∏N
j=1 σ 2

∑N
i=1

∏N
j=1
j6=i

σ 2
= lim

N→+∞

σ 2N

Nσ 2(N−1)

= lim
N→+∞

σ 2

N
= 0,

which means we can combine all these models

to get a perfect prediction with no errors. Naturally,

creating an infinite amount of independent models (with

covariances zero) is a difficult if not impossible task in

real applications.

Theorem 3. Having N independent models with normal

distributions Rk ∼ N (0, σ 2
k
) for k ∈ [1,N] and their variances

σ 2
k

≤ σ 2
M , where σ 2

M is their maximum variance, combining them

optimally with coefficients from the theorem 2, their combined

variance is σ 2
B ≤

σ 2
M
N .

Proof: We use induction again. For N = 2, we get

σ 2
B =

σ 2
1 σ 2

2

σ 2
1 + σ 2

2

≤
σ 2
M

2

This is true as

σ 2
1 σ 2

2 + σ 2
1 σ 2

2 ≤ σ 2
Mσ 2

1 + σ 2
Mσ 2

2 ,

because
σ 2
1 σ 2

2 ≤ σ 2
Mσ 2

1
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and

σ 2
1 σ 2

2 ≤ σ 2
Mσ 2

2 .

Now if it is true for N, then it is true also for N + 1. If

σ 2
B,N ≤

σ 2
M

N
,

then

σ 2
B,N+1 ≤

σ 2
M

N + 1
.

That is true as

σ 2
B,N+1 =

σ 2
B,Nσ 2

N+1

σ 2
B,N + σ 2

N+1

≤
σ 2
M

N + 1
,

because

Nσ 2
B,Nσ 2

N+1 + σ 2
B,Nσ 2

N+1 ≤ σ 2
M(σ 2

B,N + σ 2
N+1)

as both - this

Nσ 2
B,Nσ 2

N+1 ≤ σ 2
Mσ 2

N+1

and this

σ 2
B,Nσ 2

N+1 ≤ σ 2
Mσ 2

B,N

are true, which ends the proof.

This proof means, that if we combine infinite independent

models with distributions Ri ∼ N (0, σ 2
i ), where variance σ 2

i ≤ σ 2
M ,

we get variance:

σ 2
B = lim

N→+∞

∏N
j=1 σ 2

j
∑N

i=1

∏N
j=1
j6=i

σ 2
j

≤ lim
N→+∞

σ 2
M

N
= 0.

Combining infinite independent models with bounded variances

from above leads to perfect prediction with variance zero.

It can be shown the same way as in Theorem 3 that combined

variance is bounded also from below (as the proof is almost

identical we avoid it here). If all distributions Rk ∼ N (0, σ 2
k
)

for k ∈ [1,N] have their variance in interval σ 2
k

∈ [σ 2
min, σ

2
max]

for k ∈ [1,N], then their combined variance will be in interval

σ 2
B ∈ [

σ 2
min
N ,

σ 2
max
N ].

Similar conclusion with machine
learning with counts

When it comes to using only counts (feature says yes or no only)

in machine learning for predictions, as it is shown in Taraba (2021)

(see section 7) on a nine-features example, we can come to the

same conclusion as in the previous chapter that an infinite amount

of features can lead to perfect prediction with no error. While the

previous approach is statistical, machine learning with counts uses

Pascal’s triangle and binomial raised to infinity to show this. We use

the binomial expansion

1 = (p+ (1− p))n =

n
∑

i=0

(

n

i

)

pn−i(1− p)i,

where p is the probability of features to be correct. As we want to

have an odd amount of features to be able to make a decision purely

on the counts (feature says yes or no), we will replace n with 2k+ 1

1 = (p+ (1− p))2k+1 =

2k+1
∑

i=0

(

2k+ 1

i

)

p2k+1−i(1− p)i.

This can be split into two parts, one with probability when the

majority of features are correct Pcorrect and one with probability

when the majority of features are incorrect:

1 = (p+ (1− p))2k+1 = Pcorrect + Pincorrect ,

where

Pcorrect =

k
∑

i=0

(

2k+ 1

i

)

p2k+1−i(1− p)i

and

Pincorrect =

2k+1
∑

i=k+1

(

2k+ 1

i

)

p2k+1−i(1− p)i.

To show that an infinite amount of features can lead to perfect

prediction, we have to show that Pcorrect with the majority of

features correct (at least k + 1 of them correct) goes to 1 for all

p ∈ (0.5, 1]

lim
k→∞

k
∑

i=0

(

2k+ 1

i

)

p2k+1−i(1− p)i = 1

We start by showing the simpler case first and that is when p =

0.5 then Pcorrect and Pincorrect are equal and Pcorrect = Pincorrect =

0.5. To show this, we can write

Pcorrect,p=0.5 =

k
∑

i=0

(

2k+ 1

i

)

0.52k+1 = 0.52k+1
k

∑

i=0

(

2k+ 1

i

)
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and

Pincorrect,p=0.5 =

2k+1
∑

i=k+1

(

2k+ 1

i

)

0.52k+1 = 0.52k+1
2k+1
∑

i=k+1

(

2k+ 1

i

)

and those are equal as
∑k

i=0

(2k+1
i

)

=
∑2k+1

i=k+1

(2k+1
i

)

, because
(2k+1

i

)

=
( 2k+1
2k+1−i

)

for i ∈ {0, 1, . . . , k}. As Pcorrect,p=0.5 =

Pincorrect,p=0.5 and their sum is 1 it follows that

1 = Pcorrect,p=0.5 + Pincorrect,p=0.5 = 2Pcorrect,p=0.5

and hence,

Pcorrect,p=0.5 = Pincorrect,p=0.5 = 0.5.

Now that we have shown what happens when p = 0.5, we show the

main limit theorem for p ∈ (0.5, 1].

Theorem 4. limk→∞

∑k
i=0

(2k+1
i

)

p2k+1−i(1 − p)i = 1 for all p ∈

(0.5, 1].

Proof: To show that limk→∞

∑k
i=0

(2k+1
i

)

p2k+1−i(1 − p)i = 1

for all p ∈ (0.5, 1], we will show instead that

limk→∞

∑2k+1
i=k+1

(2k+1
i

)

p2k+1−i(1 − p)i = 0 and as their sum

is 1, limk→∞

∑k
i=0

(2k+1
i

)

p2k+1−i(1− p)i = 1 will follow.

First, we can rewrite
∑2k+1

i=k+1

(2k+1
i

)

p2k+1−i(1− p)i as

2k+1
∑

i=k+1

(

2k+ 1

i

)

p2k+1−i(1− p)i

=

k
∑

i=0

(

2k+ 1

k+ 1+ i

)

p2k+1−(k+1+i)(1− p)k+1+i.

It is obvious that the numbers in the pascal triangle are

decreasing when starting after the middle:

( 2k+1
k+1+i+1

)

( 2k+1
k+1+i

)

=

(2k+1)!
(k+2+i)!(k−i−1)!

(2k+1)!
(k+1+i)!(k−i)!

=
k− i

k+ i+ 2
< 1

for i ∈ 0, 1, . . . , k− 1, and hence, we can write

k
∑

i=0

(

2k+ 1

k+ 1+ i

)

p2k+1−(k+1+i)(1− p)k+1+i

<

(

2k+ 1

k+ 1

)

pk(1− p)k+1
k

∑

i=0

(
1− p

p
)i.

As p is in p ∈ (0.5, 1], then
1−p
p ∈ [0, 1), and hence, we can write

(

2k+ 1

k+ 1

)

pk(1− p)k+1
k

∑

i=0

(
1− p

p
)i

=

(

2k+ 1

k+ 1

)

pk(1− p)k+1
1− (

1−p
p )k+1

1− (
1−p
p )

.

With that we can finally look at the original limit and write

lim
k→∞

2k+1
∑

i=k+1

(

2k+ 1

i

)

p2k+1−i(1− p)i ≤ lim
k→∞

(

2k+ 1

k+ 1

)

pk(1− p)k+1
1− (

1−p
p )k+1

1− (
1−p
p )

.

As limk→∞(
1−p
p )k+1 = 0 for p ∈ (0.5, 1] as

1−p
p ∈ [0, 1), we can

write

lim
k→∞

2k+1
∑

i=k+1

(

2k+ 1

i

)

p2k+1−i(1− p)i

≤
1

1− (
1−p
p )

lim
k→∞

(

2k+ 1

k+ 1

)

pk(1− p)k+1

=
p

2p− 1
lim
k→∞

(

2k+ 1

k+ 1

)

pk(1− p)k+1.

Now we look at limk→∞

(2k+1
k+1

)

pk(1 − p)k+1. We can take a

member
(2(k+r)+1
(k+r)+1

)

p(k+r)(1 − p)(k+r)+1 and compare it with r′ =

r + 1 follower
(2(k+r+1)+1
(k+r+1)+1

)

p(k+r+1)(1− p)(k+r+1)+1 by division

(2(k+r+1)+1
(k+r+1)+1

)

p(k+r+1)(1− p)(k+r+1)+1

(2(k+r)+1
(k+r)+1

)

p(k+r)(1− p)(k+r)+1
=

(2(k+r)+3)!
(k+r+2)!(k+r+1)!

(2(k+r)+1)!
(k+r+1)!(k+r)!

p(1− p) ==
(2(k+ r)+ 3)(2(k+ r)+ 2)

(k+ r + 2)(k+ r + 1)
p(1− p)

< 4p(1− p) < 1,

for all r ≥ 0 and p ∈ (0.5, 1] as p(1 − p) ∈ [0, 0.25). This means

we are multiplying a finite number
(2k+1
k+1

)

pk(1 − p)k+1, which is in

interval [0, 1], infinitely many times with a number larger or equal

than 0 and smaller than 1, hence

lim
k→∞

(

2k+ 1

k+ 1

)

pk(1− p)k+1 = 0

and hence, the original limit

lim
k→∞

2k+1
∑

i=k+1

(

2k+ 1

i

)

p2k+1−i(1− p)i ≤ 0

as well. As
∑2k+1

i=k+1

(2k+1
i

)

p2k+1−i(1− p)i ≥ 0, it follows that

lim
k→∞

2k+1
∑

i=k+1

(

2k+ 1

i

)

p2k+1−i(1− p)i = 0.

Remark. It is worth mentioning that p is fixed and chosen from the

interval (0.5, 1], and we are not looking at the limit of p → 0.5,

but the limit of k → ∞. For p = 0.5, we already know that

Pcorrect,p=0.5 = Pincorrect,p=0.5 = 0.5.
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FIGURE 3

Di�erent outcomes for Pcorrect for di�erent p intervals when k is
going to ∞.

As

lim
k→∞

k
∑

i=0

(

2k+ 1

i

)

p2k+1−i(1− p)i +

+ lim
k→∞

2k+1
∑

i=k+1

(

2k+ 1

i

)

p2k+1−i(1− p)i = 1,

it follows that limk→∞

∑k
i=0

(2k+1
i

)

p2k+1−i(1−p)i = 1, which ends

the proof.

This could be summarized for all p ∈ [0, 1] in Figure 3 as

Pcorrect =















0 for p ∈ [0, 0.5)

0.5 for p = 0.5

1 for p ∈ (0.5, 1]

.

This can be understood intuitively by plotting Pcorrect with

increasing k in Figure 4.

It is worth mentioning that with weak features with p = 0.52,

and only n = 15001 of them (no need to go to infinity), Pcorrect is

already around 1 (see Figure 5).

As next, we show that Pcorrect increases, if any of the probability

of the features increases its value p′i > pi. For case k = 0 (n = 1),

this is simple, as

Pcorrect(new) = p′1 > p1 = Pcorrect(old).

For three features, it is also trivial as

Pcorrect(new) = p′1p2p3 + p′1p2(1− p3)+ p′1(1− p2)p3

+(1− p′1)p2p3

as it can be re-written to p′1 independent part and p
′
1 dependent part

Pcorrect(new) = p2p3 + p′1(p2(1− p3)+ (1− p2)p3)

and from that, it immediately follows that Pcorrect(new) >

Pcorrect(old) as 0 ≤ p1, p
′
1, p2, p3 ≤ 1 and p′1 > p1. To show this for

the general case, not only for cases k ∈ {0, 1} (n = 2k+ 1 ∈ {1, 3}),

we first write the general formula:

1 =

1
∑

i1=0

1
∑

i2=0

. . .

1
∑

i2k+1=0

2k+1
∏

j=1

(pj(−1)ij+1 + (1− ij)). (4)

This can be re-written into two parts once again, Pcorrect , when the

majority of features say yes—are correct, and Pincorrect , when the

majority of features say no—are incorrect.

Pcorrect(p1, . . . , p2k+1) =

1
∑

i1=0

. . .

1
∑

i2k+1=0

m(i1, . . . , i2k+1)

2k+1
∏

j=1

(pj(−1)ij+1 + (1− ij)),

where

m(i1, . . . , i2k+1) =

{

0 for
∑2k+1

j=1 ij ≤ k

1 for
∑2k+1

j=1 ij > k
.

Theorem 5. Increasing the probability of one of the features

p′1 > p1 increases final correct probability of all features,

Pcorrect(p
′
1, p2, . . . , p2k+1) > Pcorrect(p1, p2, . . . , p2k+1).

Proof: We show this for increasing the first probability, as

probabilities can be re-ordered and their order does not matter for

the final correct probability.

Now again, as with example k = 1, n = 3, Pcorrect can be split

into p′1 independent and dependent part. The dependent part will

only contain p′1 and no (1−p′1) as for every (1−p′1) there is also the

exact same case with p′1, where even more features are correct and

those two can be joined and hence it belongs to the independent

part. Hence,

Pcorrect(p
′
1, p2, . . . , p2k+1) = PI + p′1PD,

and

Pcorrect(p1, p2, . . . , p2k+1) = PI + p1PD,

where PI and PD are fixed and non-negative (as all pi ≥ 0

and (1 − pi) ≥ 0) and dependent on p2, . . . , p2k+1 and hence

Pcorrect(p
′
1, p2, . . . , p2k+1) = PI + p′1PD > PI + p1PD =

Pcorrect(p1, p2, . . . , p2k+1) as p
′
1 > p1, which ends the proof.

Theorem 6. Pcorrect(p1, p2, . . . , p2k+1) ≥
∑k

i=0

(2k+1
i

)

p2k+1−i
min (1 −

pmin)
i, where pmin = min{p1, p2, . . . , p2k+1}.
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FIGURE 4

Di�erent outcomes for Pcorrect for di�erent p ∈ [0.0, 1] with increasing k ∈ [0, . . . , 51]. Python script is in Appendix 3.

Proof: This proof directly follows from using the Theorem 5

multiple times by increasing every probability one at a time from

the initial value pmin:

Pcorrect(p1, p2, . . . , p2k+1) ≥

≥ Pcorrect(pmin, p2, . . . , p2k+1) ≥

≥ Pcorrect(pmin, pmin, . . . , p2k+1) ≥

...

≥ Pcorrect(pmin, pmin, . . . , pmin) =

=

k
∑

i=0

(

2k+ 1

i

)

p2k+1−i
min (1− pmin)

i,

which ends the proof.

Theorems 6 and 4 were needed in order to be able to say, that

combining an infinite amount of features with their probabilities

pi ∈ (0.5, 1] (min{p1, . . . , p2k+1, . . .} > 0.5) will lead to perfect

prediction with no error for machine learning with counts, as it

was in previous Section when looking at the same problem from

the statistical point of view (Gaussian distributions). It is important

to say once again that these separate probabilities pi have to be

independent, as otherwise Equation (4) would not be valid.

Conclusion and discussion

We have derived blending coefficients for the ensemble

of multiple independent prediction models with normal error

distribution. This manuscript was mainly inspired by a Netflix

competition, in which in the final stages of competition multiple

teams joined their efforts to increase the accuracy of their final

predictor and blending turned out to be essential to win the

competition in a very short time during the final stage. This method

was not only used in the Netflix competition but is used for other

datasets in machine learning, such as MNIST and CIFAR-10 for

image processing. We have also shown that having an infinite

amount of independent predictors with their variances bounded

from above is sufficient to achieve perfect prediction. While deep

learning is very popular these days, one should not forget to include

more features (going wider) when in need of improvement in

accuracy.

Looking at a similar problem and more specifically machine

learning with counts, where we only count how many features

are for and against and make a decision based on a voting

mechanism and a majority vote winner, we have shown once

again, that an infinite amount of independent features will

lead to perfect prediction when using only features which have

>50% of accuracy.
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FIGURE 5

Di�erent outcomes for Pcorrect for di�erent p ∈ [0.5, 0.6] with increasing n for n ∈ {5001, 10001, 15001}. Python script is in Appendix 4.

Naturally, independent features in practice are hard to find and

further the study could be made on how to convert dependent

(correlated) features into independent in order to achieve as

high accuracy as possible, or how to combine these dependent

features together and what theoretical accuracies can be achieved.

It could be also of interest how to combine features, which are not

binary (for and against features), but have more than two possible

outcomes.
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