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Accurately predicting hit songs
using neurophysiology and
machine learning

Sean H. Merritt1, Kevin Ga�uri1 and Paul J. Zak1,2*

1Center for Neuroeconomics Studies, Claremont Graduate University, Claremont, CA, United States,
2Immersion Neuroscience, Henderson, NV, United States

Identifying hit songs is notoriously di�cult. Traditionally, song elements have been

measured from large databases to identify the lyrical aspects of hits. We took a

di�erent methodological approach, measuring neurophysiologic responses to a

set of songs provided by a streaming music service that identified hits and flops.

We compared several statistical approaches to examine the predictive accuracy of

each technique. A linear statistical model using two neural measures identified hits

with 69% accuracy. Then, we created a synthetic set data and applied ensemble

machine learning to capture inherent non-linearities in neural data. This model

classified hit songs with 97% accuracy. Applying machine learning to the neural

response to 1st min of songs accurately classified hits 82% of the time showing

that the brain rapidly identifies hit music. Our results demonstrate that applying

machine learning to neural data can substantially increase classification accuracy

for di�cult to predict market outcomes.

KEYWORDS

prediction, immersion, music, neurophysiology, classification

Introduction

Every day, 24,000 new songs are released worldwide (Pandora, 2018). That’s 168,000 new
songs every week. People are drowning in choices. The surfeit of choices makes it difficult for
streaming services and radio stations to identify songs to add to playlists. Music distribution
channels use both human listeners and artificial intelligence models to identify new music
that is likely to become a hit. Unfortunately, the accuracy of predictions has generally been
low (Prey, 2018). This has been called the “Hit Song Science” problem (McFee et al., 2012).
The inability to predict hits means that artists are often underpaid for their work and music
labels misallocate production and marketing resources when seeking to build audiences for
new music (Byun, 2016). The inability to curate desirable music also causes audiences move
between platforms searching for music they enjoy (Prey, 2018).

People want new music, but generally prefer songs similar to those they already know
(Ward et al., 2014; Askin and Mauskapf, 2017). Music streaming services have invested
in technologies to identify and introduce new music customized to subscribers’ existing
playlists. Spotify does this with “Discover Weekly,” a playlist of 30 new songs subscribers
receive every Monday morning. Pandora classifies new music using 450 attributes in its
Music Genome Project and introduces new music using a service called “Personalized
Soundtracks” (Carbone, 2021). Tracking what people add to their playlists boosts the
likelihood of songs showing up in related playlists thereby building support leading to a
hit (Turk, 2021). Nevertheless, less than 4% of new songs will become hits (Interiano et al.,
2018).
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Background

Predicting hits in entertainment is a long-standing problem
(Litman, 1983). Predicting hit movies has been no better than a coin
flip even after considering the director, the stars, budget, time of
year of release, and whether or not the movie is a sequel (Chang and
Ki, 2005; Sharda and Delen, 2006; Lash and Zhao, 2016). Various
methods have been used to predict hit music, including the analysis
of lyrics, blog postings, social media mentions, and brain activity
(Dhanaraj and Logan, 2005; Abel et al., 2010; Berns and Moore,
2012; Singhi and Brown, 2014; Araujo et al., 2017). Yet, predictive
accuracy for most studies is quite low.

The Hit Song Science problem is a subset of research known
as Hit Science that seeks to predict whether entertainment content
will be popular (Yang et al., 2017). This approach typically extracts
components of content and applies machine learning to predict
hits (Ni et al., 2011). When seeking to predict songs, this approach
has typically used audio elements such as tempo, time signature,
length, loudness, genre, lyric sentimentality, and instrument types
(Herremans et al., 2014). Various classification techniques have
been applied and yet predictive accuracy continues to be low (Raza
and Nanath, 2020; Shambharkar et al., 2021).

Ex post, experts offer rationale for why hits were “inevitable”
(Rodman, 2020). Yet, the apparent inevitability that some
entertainment will become popular is challenged by studies that
use ex-ante self-report for prediction (Morton, 1996). Direct and
indirect measures of self-reported “liking” poorly predict aggregate
outcomes (Hazlett and Hazlett, 1999; Wolfers and Zitzewitz,
2004; Bar-Anan et al., 2010; Cyders and Coskunpinar, 2011; John
et al., 2017). When assessing music, “liking” is often anchored to
familiarity resulting in poor ratings for unfamiliar songs (Ward
et al., 2014). Moreover, using Likert self-report scales to predict
popularity may be asking too much of study participants. Music is
meant to elicit emotional responses that arise outside of conscious
awareness and are often poorly reported (Thomas and Diener,
1990; Robinson and Clore, 2002). One way to avoid the inaccuracy
of self-report is to directly measure neurophysiologic responses
to music.

Music is an effective way to influence people’s emotional states
(Fitch, 2006). Music and language likely co-evolved, with the first
evidence of musical instruments appearing in Paleolithic bone
flutes 40,000 years ago (Conard et al., 2009). Structural features of
music, including melody, tempo, key, and rhythm influence the
emotions people experience (Scherer and Zentner, 2001). Lyrics,
which add the human voice to music, generally increase emotional
responses to music, especially for sad songs (Ali and Peynircioglu,
2006; Mori and Iwanaga, 2014). Songs are so effective at influencing
emotions that they work at scale to build and sustain communities.
Examples include Gregorian chants, the sacred music of Bach, the
Catholic Tridentine Mass sung in Latin, Navajo priest singers, the
singing of monks in the Buddhist and Daoist traditions, and Pygmy
honey-gathering songs (Schippers, 2018). Songs are thought to be
a way to socially regulate emotional responses, thereby influencing
behavior (Hou et al., 2017). Contemporary music can be similarly
powerful, influencing fads such as swing dancing, country line
dancing, the Macarena, and Gangnam Style, as well as cadences
used at military boot camps to teach recruits to march. Hit songs,
due to their broad popularity, have an outsized influence on the

emotional states of people, if only temporarily. The desire to
experience an emotional state may explain why some songs become
hits (Schulkind et al., 1999; Schellenberg and von Scheve, 2012).

Emotional responses emanant from multiple brain regions
rather than being localized to a one or a few structures (Adolphs
and Anderson, 2018). In addition to the auditory cortex, music
has been shown to activate brain areas associated with processing
emotions (amygdala, orbitofrontal cortex) and long-term memory
retrival (hippocampus) (Koelsch et al., 2006; Levitin and Tirovolas,
2009). The multiple regions of the brain activated by music
mean that peripheral rather than central measures of neural
activity may better capture the response of neural circuits that
process emotional stimuli (Mauss and Robinson, 2009) including
responses to music (Coutinho and Cangelosi, 2011; Koelsch, 2018).
This is consistent with the James-Lange theory of emotion in
which neurophysiologic responses induce an emotional feeling
(Derryberry and Tucker, 1992; McGaugh and Cahill, 2003; Barrett,
2006; Kreibig, 2010; Barrett and Westlin, 2021). While there
is no one best way to measure neurophysiologic responses
to emotional stimuli, peripheral measures appear to be more
robust than central measures (Golland et al., 2014). For these
reasons, the study here measured peripheral rather than central
neurophysiologic responses.

State of the art

Our point of departure from the extant literature is to examine
if neural measures can be used to predict hit music in order to
address the Hit Song Science problem. While neural activity has
been shown to add predictive power to self-reports, neural signals
alone generally have poorly predictive accuracy for population
outcomes (Falk et al., 2010, 2011; Berkman and Falk, 2013;
Dmochowski et al., 2014; Genevsky et al., 2017). For example, a
study using functional MRI to predict music popularity showed
an improvement over self-report but predictive accuracy was still
well-below 50% (Berns and Moore, 2012). One reason for this
may be the inherent non-linearity of neural signals used as inputs
into linear predictive models. While some researchers have directly
modeled the nonlinear components of neural responses (Barraza
et al., 2015), this is atypical.

A recent approach seeks to predict outcomes from neural
data using machine learning. Machine learning more effectively
integrates non-linear effects into predictions (Guixeres et al.,
2017; Wei et al., 2018). Nevertheless, machine learning analyses
may be subject to overfitting the data (Lemm et al., 2011).
Overfitting can be reduced by using a limited the number of
neural data streams (Jabbar and Khan, 2015), an approach we
take here. Our analysis compares the classification accuracy of
traditional linear predictive models to machine learning models
using neurophysiologic measures alone.

Rather than choose a machine learning approach a priori (Raza
and Nanath, 2020), we instead used an ensemble method (González
et al., 2020). This approach estimates multiple individual models
that are weighted and combined in order to increase predictive
accuracy. Herein we apply an ensemble learning technique
called bagging, also known as bootstrap aggregating, that avoids
overfitting of data by reducing variance. Bagging also effectively
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captures high-dimensional data (Zhang and Ma, 2012) and can
be used used on weak learners with high variance and low bias
(Alelyani, 2021).

Methods

In this section we detail the procedures through which the
songs were chosen and market impact measures were obtained.
We also describe the design of the laboratory experiment used to
collect neurophysiologic data while participants listened to songs.
While a commercial neurophysiology platform was used to capture
neural responses, we derived two novel measures from these data
that we anticipated would add insight into why some songs become
hits. This section also outlines the data analytics methodology and
provides a rationale for the machine learning approach we apply to
predict hit songs from neurophysiologic measures.

Participants

Thirty-three participants (47% female) were recruited from
the Claremont Colleges and surrounding community. Participants
ranged in age from 18 to 57 (M = 24.25, SD = 10.47). This study
was approved by the Institutional Review Board of Claremont
Graduate University (#3574) and all participants gave written
informed consent prior to inclusion. The data were anonymized by
assigning an alphanumeric code to each participant.

Procedure

After consent, participants were seated and fitted with Rhythm
+ PPG cardiac sensors (Scosche Industries, Oxnard, CA). Music
was played through a speaker system to groups of 5–8 participants
in a medium-sized lab. Participants were informed that they would
listen to 24 recent songs and asked about their preferences for each
one. They then completed a short survey on demographics. The
study lasted ∼1 h and participants were paid $15 for their time.
Figure 1 shows the study timeline.

Neurophysiology

A commercial platform (Immersion Neuroscience, Henderson,
NV) was used to measure neurophysiologic responses.
Neurophysiologic immersion combines signals associated
with attention and emotional resonance collected at 1Hz. The
attentional response is associated with dopamine binding to the
prefrontal cortex while emotional resonance is related to oxytocin
release from the brainstem (Barraza and Zak, 2009; Zak and
Barraza, 2018; Zak, 2020). Together these neural signals accurately
predict behaviors after a stimulus, especially those that elicit
emotional responses (Lin et al., 2013; Barraza et al., 2015). The
Immersion Neuroscience platform ingests device-agnostic heart
rate data to infer neural states from activity of the cranial nerves
using the downstream effects of dopamine and oxytocin (JeŽová
et al., 1985; Zak, 2012; Barraza et al., 2015). The algorithms that

measure immersion from cranial nerve activity are cloud-based
and the platform provides an output file used in the analysis. We
chose to measure neurologic immersion for this study because
singing induces oxytocin release (Keeler et al., 2015) as does
listening to music (Nilsson, 2009; Ooishi et al., 2017), though the
effect is inconsistent (Harvey, 2020). The Immersion omnibus
measure was expected to be more predictive than oxytocin alone or
peripheral neural measures such as electrodermal activity (Ribeiro
et al., 2019). Whether neurologic immersion can accurately classify
hit songs is a new use of this measure.

The independent variables were average immersion for each
song as well as two additional variables we derived from immersion
data. The first we call peak immersion, defined as

∫ T

t=0
(vit > Mi)dt/Imi

where νit is average neurophysiologic immersion across
participants in song i at time t to the end of the song at time
T, Mi is the median of the average time series of immersion for
the duration of song i plus the standard deviation of song i across
all participants who listened to that song divided by the sum of
total immersion Imi for song i. That is, peak immersion cumulates
the highest immersion moments during the song relative to the
song’s total immersion. The second variable we created is called
retreat. Neurologic retreat cumulates the lowest 20% of immersion
averaged across participants for each song.

Songs

Staff from an online streaming service choose 24 songs for
this study without input from the researchers. The streaming
service also provided the definition of hits or flops. This resulted
in a “clean” experiment as song choice could not be cherry-
picked for the study and the criterion for a hit was established
in advance. Thirteen songs were deemed “hits” with over 700,000
streaming listens, while the other 11 were flops. The songs had
been released for no more than 6 months and spanned genres
that included rock (Girl In Red “Bad Idea”), hip-hop (Roddy
Rich “The Box”), and EDM (Tons and I “Dance Monkey”). Song
order was counterbalanced and song start and stop times were
synchronized with physiologic data. The 24 songs were used as the
unit of analysis.

Surveys

After each song, participants were asked to rank how much
they liked the song (1 to 10), if they would replay the song (0, 1),
recommend the song to their friends (0, 1), if they had heard it
previously to assess familiarity (0, 1), and if they found the song
offensive (0, 1). We also showed participants lyrics from the song
and lyrics created by the researchers and asked them to identify the
song lyrics to measure their memory of the song (0, 1).
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FIGURE 1

Timeline of the experiment.

Market data

The streaming service provided the researchers with market
data from their platform. These included the number of song
streams that varied from 4,000 (NLE Choppa “Dekario”) to over
32 million (“Dance Money”). Additional data included the number
of streaming stations that carried the song and online likes.

Statistical analysis

We used a sequence of statistical approaches, increasing
in sophistication, to assess the predictive accuracy of
neurophysiological variables. This was done so that the models
can be directly compared. The analysis begins with tests of
mean differences for self-report and neurophysiologic data
comparing hits and flops using Student’s t-tests (for readability,
denoted “t-test”). Parametric relationships were examined using
Pearson correlations while logistic regressions were estimated to
establish predictive accuracy. Sensitivity analysis was conducted by
analyzing the 1st min of data and re-assessing the likelihood of a
song being a hit.

In order to improve predictive accuracy, we trained a bagged
machine learning (ML) model. Bagged models are a type of
ensemble ML model that tests several machine learning algorithms
in an attempt to improve accuracy above that of a single model
(Dietterich, 2000). Bagged models do this by taking the output
of each model individually and making a prediction based on
the weighted average prediction of each model. The SuperLearner
package in R was used to train and test the weighted baggedmodels.
We included common machine learning classification algorithms
in the analysis, including logistic regression, k-nearest neighbors,
neural nets, and support vector machines.

Logistic regression can be considered a machine learning
method since it is designed as a statistical binary classifier. Support
vector machines (SVMs) trains on data by fitting a hyperplane
to separate classifications. These hyperplanes can be non-linear
making them well-suited for neurophysiologic data. K-nearest
neighbors (KNN) uses training data to create boundaries between
different classification labels. It does this by iterating through
each data point and using the k-nearest observations to determine
boundaries for classification. Artificial neural networks (ANN)
attempt to make predictions in a way that mimics the neural
patterns of the brain. It takes each variable as an input and
uses a series of linear and non-linear transformations to map
them into outputs. These transformations are weighted using a
backpropagation algorithm seeking to improve predictive accuracy
(James et al., 2013).

Bagged ML maximizes predictive accuracy by comparing the
predicted value of each algorithm using a training set to the actual
value. It then combines algorithms by minimizing cross-validated
risk (Van der Laan et al., 2007; Polley and van der Laan, 2010)
weighting each one by its contribution to accuracy. The final
predicted value is calculated as the sum of the predicted value for
each algorithm multiplied by the derived weights,

Ŷi =

N∑
j= 1

βjŶij,

where βj is the weight of algorithm j and Ŷij is the predicted value
for song i by algorithm j. For details, see Polley and van der Laan
(2010).

To find optimal parameter settings we used 5 fold cross-
validation. The logistic regression used the optimal cost settings (1,
10, 100), the number of neighbors for KNNwas (3, 5, 8, 10), cost (1,
10, 100) and kernel (radial, polynomial, hyperbolic tangent) were
used for SVM, and an activation function (linear, softmax), while
layer size (1, 5, 10), and decay (0, 1, 10) were used for the ANN.
Optimal settings were identified as logit C= 1, KNN k= 3, SVM C
= 10, kernel = tanh, and ANN function = softmax, layer size = 5,
and decay= 1.

Small data sets are not appropriate for machine learning as they
lead to high bias in their results (Vabalas et al., 2019). To address
this, we created a synthetic set data with 10,000 observations using
the synthpop package in R (Nowok et al., 2016). This standard
automated procedure creates observations by repeatedly randomly
sampling the joint distribution of the data. This technique is used
when obtaining large datasets is infeasible, including analyses of
computer vision (Mayer et al., 2018), sensitive information like
hospital records (Tucker et al., 2020), and with unbalanced data
(He et al., 2008; Luo et al., 2018). One-half of the synthetic
data was used to train the bagged ML model and tune the
hyperparameters. The other half of the synthetic data was used to
test it. The Appendix compares the observed data to the synthetic
dataset and discusses the methodology used to generate these
data. Means, standard deviations and correlations were statistically
identical. All participant data were used to train the models and to
generate predictions.

Results

In the following subsections, we compare the predictive
accuracy of self-reported song preferences to models using
neural variables. Several measures of market impact are related
to self-reports and neural variables in order to provide a
baseline. Significant relationships are then used to build classifiers.
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Neurophysiologic data are first used to estimate perhaps the
simplest classifier, a logistic regression to establish a second
baseline for ML model comparison. ML predictive accuracy
is assessed using neural data from participants listening to
complete songs as well as to data from the 1st min of each
song. The latter is included to demonstrate the robustness of
our results. Analyses of possible overfitting using K-fold cross-
validation are also reported to establish model appropriateness.
In is important to note that only two neurophysiologic measures
served as the foundation for the ML models. This streamlines
the interpretation of the findings and reduces the likelihood
of overfitting.

Self-report

Self-reported liking was statistically related to the number of
streams (r = 0.54, N = 24, p = 0.002) when analyzing participants
who were familiar with the songs. Liking was not predictive for
stations (r = −0.08, N = 24, p = 0.701) or online likes (r = 0.38,
N = 24, p = 0.060). When analyzing songs that were unfamiliar
to participants, the relationship between likes and online streams
disappeared (β = −0.13, N = 24, p = 0.387). This suggests
an endogeneity problem: are liked songs familiar or are more
familiar songs liked? In order to avoid this issue, we analyzed
data only from songs with which participants were unfamiliar.
These data were aggregated to the song level and were used for all
subsequent analyses.

For unfamiliar songs, self-reported liking was statistically
identical for hits and flops (Mhit = 4.49, Mflop = 4.48; t (22) =
−00.05, p = 0.963, d = −00.02). The same held for recommend [t
(22)=−00.21, p= 0.829, d =−00.09], offensive [t (22)=−00.44,
p= 0.664, d =−00.18] and lyrics [t (20)=−00.58, p= 0.571, d =

−00.25]. None of the self-report measures correlated with steams
(r = 0.16, p = 0.46), stations (−00.31, p = 0.140), or online likes (r
= 0.05, p= 0.980).

Neurophysiologic responses

Hit songs had higher immersion than flops (Mhit = 4.17, Mflop

= 4.10; t (22) = −02.34, p = 0.028, d = −00.95) while neurologic
retreat and peak immersion did not differ between hits and flops
(retreat: t (22)= 2.01, p = 0.057, d = 0.82; peak: t (22)= −00.14 p
= 0.887, d = −00.06). Immersion was not correlated with streams
(r= 0.03, p= 0.870), nor was peak immersion (r= 0.26, p= 0.202),
while neurologic retreat trended toward significance (r = −00.39,
p= 0.057). Immersion was negatively related to age (r =−00.31, p
< 0.001) and varied by gender (Male: 4.06, Female: 4.20; t (650) =
−03.04 p < 0.001, d =−00.26).

Accuracy

Logistic regression models were used to assess whether
neurophysiologic measures could predict hits. Model 1 only
included immersion. Then Model 2 added retreat to test if

it would improve accuracy. Both Model 1 and Model 2 were
significantly better at predicting hits than chance (F = 5.48, p
= 0.023; F = 3.27, p = 0.05). Model 1 and Model 2 correctly
classified hits and flops 66% and 70% of the time, respectively.
Model 2 classified hits with 69% accuracy and flops with 62%
accuracy using only the two neurophysiologic variables (ps <

0.001). While retreat and immersion are correlated with each
other (r = −0.51, p = 0.011), Model 2 did not suffer from
multicollinearity (VIF = 1.07). The results were robust to the
inclusion of an indicator for offensive lyrics (p= 0.68). As expected
the neurophysiologic variables were not statistically related to
the self-reported desire to replay the song, recommend the song
to others, or the number of online likes for each song (ps
> 0.68).

Machine learning

A bagged ML model was trained on one-half of the synthetic
data using immersion and retreat as independent variables. The
ML approaches that contribute more have a higher coefficient
and lower risk (Polley and van der Laan, 2010). The k-nearest
neighbor model contributed the most (coef = 0.98, risk = 0.018)
followed by a neural net (coef = 0.012, risk = 0.18). A logistic
regression and support vector machines contributed nothing to an
accurate classification.

The bagged ML model was able to accurately classify the type
of song 97.2% of the time. This statistically greater than the base
rate (Successes = 4,800, N = 5,000, p < 0.001) using the exact
binomial test (Hollander and Wolfe, 1973). Examining specificity
and sensitivity, hits were classified correctly 96.6% of the time and
flops were classified with 97.6% accuracy (Figure 2).

Next, we assessed the bagged ML model’s ability to predict hits
from the original 24 song data set. The baggedMLmodel accurately
classified songs with 95.8% which is significantly better than the
baseline 54% frequency (Success = 23, N = 24, p < 0.001). Only
one song, Evil Spider, was classified incorrectly. This song was a
flop with nearly 54,000 streams but was classified as a hit due to its
high immersion.

We conducted a bootstrap procedure with 1,000 iterations on
both the bagged ML model and the logistic model to compare their
accuracy for hits and flops. The logit was trained on one data set (N
= 5,000) and then assessed for accuracy on another set of data (N
= 5,000) for each iteration. The bagged ML model predicted hits
ML: CI = [1, 1]; Logistic: CI = [0.67, 0.73]; t (1,998) = −115.86, p
< .001) and flops (ML: CI= [0.82,1.00]; Logistic: CI= [0.59, 0.63];
t (1,998)=−121.13, p < 0.001) better than the logistic model.

The model was assessed for overfitting by running a 10-fold
cross validation on the bagged ML and comparing the predictive
accuracy of the training set, test set, and observed data. This analysis
shows that the baggedML does not appear to overfit the test data as
the accuracy is high and consistent (James et al., 2013). As expected,
the accuracy is higher on the training and test synthetic data across
the k-folds (∼0.99) compared to theN = 24 observed data (∼0.96).
Nevertheless, across the three data sets the accuracy of the model is
high, similar, and consistent (Figure 3).
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FIGURE 2

A traditional logistic regression model using neurophysiologic

immersion and retreat as independent variables correctly classified

hits with 69% accuracy and flops with 62% accuracy (N = 5,000). A

bagged machine learning model using the same two independent

variables had accuracy of 96.6% in classifying hits while flops were

classified with 97.6% accuracy. Bars are standard deviations.

1min of data

To establish the robustness and practical applications of our
findings, we analyzed the accuracy of neurophysiology collected
from the first 1min of data to identify hits. We ran the same
logistic and bagged ML models described previously using only the
data from the 1st min of each song. We did not find a significant
relationship between immersion (OR= 362.25, N = 24, p= 0.101)
or retreat (OR = 27175.63, N = 24, p = 0.406) and hit songs.
However, using immersion and retreat, we were able to correctly
classify songs 66% of the time using a logistic regression. Specificity
and sensitivity were moderate at 77% and 56%, respectively.

We also created another synthetic data set to train a bagged
machine learning model. Our bagged ML model had overall
accuracy of 74%. It predicted hit songs with 82% accuracy and flops
with 66% accuracy (Figure 4). Using the bagged ML model on the
original data, we found that it was able to predict hits and flops
66% of the time. Bootstrapping the results, the bagged ML model
outperformed the logistic model in classifying hit songs (ML: CI =
[0.80, 0.82], Logistic: CI = [0.75, 0.7848]; N = 5,000, t (1,998) =
−41.76, p < 0.001), and flops (ML: CI= [0.65, 0.70], Logistic: CI=
[0.54, 0.58]; t (1,998)=−22.61, p < 0.001).

Discussion

The key contribution of the present study is to demonstrate
that neurophysiologic measures accurately identify hit songs while
self-reported “liking” is unpredictive. In addition, we showed that

FIGURE 3

A 10-fold cross validation indicates the bagged ML model

consistently predicts test data with ∼99% accuracy. Accuracy for the

observed data is consistent at ∼96% indicating that the model does

not overfit the data.

neurophysiology, combined with machine learning, substantially
improves the classification of hit songs when compared to linear
statistical models. Our goal was to provide a methodology that
other researchers can use to predict hit songs of different genres,
in different geographic locations, and for study populations with
different demographics. The approach described here should also
be tested for its ability to accurately predict hits for other forms of
entertainment that are known to be difficult to ascertain, including
movies, TV shows, and social media posts in order to confirm and
extend our results. Indeed, our use of a commercial neuroscience
platform makes such extensions feasible for non-neuroscientists.

Forecasting one’s own behavior based on reflection is fraught
and using self-report to predict market outcomes of entertainment
is nearly always a fool’s errand (Sheeran, 2002; Woodside and
Wilson, 2002; Brenner and DeLamater, 2016). Even experts cannot
identify high quality goods and services from their imitators
(Ashenfelter and Jones, 2013; Almenberg et al., 2014). While people
want to hear newmusic, they prefer music that is similar to familiar
songs generating a bias in self-reports (Ward et al., 2014). The
Hit Song Science problem is typically addressed by mining very
large datasets (McFee et al., 2012). We took a different approach,
collecting neurophysiologic data from a moderate number of
people to predict aggregate outcomes. We showed that self-
reported liking only identifies hit songs if one was already familiar
with the song. This is most likely due to endogeneity: participants
are more likely to report they like a song if they have heard it often.
Once we removed participants’ familiar songs, self-reported liking
ceased to predict hits.

The use of neurophysiologic data to predict aggregate outcomes
is an approach that has been labeled “brain as predictor” or
“neuroforecasting.” This approach captures neural activity from
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FIGURE 4

A logistic regression model trained on neurophysiologic responses

for the 1st min of songs correctly classified hits with 77% accuracy

and flops with 56% accuracy (N = 10,000). The bagged machine

learning model classified 74% of songs correctly. Hits were classified

with 82% accuracy while flops were identified accurately 66% of the

time. Model training used half of the synthetic data set (N = 5,000)

using a bootstrapped evaluation of 5,000 observations per iteration

for 1,000 iterations. Bars are standard deviations.

a small group of participants to predict population outcomes
(Berkman and Falk, 2013; Dmochowski et al., 2014; Genevsky
et al., 2017). Neurologic data have been shown to predict outcomes
more accurately than self-reports for sunscreen use, smoking
reduction strategies, watching TV, and crowdfunding requests (Falk
et al., 2010, 2011; Yang et al., 2015; Genevsky et al., 2017; Zak,
2022). While estimating predictive models using neural data is an
improvement over poorly-predicting self-reported measures, the
accuracy of neural forecasts have generally been no better than 50%.
The closest published study to the report here used fMRI data from
28 people to predict the popularity of 20 songs. One brain region,
the nucleus accumbens, was correlated with aggregate outcomes
but was only able to correctly classify hits with 30% accuracy (Berns
and Moore, 2012).

Our analysis showed that two measures of neurophysiologic
immersion in music identified hits and flops with 69% accuracy
using a traditional linear logistic regression model. A logistic
regression using only the 1st min of the song was nearly as
accurate at 66% and was 77% accurate at classifying which songs
were hits. This is a substantial improvement over the existing
literature. Most of the models cited above using neural data to
predict aggregate outcomes have focused on attentional responses.
The neurophysiologic data we used convolves attentional and
emotional responses and this may account for our improved
predictive accuracy (Lench et al., 2011; Zak and Barraza, 2018;
Zak, 2020). Emotional responses are a key component of persuasive
communication because emotions capture the subjective value of

an experience (Barraza et al., 2015; Cacioppo et al., 2018; Falk
and Scholz, 2018; Doré et al., 2019). The analysis here indicates
that emotional responses also appear to determine which songs
become hits.

Applying a bagged machine learning model to neural data
improved its predictive accuracy from 69% to 97%. We also
demonstrated the robustness and practical use of our approach by
correctly classifying hits with 82% accuracy using the 1st min of
songs. It is worth noting that no demographic or self-report data
were used in these models. Further, our findings are unlikely due
to chance. Machine learning using neural data has been used to
identify mental illness (Stahl et al., 2012; Khodayari-Rostamabad
et al., 2013; Amorim et al., 2019), epilepsy (Shoeb and Guttag, 2010;
Buettner et al., 2019), stress (Subhani et al., 2017), and to recognize
emotions (Zhang et al., 2020). Market researchers have applied
machine learning to neural data to predict views of Superbowl ads
and behavioral responses to advertising (Guixeres et al., 2017; Wei
et al., 2018). As of this writing, machine learning models of music
have used lyrical content rather than neural data to classify hits
with only moderate accuracy (Dhanaraj and Logan, 2005; Singhi
and Brown, 2014). We extended these approaches by using neural
responses tomusic from amodest number of people to identify hits.
Future work could connect neural responses to lyric classifications
for additional insights.

Rather than choose a single machine learning algorithm, our
use of an ensemble model eliminated a manual search for the best
approach. The analysis showed that a k-nearest neighbors’ (KNN)
algorithm was responsible for the majority of the explanatory
power. While machine learning models have been called “black
boxes,” our analysis showed that hit songs have higher immersion
than flops and do so with a large effect size (Cohen’s d =

0.95). Hits also produced less neurologic retreat than flops with
a similar effect size (Cohen’s d = 0.82). Another reason to
use machine learning to classify hits is that neurophysiologic
data are inherently non-linear. Unlike logistic regressions, KNN’s
incorporate non-linear relationships making it ideally suited to
neural data.

It is noteworthy that only three neurophysiologic variables
were used in the analysis. Among these, only two of the variables,
immersion and retreat, were statistically associated with classifying
hits. The results are consistent with the intuition that hits are
expected to have higher immersion and produce less retreat
than do flops. The parsimony of models with two variables,
and their associated high accuracy, supports the measurement
of peripheral neural measures for this application. While the
classification accuracy using linear relationships of these variables,
as in the logistic regression we reported, was only moderate,
the ML approach utilized non-linear relationships which are
more appropriate for neural responses (Timme and Lapish,
2018).

While the accuracy of the present study was quite high, there
are several limitations that should be addressed in future research.
First, our sample was relatively small so we are unable to assess if
our findings generalize to larger song databases. The large effect
sizes indicate the results are likely to be similarly accurate if other
songs were tested. We also created a synthetic data set to train the
machine learning model. These data, while generated from human
neural responses, may have overweighted subtle relationships not
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evident in the original data. Nevertheless, this approach has become
standard when access to large samples, such as in experimental
studies as reported here, is not available (Hoffmann et al., 2019).
The use of synthetic data allows researchers to gather less direct
participant data with a small or no loss in accuracy.While we found
high accuracy using the observed data, we did not have access to an
outside sample of songs to validate the model further. This means
our model might have overfitted the data.

Conclusion

Measuring emotional responses using neuroscience
technologies provides a new way for artists, record producers,
and streaming services to delight listeners with new music. Our
contribution is to show that omnibus neuroscience measurements
from the peripheral nervous system quite accurately classify hits
and flops. Rather than asking users if they “like” a new song,
wearable neural technologies, like those in this study, could assess
the neural value of content automatically. Steaming services’
“Discover Weekly,” and “Personalized Soundtracks” could more
effectively build playlists of desired new music by measuring
neurologic immersion when users listen to just the 1st min of a new
song. Music from users’ existing playlists could also be chosen by
using neurologic immersion to identify mood states as was recently
shown (Merritt et al., 2022). Our findings, if replicated, indicate
that as neuroscience technologies enter into general use, the ability
to curate music and other forms of entertainment to give people
just what they want will improve existing recommendation engines
benefiting artists, distributors, and consumers.
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