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Background: COVID-19 has strained healthcare resources, necessitating e�cient

prognostication to triage patients e�ectively. This study quantified COVID-19 risk

factors and predicted COVID-19 intensive care unit (ICU) mortality in South Africa

based on machine learning algorithms.

Methods: Data for this study were obtained from 392 COVID-19 ICU patients

enrolled between 26March 2020 and 10 February 2021.We used an artificial neural

network (ANN) and random forest (RF) to predictmortality among ICU patients and

a semi-parametric logistic regression with nine covariates, including a grouping

variable based on K-means clustering. Further evaluation of the algorithms was

performed using sensitivity, accuracy, specificity, and Cohen’s K statistics.

Results: From the semi-parametric logistic regression and ANN variable

importance, age, gender, cluster, presence of severe symptoms, being on the

ventilator, and comorbidities of asthma significantly contributed to ICU death. In

particular, the odds of mortality were six times higher among asthmatic patients

than non-asthmatic patients. In univariable and multivariate regression, advanced

age, PF1 and 2, FiO2, severe symptoms, asthma, oxygen saturation, and cluster 4

were strongly predictive of mortality. The RFmodel revealed that intubation status,

age, cluster, diabetes, and hypertension were the top five significant predictors of

mortality. The ANN performed well with an accuracy of 71%, a precision of 83%,

an F1 score of 100%, Matthew’s correlation coe�cient (MCC) score of 100%, and

a recall of 88%. In addition, Cohen’s k-value of 0.75 verified the most extreme

discriminative power of the ANN. In comparison, the RF model provided a 76%

recall, an 87% precision, and a 65% MCC.

Conclusion: Based on the findings, we can conclude that both ANN and RF

can predict COVID-19 mortality in the ICU with accuracy. The proposed models

accurately predict the prognosis of COVID-19 patients after diagnosis. Themodels

can be used to prioritize COVID-19 patients with a high mortality risk in resource-

constrained ICUs.
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1. Introduction

The pandemic of coronavirus disease 2019 (COVID-19) is

still ongoing, with the emergence of new Omicron subvariants,

primarily BA.5.2 and BF.7. In January 2023, China recorded more

hospitalizations and deaths (WHO, 2023). Such a scenario should

be considered in African countries such as South Africa, where

hospitalized cases increased rapidly during the first and second

waves. The rapid spread of the virus has resulted in multiple

intensive care unit (ICU) admissions, necessitating effective patient

management for a better outcome. With many other diseases

coexisting with COVID-19 in low-resource countries, it is critical

that new approaches for health decision-making and optimal

allocation of health resources be developed and implemented.

Accurate prognoses and efficient diagnosis and treatment are

critical for reducing the burden on healthcare systems and

providing the best possible care for patients. Furthermore, it is

critical to reduce the amount of time required for decision-making,

such as selecting ventilation modes, in COVID-19 ICU patients.

Innovative methods for triage, predicting COVID-19 outcomes,

and making medical decisions are needed, particularly in the ICU,

where resource constraints have been an issue in previous COVID-

19 waves. Statistical models have been used to guide healthcare

systems in making medical treatment decisions and predicting

medical outcomes. These models, however, are prone to bias (Shen,

2020; Navarro et al., 2021). Furthermore, traditional statistical

analysis methods used to identify such risk factors are limited

in their ability to highlight the effect on outcomes implicated by

potential interactions between these factors (Elhazmi et al., 2022).

Prediction models developed for early detection of COVID-

19 infection are described in screening studies, whereas prediction

models developed to establish a diagnosis of the disease are

proposed in diagnostic studies. Several predictors are identified

in these studies, including clinical parameters (e.g., comorbidities

and symptoms), laboratory results, and demographic features

(Adamidi et al., 2021). Recent advances in artificial intelligence

have demonstrated success in a variety of fields, including medical

research (Galaz et al., 2021). In particular, the development of

machine learning algorithms and modeling methodologies has

resulted in the emergence of various applications for data-driven

decision-making. Machine learning encompasses a wide range of

methods that could be used in the ICU, ranging in complexity

(WHO, 2022). Several studies used various complex machine

learning models to predict ICU admission, disease severity, and

mortality, particularly during the COVID-19 pandemic (Magunia

et al., 2021; Elhazmi et al., 2022; Hernández-Pereira et al., 2022).

The application of machine learning techniques to develop

COVID-19 mortality predictions in the ICU has received little

attention (Banoei et al., 2021). Machine learning, as a supplement

to existing clinical instruments, may aid in accurately predicting

the risk of survival or death for COVID-19 (Banoei et al.,

2021). We developed and validated machine learning models,

namely artificial neural network (ANN), for predicting COVID-19

prognosis in the ICU. In this study, we used: (i) ANN and random

forest (RF) to predict COVID-19 mortality, (ii) semi-parametric

logistic regression to quantify COVID-19 risk factors, and (iii)

K-means clustering to identify different COVID-19 risk groups at

Tygerberg Hospital.

2. Methods

2.1. Data

Data for this study were obtained from SARS-CoV-2-infected

patients treated at Tygerberg Hospital from March 2020 through

February 2021. The selection criteria were ICU hospitalization

following a positive PCR test for SARS-CoV-2. Data collection

and management were performed using Research Electronic Data

Capture (REDCap) tools hosted at Stellenbosch University. This

platform provides access to all patient information regarding

demographic and clinical information. The outcome studied was

ICU recovery or mortality within the study period. We considered

the demographics, comorbidities, and medications prescribed to

every patient. The emergency room personnel documented vital

signs upon arrival. Within the first 24 h, several laboratory variables

were recorded. To avoid bias due to missing data that would affect

the outcome, we removed data obtained from patients with fewer

than 90% of the variables in the database (listwise deletion). In

addition, outliers resulting from incorrect data entry were removed.

2.2. Description of the variables

The independent variables considered for this study were

age at admission (in years), gender, hypertension, diabetes,

intubation status, asthma, HIV status, severity of symptoms at

admission (severe/not severe), and laboratory parameters. All the

variables mentioned above were used to predict mortality and

an additional cluster variable that was created using K-means

clustering. The laboratory parameters were C-reactive protein

immunoturbidimetrically, high-sensitivity troponin T (hs-TnT), N-

terminal pro-brain natriuretic peptide (NT-proBNP), procalcitonin

(PCT), glycated hemoglobin (HbA1c), D-dimer, and neutrophil-

lymphocyte ratio.

2.3. Risk factors and the outcome variable

Weused a univariate standard logistic regression to evaluate the

association of each covariate with the outcome (survival or death

fromCOVID-19).We considered the association significant at a 5%

level of significance and returned these variables to the final model.

These results are presented in Table 2.

2.4. Statistical analysis

Continuous variables were expressed as mean (standard

deviation). Categorical variables were expressed using frequencies

and percentages. Fisher’s exact and chi-squared tests were used

to assess the association between mortality and the categorical

variables. Student’s t-test was used to assess the equality of the

means of the continuous variables between mortality and recovery

groups. Factors associated with mortality at p < 0.15 in an

unadjusted univariable logistic regression model were included in

a multivariable model to identify predictor variables associated
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with mortality. Adjusted odd ratios and their 95% CIs were used

as a measure of association. To predict the outcome, ANN was

developed by building layered perceptrons using feed-forward

networks and backpropagation techniques. The continuous input

variables for the input layer of the ANN were normalized. Logistic

regression was used to calculate the sigmoid function. The system

was developed in two stages: phase one involved training it to

learn, and phase two involved testing it against the learning. RF was

conducted using the R-package RF (Liaw and Wiener, 2002). The

R-package caret was used to tune the RF parameters (Kuhn, 2008).

K-means clustering was performed to determine the clusters that

were used in the prediction algorithms. The clustering was based

on the laboratory parameters, which were normalized for analysis.

Detailed information on the laboratory parameters is provided in

the data section of the study. No imputation was done in this

analysis. All statistical analyses were performed using the R (version

4.1.0, R Core Team) and R Studio (version 1.4.1, R Studio Team)

statistical software.

3. Results

The outline of the mathematical procedures used in this study

to provide the results is included in Supplementary material 1.

Table 1 summarizes the patient features. There were 255 deaths

and 137 recoveries (a case-fatality ratio of 65%). There was a

significant age difference between those who died from COVID-19

and those who recovered at Tygerberg Hospital, with a mean (SD)

age of 54.87 (10.99) years and 50.58 (10.43) years, respectively. Men

comprised 56.12% of the study participants. Cluster 4 accounted

for 41.84% of study participants. Approximately 91.58% of patients

had symptoms at the time of admission. Notably, 75% of the

patients in this study suffered from one ormore underlyingmedical

conditions, the most common being hypertension (59.34%) and

diabetes (50%).

There was an 8-day mean interval between ICU admission

and mortality (range 0–45 days) and 15 days (range 2–63 days)

between ICU admission and recovery (Figure 1). There was no

significant difference in time between ICU admission andmortality

or recovery among different age groups (p= 0.45).

3.1. Factors associated with mortality:
semi-parametric logistic regression

Table 2 presents the results of the semi-parametric logistic

regression model for all covariates associated with COVID-

19 mortality. The model fitted well [AUC = 0.71 (Figure 2)].

After adjusting for age, gender, and comorbidities, significant

associations with higher odds of COVID-19 mortality occurred in

patients with asthma (AOR 5.42, 95% CI: 1.41–20.86, p = 0.014),

patients who presented severe symptoms (AOR 3.99, 95% CI: 1.75–

9.10, p= 0.001), PF ratio at the 20th percentile (AOR 0.83, 95% CI:

0.75–0.93, p= 0.002), and PF ratio at the 40th percentile (AOR 1.20,

95% CI: 1.07–1.35, p = 0.002). The AOR of COVID-19 mortality

for age was 1.04, indicating that the odds of death increased by 4%

for each additional year of age 1.04 (95% CI: 1.01–1.07, p= 0.002).

3.2. COVID-19 high-risk patients’
identification (K-means clustering feature)

Clustering by K-means can help identify COVID-19 patients

at higher risk. We performed a semi-parametric logistic regression

using clusters as predictors. A cluster analysis showed that there

were four main groups in the COVID-19 cohort of survivors

and non-survivors. Clustering by K-means showed that clusters

3 and 4 had case fatality rates of 62.8 and 75.6%, respectively.

In comparison to clusters 1, 3, and 4, cluster 2 had the lowest

case fatality rate (44%) (Table 2). Figure 3 below shows a density

plot of observations projected onto the two-dimensional plane.

Figure 4 shows the L-bow plot for all four clusters that confirmed

the clustering using unsupervised methods.

3.3. Factors associated with mortality
(variable importance from ML)

The five most significant predictors of outcome (mortality vs.

recovery) for the machine learning model (ANN) were age, gender

(female), intubation status, cluster, and asthma (Figure 5). Asthma

seemed to have the greatest importance in explaining COVID-19

mortality among the prevalent comorbidities. In the RF model,

intubation status, age, cluster, diabetes, and hypertension were

the five most significant predictors of outcome (Figure 4). The

most significant predictors were almost the same between the two

ML models.

3.4. Performance of machine learning
algorithms

The ANN demonstrated a precision of 83%, an F1 score of

100%, and a recall of 88%. Furthermore, the ANN yielded a

Matthews correlation coefficient (MCC) of 100%, indicating that

the machine learning method was on the right track. The RF model

had a recall of 76%, a precision of 87%, and an MCC of 65%. The

ANN performed well except on the precision where the RF was the

highest with a difference of 5%. An F1 score of 85% was obtained

with a 15% difference compared to the ANN algorithm.

4. Discussion

The aim of this study was to develop an interpretable ANN

model to predict the mortality rate of COVID-19 patients admitted

to the ICU. To the best of our knowledge, this is the first study

in South Africa to develop a machine learning predictive model of

mortality in COVID-19 patients admitted to the ICU.

Our findings revealed 255 deaths and 137 recoveries (a case-

fatality ratio of 65%). There was a significant age difference between

those who died from COVID-19 and those who recovered at

Tygerberg Hospital, with mean (SD) ages of 54.87 (10.99) years

and 50.58 (10.43) years, respectively. Mortality was also associated

with asthma, severe COVID-19 symptoms, intubated patients,

cluster 4, PF ratio, and FiO2 when compared to those who did
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TABLE 1 The distribution of patient characteristics between COVID-19 ICU mortality and recovery.

Characteristics Levels Discharge
n = 137 (%)

Dead
n = 255 (%)

p-value

Gender Male 85 (62.0%) 135 (53.0%) 0.083

Female 52 (38.0%) 120 (47.0%)

Age 54.87 (10.99) 50.58 (4.7) 0.004

Hypertension No 59 (43.1) 99 (38.8) 0.410

Yes 78 (56.9) 156 (61.2)

Diabetes mellitus No 76 (55.5) 119 (46.7) 0.096

Yes 61 (44.5) 136 (53.3)

Asthma No 134 (97.8%) 235 (92.2%) 0.023

Yes 3 (2.2%) 20 (7.8)

HIV status No 121 (88.3%) 211 (82.7%) 0.140

Yes 16 (11.7%) 44 (17.3%)

Previous tuberculosis No 128 (93.5%) 234 (92.5%) 0.720

Yes 9 (6.5%) 21 (7.5%)

Severe symptoms No 22 (15.9%) 11 (4.3%) <0.001

Yes 115 (84.1%) 244 (95.7%)

Intubation status No 120 (87.7%) 70 (27.7%) <0.001

Yes 17 (12.3%) 185 (72.3%)

Body mass index (BMI) Low 48 (34.8%) 80 (31.6%) 0.520

High 89 (65.2%) 175 (68.4%)

Clusters Cluster 1 34 (24.8%) 33 (12.9%) 0.903

Cluster 2 9 (6.6%) 7 (2.7%) 0.694

Cluster 3 54 (39.4%) 91 (35.7%) 0.065

Cluster 4 40 (29.2%) 124 (48.6%) <0.001

PF ratio 87.82 (72.12) 133.66 (66.82) <0.001

FiO2 77.09 (22.74) 67.72 (25.09) <0.001

Systolic blood pressure 137.09 (23.65) 138.55 (23.15) 0.556

not die. With an AUC of 71%, mortality could be predicted.

Furthermore, the ANN demonstrated a precision of 83%, an F1

score of 100%, an MCC of 100%, and a recall of 88%. Our findings

were consistent with previous research that found COVID-19

mortality was associated with age, female gender, PF ratio, low

FiO2, and severe symptoms such as altered mental status, low

median Glasgow Comma Scale, respiratory rate, and chest pain

(Banoei et al., 2021; Kar et al., 2021; Elhazmi et al., 2022; Moulaei

et al., 2022). Elhazmi et al. used two predictive models, primarily

conventional logistic regression and DT analyses, to demonstrate

that the need for intubation was related to mortality (Elhazmi

et al., 2022). In comparison to clusters 1, 2, and 3, cluster 4 may

have a high proportion of women, older people, and asthmatic

patients. This is supported by the highest case fatality rate of cluster

4 (75.6%). This could be explained by the different characteristics

of individuals included in the clusters, demonstrating the risk of

COVID-19 death by examining how clusters differ.

In contrast, our findings contradicted machine learning-based

models that demonstrated that asthma was not associated with

mortality in four model studies (Li et al., 2020; Banoei et al., 2021;

Cisterna-García et al., 2022; Elhazmi et al., 2022). Even though

there is considerable heterogeneity among COVID-19 mortality

prediction models, our findings regarding asthma as a strongly

predictive COVID-19 mortality factor should be interpreted with

caution. In fact, in studies where asthma was not predictive

of mortality, intravenous corticosteroids, vasopressors, oxygen,

and intubation were commonly used in ICU patients (Banoei

et al., 2021; Cisterna-García et al., 2022). Another plausible

explanation is that female gender was a significant predictor of

mortality in our study, and asthma deaths in the ICU are strongly

associated with women, specifically those admitted for COVID-

19 in the ICU (Pennington et al., 2019; Beurnier et al., 2020;

Ren et al., 2022). Asthma was not a predictor of mortality in

studies involving significant male mortality in the ICU. This

could explain why asthma is the strongest predictor of mortality

in the ANN model (Figure 5). In comparison to the ANN

model, the RF model revealed that intubation status, diabetes

mellitus, and hypertension were also significant predictors of
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FIGURE 1

A histogram shows the interval of time between ICU admission and discharge or death.

TABLE 2 Factors associated with COVID-19 mortality.

Characteristics Univariate Multivariable

OR (95% CI) p-value AOR (95% CI) p-value

Age 1.04 (1.02–1.06) <0.001 1.04 (1.01–1.06) 0.002

Gender: female 1.45 (0.95–2.22) 0.084 1.32 (0.84–2.09) 0.230

PF ratio 1 0.994 (0.991–0.997) 0.001 0.83 (0.75–0.93) 0.002

PF ratio 2 0.994 (0.991–0.998) 0.001 1.20 (1.07–1.37) 0.002

FiO2 1.02 (1.01–1.03) <0.001 1.01 (0.99–1.02) 0.177

Severe symptoms No Reference Reference

Yes 4.17 (1.96–8.89) <0.001 3.99 (1.75–9.10) 0.001

Asthma No Reference Reference

Yes 3.80 (1.10–10.78) 0.038 5.42 (1.41–20.86) 0.014

Diabetes mellitus No Reference Reference

Yes 1.42 (0.94–2.16) 0.097 1.28 (0.81–2.02) 0.282

Hypertension No Reference

Yes 1.19 (0.78–1.82) 0.414

Oxygen saturation No Reference Reference

Yes 1.82 (1.09–3.63) 0.022 1.39 (0.78–2.48) 0.261

Cluster 1 Reference Reference

2 0.80 (0.29–1.98) 0.057 0.68 (0.36–1.29) 0.236

3 1.74 (0.64–2.01) 0.663 0.51 (0.06–4.19) 0.527

4 3.19 (1.76–5.80) <0.001 0.45 (0.15–1.35) 0.154

COVID-19 mortality. Studies have shown that the COVID-19

mortality rate among those who were intubated was considerably

higher (Nyasulu et al., 2022; Al Oweidat et al., 2023). Similarly,

COVID-19 mortality was considerably higher in patients with

hypertension and diabetes (de Almeida-Pititto et al., 2020; Gupta

et al., 2021; Başi et al., 2022). This demonstrated that both

the ANN and RF models could be beneficial in predicting

COVID-19 mortality.
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FIGURE 2

ROC curve for semi-parametric logistic regression.

FIGURE 3

Density plot of observations projected onto the two-dimensional plane. Cluster 4 is the high death rate cluster.

In contrast to other machine learning-based models that

showed that the male gender was associated with mortality

(Kar et al., 2021; Cisterna-García et al., 2022; Elhazmi et al.,

2022), our model demonstrated that the female gender was

a predictor of COVID-19 in the ICU. Another study found

that all-cause mortality was similar in men and women (He

et al., 2022). The second COVID-19 wave, which was associated

with demographic changes due to the Delta variant, could

explain the higher mortality in women. Evidence suggests

that pregnant or postpartum women are more likely to

experience concern variants (Iftimie et al., 2021; Lalla et al.,

2021).

In terms of ANN-evaluated metrics, significant parameters

predict COVID-19 mortality in the ICU with 71% accuracy,

83% precision, 100% F1 score, 100% MCC, and 88% recall. In

comparison to the RF model, which had a recall of 76%, precision

of 87%, and MCC of 65%. The ANN performed well except for

precision, where the RF was the largest, with a 5% difference.

An F1 score of 85% was obtained, with a 15% difference when

compared to the ANN algorithm. This is further proved by the fact

that the most significant predictors, such as intubation status, age,

cluster, diabetes, and hypertension, were nearly identical in both

models. Furthermore, the F1-score is regarded as the fundamental

indicator for picking the appropriate hyperparameter for each
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FIGURE 4

L-bow method for K-mean clustering.

FIGURE 5

Variable importance plot using ANN.

model (Subudhi et al., 2021). Finally, 100% both for the F1-

score and MCC produced a high score for predicting COVID-19

mortality in our model. Zhao et al. (2022) studied 313 COVID-

19 patients and found that ANN performed well in predicting

mortality, with an AUC of 75%. Another ANN developed by

Shanbehzadeh et al. (2022) predicts COVID-19 patient mortality

risk with sensitivity, specificity, and accuracy of 96.4, 90.6, and

94%, respectively. Four model studies conducted in the ICU or in-

hospital using the deep-learning model predicted ICU mortality

with an AUC of 0.844 (95% CI 0.839–0.848) (Li et al., 2020), DT

model accuracy was 73.1% (Elhazmi et al., 2022), machine learning

techniques (MLTs) accuracy was 84% (95% CI 78–90%) (Tezza

et al., 2021), and a deep neural network (DNN) model predicts the

likelihood of mortality among ICU-admitted patients with an AUC

of 78% (95% CI 76–78.5%) (Li et al., 2020). Our study performance

was relatively low due to the relatively low number of ICU-admitted

patients in our study compared to others. However, ANN has

demonstrated high performance in studies with large sample sizes

(Shanbehzadeh et al., 2022).

Our models’ results should be viewed considering their

strengths as well as several limitations. The age, PF1 and 2, FiO2,

severe symptoms, asthma, oxygen saturation, and cluster 4 were
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strongly predictive of mortality in univariable and multivariable

regression. This could be useful in predicting risk during the

early stages of ICU admission. As the first ANN model study

in Africa, this study has the potential to improve COVID-

19 patient care protocols in resource-constrained regions like

Africa. Finally, this study found that clustering may be useful in

predicting COVID-19mortality in the ICU. This study also showed

how beneficial artificial intelligence models may be in predicting

COVID-19 mortality in the ICU by integrating models with

optimal ROC, accuracy, precision, sensitivity, and specificity rates.

On the other hand, our model did not consider several clinical and

biological parameters and does not integrate symptoms, vitals, and

treatments, thus having a bias risk. Hematological and biochemical

biomarkers (e.g., procalcitonin, D-dimers, platelets, neutrophils,

lymphocytes, creatinine, urea, liver enzymes, and so on) may be

useful in our model. Our study suffers from missing data and a

small sample size due to its retrospective design, which reduces

model performance. This could also limit our study’s external

validity. Furthermore, well-designed and large-scale studies should

be conducted to highlight the use of ANN in COVID-19 patients

admitted to African hospitals.

5. Conclusion

In this study, we developed and tested ANN prediction models

for ICUmortality. The ANNmodel predicted COVID-19mortality

in the ICU with 71% accuracy, 83% precision, 100% F1 score,

100% MCC, and 88% recall. On the other hand, the RF model

had a 76% recall, an 87% precision, and a 65% MCC. The ANN

performed well except for precision, where the RF was the highest

by 5%. The ANN revealed that advanced age, PF1 and 2, FiO2,

severe symptoms, asthma, oxygen saturation, and cluster 4 were

all strongly predictive of mortality. The RF model revealed that

intubation status, age, cluster, diabetes, and hypertension were

the top five significant predictors of mortality. The association

of models is suitable for predicting the mortality risk of ICU

COVID-19 patients and maximizing the use of limited hospital

resources. This model could also automatically identify high-risk

patients as early as ICU admission, which could help allocate

limited resources to highly deserving individuals.
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