
TYPE Original Research

PUBLISHED 13 June 2023

DOI 10.3389/frai.2023.1201002

OPEN ACCESS

EDITED BY

Marie-Angélique Laporte,

Bioversity International, France

REVIEWED BY

Ashni Sedani,

Accenture, United Kingdom

Angela Kranz,

Helmholtz Association of German Research

Centres (HZ), Germany

*CORRESPONDENCE

Anne E. Thessen

annethessen@gmail.com

RECEIVED 05 April 2023

ACCEPTED 23 May 2023

PUBLISHED 13 June 2023

CITATION

Thessen AE, Cooper L, Swetnam TL, Hegde H,

Reese J, Elser J and Jaiswal P (2023) Using

knowledge graphs to infer gene expression in

plants. Front. Artif. Intell. 6:1201002.

doi: 10.3389/frai.2023.1201002

COPYRIGHT

© 2023 Thessen, Cooper, Swetnam, Hegde,

Reese, Elser and Jaiswal. This is an

open-access article distributed under the terms

of the Creative Commons Attribution License

(CC BY). The use, distribution or reproduction

in other forums is permitted, provided the

original author(s) and the copyright owner(s)

are credited and that the original publication in

this journal is cited, in accordance with

accepted academic practice. No use,

distribution or reproduction is permitted which

does not comply with these terms.

Using knowledge graphs to infer
gene expression in plants

Anne E. Thessen1*, Laurel Cooper 2, Tyson L. Swetnam 3,

Harshad Hegde 4, Justin Reese 4, Justin Elser 2 and

Pankaj Jaiswal 2

1Department of Biomedical Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO,

United States, 2Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR,

United States, 3BIO5 Institute, University of Arizona, Tucson, AZ, United States, 4Environmental Genomics

and Systems Biology Division, Berkeley Lab (DOE), Berkeley, CA, United States

Introduction: Climate change is already a�ecting ecosystems around the world

and forcing us to adapt to meet societal needs. The speed with which climate

change is progressing necessitates a massive scaling up of the number of species

with understood genotype-environment-phenotype (G×E×P) dynamics in order

to increase ecosystem and agriculture resilience. An important part of predicting

phenotype is understanding the complex gene regulatory networks present in

organisms. Previous work has demonstrated that knowledge about one species

can be applied to another using ontologically-supported knowledge bases that

exploit homologous structures and homologous genes. These types of structures

that can apply knowledge about one species to another have the potential to

enable the massive scaling up that is needed through in silico experimentation.

Methods: We developed one such structure, a knowledge graph (KG)

using information from Planteome and the EMBL-EBI Expression Atlas that

connects gene expression, molecular interactions, functions, and pathways to

homology-based gene annotations. Our preliminary analysis uses data from gene

expression studies in Arabidopsis thaliana and Populus trichocarpa plants exposed

to drought conditions.

Results: A graph query identified 16 pairs of homologous genes in these two

taxa, some of which show opposite patterns of gene expression in response to

drought. As expected, analysis of the upstream cis-regulatory region of these

genes revealed that homologs with similar expression behavior had conserved

cis-regulatory regions and potential interaction with similar trans-elements, unlike

homologs that changed their expression in opposite ways.

Discussion: This suggests that even though the homologous pairs share common

ancestry and functional roles, predicting expression and phenotype through

homology inference needs careful consideration of integrating cis and trans-

regulatory components in the curated and inferred knowledge graph.
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Introduction

Climate change is already affecting ecosystems around the world and forcing us to

explore ways to adapt to meet societal needs. This is particularly true in crop science where

researchers are working to identify and predict genes and their resulting phenotypes under

different environmental conditions in order to secure food production under a new climate

regime (Thudi et al., 2021; Tian et al., 2021). Understanding gene/phenotype/environment

relationships requires a large data set which can be difficult to collect, so most researchers

focus on a small number of heavily studied species. The speed with which climate change
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is progressing necessitates a massive scaling up of the number of

species with understood G/P/E dynamics. The research and the

knowledge gained in this area will also help human exploration

in space, where plants will play an important role (Barker

et al., 2023). Previous study has demonstrated that knowledge

about one species can be applied to another using ontologically

supported knowledgebases that exploit homologous structures and

orthologous genes (Naithani et al., 2020). These types of knowledge

structures that can apply knowledge about one species to another

have the potential to enable the massive scaling up that is needed.

An important part of predicting phenotype is understanding

the complex gene regulatory networks present in plants. This study

will focus on the promoter region, the 5′ cis-regulatory regions

of the homologs. This region is a portion of the DNA strand

that is “upstream” from the 5′ end of the gene’s coding start site

and provides selective binding sites for trans-acting factors such

as transcription factors, repressors, and activators that regulate

the expression of the gene (Liu et al., 1999). These regions are

just one element of the gene expression process. Studying the

expression of trans-acting factors is important for understanding

the spatiotemporal dynamics of molecular interactions that help

adapt or overcome stress. Resources such as the Gene Ontology

(The GO Consortium, 2021), Planteome (Cooper et al., 2018),

Plant Reactome (Naithani et al., 2020), and KnetMiner (Hassani-

Pak et al., 2021) contain much of what we know about gene

function, gene regulatory networks, and phenotypes in the form

of Gene X regulates Gene Y and Gene Y impacts phenotype Z,

but the contextual effect of environmental conditions under which

these interactions happen is almost always not included in the

annotations. Not all plants and their genes are characterized in

detail, but if it is included, the environmental context is usually

detailed only in the metadata. Investigations that use protein

domain identification and gene homology-based methods to infer

the functional role a gene carries out in a given species may

be overlooking the spatial and temporal dynamics of mRNA

expression that determines whether a gene product (protein) will be

present at the desired time and place to serve a molecular function.

The interactive nature of genes, environments, and phenotypes

requires a data structure that can represent qualitative relationships

(e.g., “has phenotype” or “regulates”) and integrate heterogeneous

data types in a single, queryable framework. One of these data

structures is a knowledge graph (KG) (Sheth et al., 2019).

A graph is made up of objects (nodes) and the relationships

(edges) between those objects and, in this context, represents what

we know about how biological and environmental entities (objects)

interact. Rather than store data in a table or database, a knowledge

graph stores the synthesized knowledge we gain from the data,

e.g., Gene X has phenotype Y. As more knowledge is added to

the graph, more complex queries, network analyses, and inferences

can be made. Important examples include the use of knowledge

graphs in rare disease diagnosis in humans (Zemojtel et al., 2014),

drug repurposing (Reese et al., 2021), improving cancer treatment

(Gogleva et al., 2022), and meta-analyses (Tiddi et al., 2020).

KGs used for translational science rarely contain environmental

exposures even though we know environmental conditions are an

important part of gene expression dynamics. The exact way to

model exposures in a KG is still under development (Chan et al.,

2023). A KG containing information about plant genomics and

phenomics under different environmental conditions can be used

to generate hypotheses in silico for targeting, thereby reducing the

number of in vivo experiments that need to be conducted, saving

time and resources.

This study examines gene expression patterns in response

to drought conditions in four plant species, such as Arabidopsis

thaliana, Zea mays, Sorghum bicolor, and Populus trichocarpa.

The central motivation of this study is to assess the feasibility

of using homologs to make predictions about gene expression in

multiple species.

Materials and methods

Data description

Planteome
The Planteome (https://planteome.org/) is a centralized web

portal with a suite of interrelated ontologies for plants and a

database of plant genomics data, annotated to the ontology terms

(Cooper et al., 2018). In the October 2020 release (version 4.0),

the Planteome database included approximately 60,000 ontology

terms and more than 3 million data objects, which are connected

to ontology terms through approximately 20 million associations.

The Planteome database has plant genomic information covering

125 plant taxa. The data available in the Planteome and annotated

with ontology terms, include plant gene expression data, traits,

phenotypes, genomes, and germplasm sources.

The ontologies developed in-house by the Planteome project

include the Plant Ontology (PO; Cooper et al., 2018; Walls

et al., 2019), which describes plant anatomical structures and

developmental stages, the Plant Trait Ontology (TO) for traits

and phenotypes, and the Plant Experimental Conditions Ontology

(PECO), which describes experimental conditions and plant

exposures. In addition to these, the Planteome hosts the

collaborator reference ontologies—the Gene Ontology (GO; The

GO Consortium, 2021), Phenotype and Trait Ontology (PATO;

Gkoutos et al., 2018), and also a number of species-specific trait

dictionaries developed by the Crop Ontology (CO; Shrestha et al.,

2010; Arnaud et al., 2020). In the current release, the Planetome

includes 11 of the CO trait dictionaries, mapped to the TO.

GO annotations were computationally generated for new

species using InParanoid and InterProScan (Shulaev et al., 2011;

Myburg et al., 2014). InParanoid was used to predict gene orthology

based on the Arabidopsis thaliana associations generated by TAIR

(Reiser et al., 2022). InterProScan was used to add GO annotations

to genes via inference by analyzing protein families and domain

mappings (Paysan-Lafosse et al., 2023).

EMBL-EBI expression atlas
The EMBL-EBI Expression Atlas (GXA) can be accessed

online and is part of the European Bioinformatics Institute

(Papatheodorou et al., 2020). It contains manually curated and

analyzed data from over 900 plant experiments that have been re-

analyzed using the latest versions of the reference plant genome
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assembly and annotations and by deploying a standardized analysis

workflow. Every experiment is fully documented with metadata

and provenance.

Gene expression data were downloaded as a table from

GXA after searching for desired species and environmental

conditions. Data were filtered to include only genes that had

statistically different gene expressions (p<0.05) compared

with a baseline that was <-1 or >1. Genes with positive

differential expression were annotated as having increased

expression. Genes with negative differential expression

were annotated as having decreased expression. The

tabulated data were annotated with additional ontology

terms where appropriate and made available in GitHub for

graph construction.

Creating the graph

The graph was created by combining data from Planteome,

the GXA, PO, TO, GO, and PECO using the tools available

at KG-Hub (Caufield et al., 2023). First, the data and mapping

files were downloaded from their respective data repositories.

GO-Basic and NCBI Tax-Slim were downloaded from the OBO

Foundry in javascript object notation (JSON) format. PO and

TO were downloaded from the OBO Foundry in owl format

and transformed to JSON using ROBOT (Jackson et al., 2019).

Data files containing information about Sorghum bicolor, Zea

mays, Oryza sativa, Populus trichocarpa, and Arabidopsis thaliana

were downloaded from Planteome servers in GAF format.

Data files containing differential gene expression data involving

Sorghum bicolor, Zea mays, Oryza sativa, Populus trichocarpa,

and Arabidopsis thaliana in drought and saline environments

were downloaded from the GXA. Several mapping files were

used to normalize gene and trait identifiers. Rice gene identifiers

were mapped to Oryza sativa v7.0 using the ID converter file

from the Rice Annotation Project Database (Ouyang et al., 2007;

Sakai et al., 2013). Maize gene identifiers were mapped to Zm-

B73-REFERENCE-NAM-5.0 assembly using a mapping file that

includes all B73 assembly versions and includes the DAGchainer

analysis which was obtained from MaizeGDB (Portwood et al.,

2019; EMBL-EBI). Poplar gene identifiers were mapped to the

reference genome using a mapping file from Gramene (Tello-

Ruiz et al., 2018). Sorghum gene names were normalized to

Sorghum bicolor v3.1.1 (McCormick et al., 2018). Plant traits

and phenotypes were annotated with TO terms using a look-up

dictionary file. Second, each of the data files was transformed into

standardized nodes and edges in a tsv file using custom scripts.

These scripts normalized gene and trait identifiers using ontologies

and the provided mapping files and annotated every entity with a

Biolink semantic type (Table 1), and relationships between entities

were described using Biolink predicates (Table 2). The graph was

assembled according to the Biolinkmodel, which provides standard

semantic types and relationships for biological entities (Unni et al.,

2022).

There was not enough overlapping expression data to include

O. sativa or saline environments in this analysis, but they were

included in the graph.

TABLE 1 Identifiers and Biolink semantic types assigned to elements of

the graph.

Biological element Identifier Biolink type

Plant part PO Anatomical entity

Growth stage PO Life stage

Plant trait TO Phenotypic feature

Zea mays gene Zm00001eb IDs Genomic entity

Sorghum bicolor gene Sobic IDs Genomic entity

Oryza sativa gene LOC_Os IDs Genomic entity

Populus trichocarpa gene POPTR IDs Genomic entity

Experimental condition PECO Environmental exposure

QTL Gramene IDs Genomic entity

Cultivar NCBITaxonomy Organismal entity

Taxon NCBITaxonomy Organism taxon

Cellular component GO Cellular component

Molecular function GO Molecular function

Biological process GO Biological process

Germplasm GRIN and IRIC IDs Organismal entity

TABLE 2 Edges and their Biolink predicates.

Subject entity Predicate type Object entity

Genomic entity In taxon Organism taxon

Genomic entity Active in Cellular component

Genomic entity Regulates Biological process

Genomic entity Enables Molecular function

Genomic entity Expressed in Anatomical entity

Genomic entity Expressed in Life stage

Genomic entity Has phenotype Phenotypic feature

Genomic entity Orthologous to Genomic entity

Organism taxon Has phenotype Phenotypic feature

Organismal entity In taxon Organism taxon

Organismal entity Has phenotype Phenotypic feature

Environmental exposure Increases expression of Genomic entity

Environmental exposure Decreases expression of Genomic entity

The third and final step merged the transformed tsv files into

a deduplicated list of nodes and edges in KGX format. The final

graph consisted of over 400,000 nodes and over 5,000,000 edges and

contained additional data from EOLTraitbank that was not used

in this study (Figure 1). Specific information about quantitative

and qualitative plant phenotypes was represented as an edge

property (Figure 2).

Querying the graph

The merged node file and edge file were uploaded into Neo4j

for exploration and query. A Cipher query (Box 1) was used
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FIGURE 1

Structure of the knowledge graph. Data are transformed using ontologies and the Biolink model to form a graph. Nodes (gray boxes) are labeled with

Biolink semantic type and edges (gray arrows) are labeled with Biolink predicate. Arrows indicate directionality.

TABLE 3 Gene expression in A. thaliana and P. trichocarpa homologous genes under drought conditions.

A. thaliana Gene∗ P. trichocarpa Gene∗ Gene function (from Planteome)

AT3G49960 ↓ POPTR_007G053400v3 ↑ Peroxidase activity, response to oxidative stress, heme binding

AT1G70710 ↓ POPTR_010G109200v3 ↓ Catalytic activity, hyrolase activity, carbohydrate metabolic process

AT1G10550 ↓ POPTR_014G115000v3 ↓ Xyloglucan metabolism, hyrolase activity, carbohydrate metabolic process, cell wall biogenesis

AT5G67400↓ POPTR_007G053400v3 ↑ Peroxidase activity, response to oxidative stress, heme binding, hydrogen peroxide catabolic process

AT5G23210 ↓ POPTR_005G091700v3 ↓ Proteolysis, serine-type carboxypeptidase activity

AT1G67750 ↓ POPTR_008G182200v3 ↓ Pectate lyase activity, metal ion binding

AT2G39530 ↓ POPTR_010G205300v3 ↑ iron/sulfur cluster binding

AT5G13140 ↓ POPTR_003G167100v3 ↓ Response to nematode, pectate lyase activity, metal ion binding

AT1G11580 ↓ POPTR_011G025400v3 ↑ Enzyme inhibitor activity, pectinesterase activity, cell wall modification, rRNA N-glycosylase activity, aspartyl

esterase activity, toxin activity, defense response

AT3G27400 ↓ POPTR_001G339500v3 ↑ Response to nematode, pectate lyase activity, metal ion binding

AT4G02330 ↓ POPTR_014G127000v3 ↑ Enzyme inhibitor activity, pectinesterase activity, cell wall modification, response to stress, aspartyl esterase

activity

AT5G20630 ↓ POPTR_006G142600v3 ↓ Manganese ion binding, nutrient reservoir activity

AT4G26260 ↑ POPTR_018G069700v3 ↓ Iron ion binding, inositol oxygenase activity, syncytium formation, L-ascorbic acid biosynthetic pathway

AT2G44990 ↑ POPTR_014G056800v3 ↓ Oxidoreductase activity, secondary shoot formation, carotene catabolic process, strigolactone biosynthetic

process, xanthophyll catabolic process, metal ion binding

AT1G70710 ↓ POPTR_010G109200v3 ↓ Cellulase activity, cell wall modification, hydrolase activity

AT1G12940 ↑ POPTR_015G081500v3 ↓ Transmembrane transport

∗↓ Indicates decreased expression and ↑ indicates increased expression.

to find all of the homologous genes that had been documented

to have differential gene expression in either a drought or

a saline environment (Supplementary material 1, 2). The saline

environment did not return overlapping data.

Genes returned from the query for the drought

environment were compared based on GO annotations

(Supplementary material 3), but this also did not give enough data

to make conclusions using PANTHER (Supplementary material 4).

Comparing promoter regions

We collected 5′-regulatory regions of the identified genes

(700–900 bp) using BioMart in the Gramene database (Spooner

et al., 2012) and searched for potential transcription factor-

binding sites using PlantPAN (Chow et al., 2016). Using these

data (Supplementary material 5), we created a matrix comparing

the occurrence of each transcription factor in the binding site
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of each gene pair and made note of which were or were not

held in common. We used ClustVis (Metsalu and Vilo, 2015) to

examine the similarity between the transcription factor-binding

sites for each of the Populus and Arabidopsis gene pairs using

PCA. A total of 12 transcription factor-binding sites (AT-Hook,

bHLH, C2H2, Dehydrin, Dof, GATA, Homeodomain, Myb/SANT,

NF-YB, TBP, Trihelix, and ZF-HD) were present in the promoter

FIGURE 2

Phenotype data in edge properties. Detailed phenotype information

was represented as a collection of edge properties that can

accommodate quantitative and qualitative phenotypes.

regions of all the genes studied and thus were removed from

clustering analysis. The same data were fed into Morpheus (Müller

et al., 2008) for hierarchical clustering performed with default

parameters using One minus Pearson’s correlation and complete

linkage methods on the TF-binding site annotations. Additional

similarity matrices were created using Pearson’s correlation metric

to separately examine the TF-binding site annotations for genes

with similar and contrasting expression profiles. The correlation

heatmap colors were adjusted for visualization purposes.

Data availability

Themerged KG data are hosted on the CyVerse DataCommons

(https://datacommons.cyverse.org/browse/iplant/home/shared/

genophenoenvo). The KG data are available for direct download

BOX 1 Cipher query.

MATCH (e {id:’PECO:0007404′})-[r]->(g),(g)-[q:‘biolink: orthologous_to‘]-

(h), (e {id:’PECO:0007404′})-[s]->(h) RETURN ∗

FIGURE 3

Clustering of Populus and Arabidopsis genes based on similarity of the transcription factor-binding sites in the promoter region - PCA. The Populus

genes from the di�erentially expressed homolog pairs (blue circles) clustered away from the other Populus (blue) and Arabidopsis (red) genes.

Di�erentially expressed genes are represented as circles and similarly expressed genes are represented as squares. Note that taxonomic di�erences

(blue and red ovals) do not explain the di�erences in gene expression. No scaling is applied to rows; SVD with imputation is used to calculate

principal components. X and Y axes show principal component 1 and principal component 2 that explain 25.1 and 9.5% of the total variance,

respectively. N = 29 data points.
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FIGURE 4

Similarity of the transcription factor-binding sites in the promoter region of Populus and Arabidopsis homologous gene pairs. Poplar (POPTR) and

Arabidopsis (AT) genes were grouped into their homolog pairs and whether they had similar or contrasting gene expression when exposed to

drought. This figure shows that the promoter regions of pairs with contrasting expressions were less similar (blue) and the promoter regions of pairs

with similar expressions were more similar (red).

or remote visualization via CyVerse WebDav service (https://

data.cyverse.org/dav-anon/iplant/commons/community_released/

genophenoenvo/kg/) using visualization software such as Neo4J.

The Python code used to create the graphs is publicly hosted on

GitHub (https://github.com/genophenoenvo/knowledge-graph).

The final merged KG includes two tab-separated value (tsv) files

which include the edges and nodes.

Results

The graph query returned 62 pairs of homologous genes from

Sorghum bicolor, Zea mays, Arabidopsis thaliana, and Populus

trichocarpa (Supplementary material 6), but only 16 pairs between

A. thaliana and P. trichocarpa had documented similar (8) and

differential (8) expressions in drought conditions (Table 3). All of
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FIGURE 5

Similarity of the transcription factor-binding sites in the promoter region of Populus and Arabidopsis genes grouped by their expression profile. Genes

that were similarly expressed in a drought treatment (A) had more similar promoter regions (red) than genes that were di�erentially expressed (B).

the genes with similarly expressed pairs had decreased expression.

Expression data for the 16 homologous pairs of A. thaliana and P.

trichocarpa came from two studies in GXA (de Simone et al., 2017;

Filichkin et al., 2018).

Based on the predicted transcription factor-binding sites in the

promoter regions, the Populus genes in the differentially expressed

homolog pairs cluster separately from the other Populus and

Arabidopsis genes (Figure 3). This difference is driven by a group of

11 transcription factor-binding sites that are absent in the promoter

regions of the subset of divergent Populus genes (RAV, MIKC,

NAM, G2-like, CPP, ARR-B, tify, TALE, NF-YC, ERF, and NF-YA).

The separation of these genes cannot be explained by the taxon or

the study providing the data (which overlaps the taxon).

There were seven Populus genes that clustered away from

the others. All but one (POPTR_014G056800v3 involved in

strigolactone biosynthesis) were hypothetical proteins (According

to Gramene). GO annotations for these genes clustered around

transporter activity, catabolic activity, response to stress, binding,

and catalytic activity. The 11 transcription factors absent in the

binding sites of the Populus genes include proteins involved in plant

stress response in Arabidopsis (According to UniProt).

A comparison of the promoter regions between homolog

pairs showed that homologs that were expressed similarly had

more similar promoter regions than pairs that were expressed

differentially (Figure 4).

Separate comparisons of the promoter regions from gene

pairs with contrasting expression profiles also show that gene

pairs with similar expression had more similar promoter regions

(Figure 5A) and gene pairs with contrasting expression had less

similar promoter regions (Figure 5B).

Discussion

This study shows that one can use in silico experiments to

predict gene expression in drought conditions using homologous

gene families in some species pairs but not all. This study supports

previous findings that in some cases, promoter regions evolve

separately from the coding region of the genes they regulate

(Tirosh et al., 2008). Thus, we can translate knowledge about

gene expression in one species to another, but we need to

include these dynamics in the data infrastructures we use to

make this translation, in this case, KGs. Many data structures

link a gene to a phenotype, trait, or disease without specific

expression information. The current representation of differential

gene expression links exposure to a chemical or a drug to the

increased or decreased expression of a specific gene in the context

of toxicology and drug development (Fecho et al., 2022; Unni et al.,

2022). Gene regulatory networks are represented as mini-networks

of genes that influence other genes (The GO Consortium, 2021),

but many of these networks are still unknown in plants. In the

short term, in silico KG experiments involving gene expression can

be improved by including empirically validated gene expression

patterns of homologs.

Gene regulatory networks in plants have been developed using

a combination of experimental and computational approaches

(Kulkarni and Vandepoele, 2020). Methods combining high-

throughput DNA sequencing (ChIP-seq) and expression data have

successfully revealed the detailed regulatory networks controlling

flowering (Chen et al., 2018) but are difficult to scale. Methods

such as ATAC-seq and DAP-seq are more scalable but only reveal

a partial picture of the regulatory network (O’Malley et al., 2016;
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Maher et al., 2018). KGs can be used to infer regulatory networks

at scale, but the quality is highly dependent on the data used to

build the KG. The advantage of applying a KG is the ability to

integrate incredibly heterogeneous data in a single graph, thus

modeling regulatory networks in their larger biological context.

An example of this application is the relatively new field of

“network medicine” that uses KGs to examine the progression of

disease (Silverman et al., 2020). The main disadvantage of KGs

in this application is that large amounts of computable data and

domain-specific knowledge models are needed to create a graph of

this type. Many disciplines do not have these resources available.

While KGs can infer gene regulatory networks, these networks

should always be confirmed using established experimental and

computational approaches.

These opposing gene expression patterns are not a concern

for researchers who are only interested in finding a list of genes

that are potentially important in a specific context. It is not

until one needs to generate hypotheses about the impact of

the environment on the biological function that more complex

graph representations become needed. If we are to incorporate

the effect of the environment, we need to know more than

that Gene X has phenotype Y. We need to know if the

environmental effect increases or decreases the expression of the

gene and the biological consequences of that change in expression.

In some cases, we may only know that an environment is

linked to a specific phenotype without knowing the underlying

mechanism. This information can still add useful knowledge

to the graph. In some cases, the graph itself can be used to

generate hypotheses about the interplay between genes, biological

processes, molecular functions, cellular components, and an

observed phenotype.

Despite having the graph available to quickly explore the data

and locate genes of interest, the workflow for comparing the

promoter regions required substantial manual intervention. In

this instance, we only had 16 gene pairs to explore, but scaling

up these types of analyses will require the ability to traverse

data annotated with gene identifiers and gene coordinates. Future

studies should include extending the graph model to include these

data types.

The semantic representation of the effect of environmental

exposure on gene expression is more straightforward for the

effects of a chemical or a substance, such as phenol or

rubber cement. Data can be collected in the laboratory using

model organisms, and the results added to the graph for

analysis and translational research. Everyday environmental

exposures are rarely this simple and frequently involve exposure

to many types of substances in different contexts, such as

climate or socioeconomic status. Future studies may need to

develop ontologies and semantic representations for these more

complex exposures.

Our observations support our hypothesis and justify the

extension of our KG to include TF-binding site annotations

and the actual TF genes, which are either known empirically or

are supported by co-expression network analysis. In future,

an investigation of conservation vs. non-conservation of

cis- and trans-regulatory regions of genes may improve the

understanding of interspecies and intraspecies responses to stress

and adaptation.
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Appendix

All supplementary files can be accessed in GitHub under

a CC-0 license (https://github.com/diatomsRcool/supplementary_

material/tree/main/promoter_region).

1. drought_expression.tsv

2. drought_genes.tsv

3. GO_annotations.tsv

4. panther_results folder

5. promoter_region_clustvis_data0.tsv

6. orthologous_genes.tsv

Clustvis analysis is at https://biit.cs.ut.ee/clustvis/?s=

IWJNurmUtGWZoMt.
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