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Introduction: Maternal health is a critical aspect of public health that a�ects the

wellbeing of both mothers and infants. Despite medical advancements, maternal

mortality rates remain high, particularly in developing countries. AI-based models

provide new ways to analyze and interpret medical data, which can ultimately

improve maternal and fetal health outcomes.

Methods: This study proposes a deep hybrid model for maternal health risk

classification in pregnancy, which utilizes the strengths of artificial neural networks

(ANN) and random forest (RF) algorithms. The proposed model combines the

two algorithms to improve the accuracy and e�ciency of risk classification in

pregnant women. The dataset used in this study consists of features such as age,

systolic and diastolic blood pressure, blood sugar, body temperature, and heart

rate. The dataset is divided into training and testing sets, with 75% of the data used

for training and 25% used for testing. The output of the ANN and RF classifier is

considered, and a maximum probability voting system selects the output with the

highest probability as the most correct.

Results: Performance is evaluated using various metrics, such as accuracy,

precision, recall, and F1 score. Results showed that the proposed model achieves

95% accuracy, 97% precision, 97% recall, and an F1 score of 0.97 on the

testing dataset.

Discussion: The deep hybrid model proposed in this study has the potential

to improve the accuracy and e�ciency of maternal health risk classification in

pregnancy, leading to better health outcomes for pregnant women and their

babies. Future research could explore the generalizability of this model to other

populations, incorporate unstructured medical data, and evaluate its feasibility for

clinical use.
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1. Introduction

Maternal health is a crucial aspect of public health as it directly

affects the wellbeing of both mother and child. Despite advances in

medical science, maternal mortality remains a significant problem

in many countries, particularly in developing nations (Olonade

et al., 2019; Musarandega et al., 2021). Maternal and childhood

mortality remains amajor global health concern and a key indicator

for the United Nations Sustainable Development Goal 3 (SDG 3).

According to the World Health Organization (WHO), about 810

pregnant women and 6,700 newborns die every day (WHO, 2019,

2020). Although, most of these mortalities are preventable. The

major causes of maternal mortality are preeclampsia/eclampsia,

postpartum hemorrhage, sepsis, and delivery complications (Say

et al., 2014; Sageer et al., 2019). Maternal Mortality is defined as

the annual number of female deaths from any cause related to or

aggravated by pregnancy or its management, excluding accidental

or incidental causes, during pregnancy and childbirth or within 42

days of termination of pregnancy, irrespective of the duration and

site of the pregnancy (WHO, 2017). In 2014, in anticipation of the

launch of the SDGs, the WHO released the Targets and strategies

for ending preventable maternal mortality (EPMM) which had

a target of reducing the Global Maternal Mortality Rate (MMR)

to <70% by 2030 (WHO, 2019). This highlights the WHO’s

commitment to improving maternal health worldwide.

Identifying high-risk pregnancies is a critical step in ensuring

maternal and fetal health, but it can be a challenging task

due to the complexity and variability of the factors involved.

Maternal health risk during pregnancy refers to the likelihood of

a woman experiencing adverse health outcomes during pregnancy

or childbirth. Pregnancy can be graded into low, moderate,

and high risk based on risk factors that have been shown to

contribute to the occurrence of pregnancy complications (Al-

Hindi et al., 2020). High-risk pregnancies can pose a risk of

perinatal complications to the mother such as preeclampsia,

gestational diabetes mellitus, and cesarean section delivery (Ben

Naftali et al., 2018); or to the offspring such as prematurity,

perinatal asphyxia, congenital anomalies and even cardiovascular

abnormalities in adulthood (Majella et al., 2019; Yoon, 2021).

These detrimental effects undoubtedly impose serious health risks

on both the mother and the fetus. Risk factors for adverse

maternal health outcomes during pregnancy can include a variety

of factors such as age, pre-existing medical conditions, lifestyle

factors, and socioeconomic status (Londero et al., 2019; Crear-Perry

et al., 2021). Consequently, women who are from disadvantaged

backgrounds or who lack access to quality healthcare services

may be at higher risk of adverse maternal health outcomes.

Identifying and managing maternal health risks during pregnancy

is critical to maternal health care. In addition, pregnant women

have continuously been excluded from most clinical trials, hence,

data on the efficacy and safety of medications in pregnancy

are often lacking (van der Graaf et al., 2018). Therefore, in

order to give precedence to the research interest of pregnant

women and enhance the development of secure and efficacious

diagnostic and therapeutic tools, it is crucial to focus on the

establishment of safe and non-invasive methodologies. Within this

context, the utilization of cutting-edge technologies would offer an

unparalleled approach, paving the way for innovative solutions in

this domain.

Healthcare providers use a variety of tools and assessments to

identify women who may be at high risk for adverse outcomes,

including medical history, physical exams, and laboratory tests.

A 39-item validated instrument was designed by the Alberta

perinatal health program in 2020 to categorize pregnant women

attending antenatal into high, moderate and low risk (Al-Hindi

et al., 2020). The system assigned weighted values to each of

these items and a calculated aggregate would determine the risk

category of the pregnant women. Unfavorable pregnancy outcomes

were higher among pregnant women categorized as high-risk,

while low-risk pregnancy had the least morbidities. Hence, early

identification of these risk factors, categorization of pregnant

women and management of pregnancy based on risk-level can play

a major role in improving outcomes and reducing maternal and

newborn mortalities.

In recent years, artificial intelligence (AI) has emerged as a

powerful tool in healthcare, offering new ways to analyze and

interpret complex medical data. AI-based models have shown

promising results in various clinical applications, including disease

diagnosis, treatment planning, and patient monitoring. AI-based

models can analyze vast amounts of health data, both structured

and unstructured, to identify patients who may be at high

risk for adverse outcomes. These models can help healthcare

providers make more accurate and timely decisions; and when

it refers to maternal health care in pregnancy, it can ultimately

improve maternal and fetal health outcomes. AI offers novel

approaches to prediction modeling, diagnosis as well as early

detection of pregnancies at risk (Ramakrishnan et al., 2021). A

study by Akazawa and Hashimoto (Akazawa and Hashimoto,

2022) evaluated the accuracy of AI in predicting preterm birth

in pregnancy, in a bid to increase preparedness and reduce

neonatal deaths. The common predictive values used were

electrohysterogram images, the metabolic panels in amniotic fluid

or maternal blood, obstetric ultrasound images of the cervix, and

biological profiles of mothers. Also, AI has been used in predicting

the onset of pregnancy conditions such as preeclampsia, and

gestational diabetes mellitus, and in the management of diseases

such as ectopic pregnancy (Abuelezz et al., 2022). Besides, there is a

growing acceptability of the usage of AI in clinical settings among

patients. In a recent study conducted by Armero, Gray (Armero

et al., 2022), 69% of pregnant women surveyed agreed to AI

usage in maternal healthcare delivery, although, level of education

and knowledge about AI were major factors that influenced the

women’s acceptability.

Furthermore, a 2019 study applied five advanced AI algorithms

(Neural network, SVM, Random forest, Adaboost, and Multi-

Layer Perceptron) to predict gestational diabetes from collected

clinical data (Shen et al., 2019). The Random forest algorithm

was found to be the best with a sensitivity of prediction of over

70%, outperforming doctors who solely rely on the fasting plasma

glucose criteria in low medical resource conditions. Accordingly,

the use of AI algorithms, such as Random Forest, can lead to

more accurate and earlier diagnosis of various maternal conditions

in pregnancy, in this case gestational diabetes, particularly in

low resource settings where access to medical professionals may
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be limited. This would result in improved treatment outcomes,

reduced burden on medical professionals, and potential cost

savings. However, there remains ethical considerations around

algorithmic bias, transparency, and patient autonomy which must

always be taken into consideration. In addition, a more recent

study by Kilicarslan, Celik (Kilicarslan et al., 2021) used hybrid

models; genetic algorithm and deep learning algorithms of Stacked

Autoencoder (SAE) and Convolutional Neural Network (CNN)

for the prediction of nutritional anemia, (iron deficiency anemia,

B12 deficiency anemia, and folate deficiency anemia), and patients

without anemia. The results showed that the proposed algorithm

performs better than previous studies with a 98.50% accuracy.

The widespread adoption of various machine learning (ML)

algorithms and deep learning (DL) frameworks in supervised

classification tasks can be attributed to their various advantages,

including high operability, the capacity to handle nonlinear

problems effectively, and the ability to circumvent data distribution

constraints (Hu et al., 2021). Artificial neural networks have

emerged as robust algorithms capable of modeling complex

nonlinear relationships between input and output variables,

and their application in healthcare decision-making has been

extensively documented (Shahid et al., 2019; Vanem et al., 2022).

Among the diverse ML classification techniques, the Random

Forest Classifier has been shown to outperform individual

classifiers with its high classification accuracy; similarly exhibiting

shorter training times compared to Decision Trees and Support

Vector Machines, making it a fast and efficient option (Parmar

et al., 2019). Additionally, it has the inherent ability to handle

noise effectively, thus mitigating the overfitting issue. These

advantageous characteristics have led to the growing popularity

of the Random Forest approach within the research community,

particularly for classification tasks.

Notably, more sophisticated frameworks known as

transformers have emerged in recent times, and can possibly

be re-engineered for supervised classification tasks with the

potential of better performance. However, transformers are often

highly computationally expensive and very time-consuming to

train (Brown et al., 2020). Thus, they are not always the most

suitable option.

Currently, one limitation of AI models is the use of small

dataset (Akazawa and Hashimoto, 2022). Also, while AI can pave

the way for novel findings in maternal health outcomes, AI without

societal acceptance and integration is insufficient for impacting

clinical care (Ramakrishnan et al., 2021). Thus, integrating AI tools

into the maternal clinical setting requires support from all: doctors,

statisticians, communities, organizations, engineers, governments,

and mothers. Essentially, by improving our understanding of

maternal health risk and utilizing advanced technologies such as

AI, we can work toward ensuring that all women have access

to safe and high-quality maternal health care, regardless of their

socioeconomic status or geographic location.

Hence, the objective of this study is to use a hybrid model that

integrates the predictive capabilities of traditional machine learning

(ML) and deep learning (DL) algorithms, utilizing the Random

Forest Classifier and Artificial Neural Network respectively, to

classify maternal health risks during pregnancy. This paper will

discuss the challenges in maternal health risk classification, the

potential of AI in addressing these challenges, and the development

of a deep hybrid model for maternal health risk classification.

2. Materials and methods

2.1. Data description and operating
environment

The maternal health risk dataset utilized in this study was

acquired from the University of California, Irvine (UCI) machine

learning repository (Ahmed et al., 2020). The data was originally

collected from different hospitals, community clinics and maternal

health care centers from the rural areas of Bangladesh; through an

IoT risk monitoring system. It was donated by Ahmed, Kashem

(Ahmed et al., 2020) on 31st December, 2020. The dataset contained

six predictive variables in pregnancy; Age (in years), Systolic Blood

Pressure (in mmHg), Diastolic Blood Pressure (in mmHg), Blood

Sugar (in mmol/L), Body Temperature (in degrees Fahrenheit) and

Heart Rate (in beats per minute). All of which were numerical

variables. A categorical target variable, Risk Level, was present

in three possible classes; high risk, mid risk and low risk. These

consequently totaled 7 variables in the whole dataset. There were

1,014 instances in the dataset; 406 samples of which were in the

low risk class, 336 samples were in the mid risk class, and 272

samples were in the high risk class, as shown in Figure 1. Further

feature statistics are shown in Table 1. There were no missing

values in the dataset. All samples with all of their features were

used in the model building and evaluation. All data manipulations,

model building and evaluations were performed in the python

programming language (version 3.8.3). Packages utilized include

pycaret (2.3.10), tensorflow (2.11.0), numpy (1.20.3), pandas

(1.5.2), sklearn (0.23.2).

2.2. Data pre-processing and analysis

The data file was saved in the comma separated value

(csv) format, and this facilitated easy reading into the python

script. The major preprocessing step carried out was coding the

target (categorical) variables into numerical variables to facilitate

computation. Low-risk, mid-risk and high-risk classes were coded

as 0, 1, and 2 respectively. In addition, the previous data statistics

indicated that the heart rate variable had a minimum value of 7,

which is not biologically plausible and may have resulted from

imputation error. Consequently, two data instances with this

outlier value were identified (both recorded as low-risk) and re-

imputed with the mode value of 70, before further analysis and

modeling. Subsequently, the correlation between variables was

examined, as depicted in Figure 2. The variable with the highest

correlation to the risk level was blood sugar, while the variable with

the lowest correlation was body temperature.

Further exploratory analysis, as illustrated in Figure 3A,

revealed several relationships between variables. Subjects over 50

years old with blood sugar levels above 15 mmol/L had a high-risk

density. Additionally, even if their body temperature was within

normal limits, subjects with blood sugar above 15 mmol/L were
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FIGURE 1

Distribution of dataset based on risk level. Figure shows the distribution of dataset based on risk level of subject—low risk, mid risk, and high risk.

TABLE 1 Description and statistical distribution of the dataset features.

Age Systolic BP Diastolic BP Blood sugar Body
temperature

Heart rate

Count 1014 1014 1014 1014 1014 1014

Mean 29.8718 13.1982 76.4605 8.7259 98.6650 74.3017

Std 13.4744 18.4039 13.8858 3.2935 1.3714 8.0887

Min 10.0000 70.0000 49.0000 6.0000 98.0000 7.0000

25% 19.0000 100.0000 65.0000 6.9000 98.0000 70.0000

50% 26.0000 120.0000 80.0000 8.0000 98.0000 76.0000

75% 39.0000 120.0000 90.0000 8.0000 98.0000 80.0000

Max 70.0000 160.0000 100.0000 19.0000 103.0000 90.0000

Table shows the statistical analysis of the age, systolic BP, diastolic BP, blood sugar, body temperature and heart rate variables.

more likely to be classified as high-risk. Conversely, subjects with

optimal blood sugar levels were likely to be classified as low-risk,

even with increasing age. The general distribution showed a high

low-risk density with low maternal age, peaking at 20 years; mid-

risk as maternal age increased, and a high high-risk density with

advanced maternal age, peaking at 35 years. The findings from the

exploratory analysis suggest that certain variables, such as blood

sugar levels and age, are associated with an increased risk of adverse

health outcomes.

Further analysis, as demonstrated in Figure 3B, indicated that

subjects with systolic blood pressure of 140 mmHg and above and

diastolic blood pressure of 90 mmHg and above were more likely

to be classified as high-risk. However, most subjects with optimal

heart rates (between 70 and 80 beats per minute) and low systolic

and diastolic blood pressure levels were classified as low-risk.

Furthermore, the data was randomly divided into training and

testing sets, with 75% and 25% of the data, respectively. To facilitate

data analysis, the Standard Scaler was applied to scale the data

(Pedregosa et al., 2011), with the aim of approximating the standard

normal distribution of the individual features. To compute the

standard score “z” of a sample “x”, the following formula is used:

z = (x − u)/s

Here, “u” represents the mean of the training samples, and “s”

represents the standard deviation of the training samples.

Subsequently, the training data was fitted and transformed

using this scaling tool, while the testing data was transformed only.

2.3. Model architecture

2.3.1. Artificial neural network
The ANN architecture used in this study had an input layer

with six neurons, two hidden layers with five and four neurons

respectively and an output layer with three neurons. The input layer
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FIGURE 2

Correlation between dataset variables. Figure shows the correlation between the dataset variables.

and the hidden layers utilized the Rectified Linear Unit (ReLU)

activation (Agarap, 2018), and the output layer used a softmax

activation function (Gao and Pavel, 2017). The connection weights

between the neurons were adjusted using an extended version of

the stochastic gradient algorithm, known as the “Adam Optimizer”

(Kingma and Ba, 2014). The loss function employed for parameter

estimation during model training was categorical cross-entropy.

2.3.2. Machine learning algorithm
The predictive abilities of various commonly used machine

learning algorithms were initially examined- including Random

Forest (RF) Classifier, Extra Trees Classifier, Light Gradient

Boosting Machine, Decision Tree Classifier, Gradient Boosting

Classifier, K Neighbors Classifier, Linear Discriminant Analysis,

Ridge Classifier, Quadratic Discriminant Analysis, Ada Boost

Classifier, Logistic Regression, Naive Bayes, Support Vector

Machines—Linear Kernel and Dummy Classifier. We compared

these different ML algorithms using the accuracy and the F1

score. The results are summarized in Table 2. The algorithm that

performed best according to these metrics was the Random Forest

Classifier. The architecture of the Random Forest comprised of 147

estimators with the gini criterion. This ensemble-based classifier

was subsequently selected for further training.

2.3.3. Training of the hybrid model
The ANN was trained on the training dataset for 400

epochs, while using the testing set simultaneously as a validation

comparison to allow for overfitting assessment only. The loss

and accuracy variables over the course of training the model are

represented in Figures 4A, B.

The Random Forest (RF) Classifier was similarly trained on

the same training dataset within the pycaret pipeline, 30% of the

training dataset held out in the pipeline as validation data to prevent

overfitting; a StratifiedKFold cross-validation was then conducted

for a fixed number of 10 iterations to create a robust model. The

model was then re-trained on the whole training data.

Afterwards, we merged these two classifiers into one

final hybrid model (MaternalNET-RF). The hybrid model

(MaternalNET-RF) utilized a maximum probability voting

technique, this is by looking at the predictions (classes and

probability values) of both the ANN and the RF classifier, it

subsequently selects and outputs whichever class had the highest

probability value regardless of difference in class predictions of

both classifiers. The preference for this probabilistic approach

stems from its demonstrated ability to offer simplicity and good

interpretability, as similar maximum likelihood ensembles have

shown in the past (Dembczyński et al., 2008). Additionally, since

only 2 classifier units were employed in this multi-class prediction

ensemble, the maximum probability voting technique capitalizes

on their distinct natures, to the advantage that they will not

commit the same errors (Leon et al., 2017). Thus, the result from

the more confident classifier is selected as most correct. The model

evaluation process included the utilization of a test set consisting

of 254 data instances, representing a 25% hold-out.

3. Results

We evaluated the performance of our proposed hybrid model

(MaternalNET-RF) on the following key metrics: Accuracy, Recall,

Precision, F1 Score, and Area Under the Curve (AUC) Score

(Bowers and Zhou, 2019; Powers, 2020). The findings from the
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FIGURE 3

Further exploratory analysis of the variables. (A) shows further exploratory analysis of relationships and distributions between age, blood sugar, body

temperature and risk levels. (B) shows further exploratory analysis of relationships and distributions between heart rate, systolic BP, diastolic BP, and

risk levels.

StratifiedKFold cross-validation of the RF classifier are provided in

Table 3, to showcase the utilization of the most robus model as an

integral component within the hybridmodel for testing. Our results

subsequently showed that the ANN and RF classifier each had

accuracy score of 0.7126 and 0.8858 respectively. This suggests that

in the consideration of single models, traditional machine learning

algorithms are better suited for this maternal health risk dataset, as

there is no clear advantage of artificial neural networks in this case.

An analysis of the detailed comparison of metrics between ANN,

RF, and MaternalNET-RF provided in Table 4 reveals that the ANN

performed below par in the classification of Mid Risk instances

specifically, with a F1 score of 0.4500. This could be due to the

small data size; thus, making proper generalization of the instance

difficult. However, the ANN had excellent recall of the Low Risk

instances with a recall score of 0.9000. The RF classifier was effective

in classification across the categories but similarly struggled with

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.1213436
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Togunwa et al. 10.3389/frai.2023.1213436

TABLE 2 Comparison of di�erent ML algorithms.

Model Accuracy AUC Recall Precision F1

Rf Random forest classifier 0.7608 0.9063 0.7688 0.7715 0.7620

Lightgbm Light gradient boosting machine 0.7552 0.8979 0.7646 0.7636 0.7651

Gbc Gradient boosting classifier 0.7553 0.8938 0.7621 0.7586 0.7542

Et Extra trees classifier 0.7533 0.9120 0.7598 0.7583 0.7529

Dt Decision tree classifier 0.7514 0.8526 0.7596 0.7544 0.7513

Knn K neighbors classifiers 0.6535 0.8299 0.6533 0.6622 0.6520

Lda Linear discriminant analysis 0.6440 0.7938 0.6347 0.6472 0.6367

Ridge Ridge classifier 0.6477 0.000 0.6361 0.6471 0.6289

Qda Quadratic discriminant analysis 0.6422 0.7990 0.6318 0.6534 0.6180

Lr Logistic regression 0.6270 0.7866 0.6211 0.6169 0.6110

Ada Ada boost classifier 0.6159 0.7562 0.5995 0.6355 0.6101

Svm SVM linear kernel 0.555 0.0000 0.5525 0.5849 0.5492

Nb Naïve Bayes 0.5932 0.7757 0.5756 0.5853 0.5472

Dummy Dummy classifier 0.3992 0.5000 0.3333 0.1594 0.2278

Shows the comparison between different ML algorithms using various performance metrics.

the Mid Risk class. This is demonstrated by a Mid Risk F1 score of

0.8500, which is the lowest F1 score among the three risk categories.

Overall, the hybrid model (MaternalNET-RF) performed

significantly better with an accuracy score of 0.9488. This increase

in accuracy could be attributed to the fact that both models

in the ensemble differ in the nature of their misclassifications,

consequently drawing on each’s distinctive nature; to the advantage

of one another, to provide the most correct classification. The

precision, recall and F1-score from our hybrid model ranged from

0.9300 to 0.9700.

The confusion matrix, illustrated in Figure 5, provides

valuable insights into MaternalNET-RF’s performance regarding

classification of instances into Low Risk, Mid Risk, and High

Risk. The analysis reveals that the model accurately predicted 96

instances as Low Risk, 79 instances as Mid Risk, and 66 instances

as High Risk. Of particular significance is MaternalNET-RF’s ability

to avoid misclassifying any Low Risk instance as High Risk. This

outcome is crucial, especially in real-world medical applications, as

misclassifying a Low Risk instance as High Risk could have severe

consequences. The model’s ability to avoid such errors indicate its

reliability and suitability for medical decision-making.

However, it should be noted that a few instances initially

labeled as Low Risk were misclassified as Mid Risk. This

misclassification might be attributed to the inherent non-

linearity of the data and the subtle overlap between the

characteristics of these two classes. Further insights and

detailed information regarding correct classifications and

misclassifications are provided in Figure 5. This allows for

a more thorough examination of the model’s performance,

aiding in the understanding of its strengths and weaknesses

in classifying instances into Low Risk, Mid Risk, and High

Risk categories.

4. Discussion

The classification of maternal health risk is an important
topic of discussion in the healthcare sector, particularly with

regard to the wellbeing of women during pregnancy. Despite

the availability of appropriate antenatal and postnatal care, some
pregnant and nursing mothers choose not to utilize these services

(Prasad et al., 2022). Various reasons have been identified for

this behavior, including cultural, hereditary, social, economic,

and political factors. In this regard, predictive AI tools such

as MaternalNET-RF can efficiently identify high-risk pregnant

women, allowing healthcare professionals to proactively intervene

and provide personalized support. Maintaining maternal health

remains crucial for the healthy development of the fetus during

pregnancy. It is essential to closely monitor maternal health for any

signs of disruption to normal bodily functions.

Common pregnancy complications such as hypertension or

high blood pressure can restrict blood flow to the placenta, leading

to inadequate nutrition for the fetus and increased risk of preterm

labor and pre-eclampsia (Dimitriadis et al., 2023). Additionally, the

weakened immune system of the mother during pregnancy makes

her susceptible to various infections and conditions that could

potentially harm the fetus (Amir et al., 2020). The implications

of these findings highlight the importance of regular antenatal

check-ups and timely management of any complications that may

arise during pregnancy to ensure the wellbeing of both the mother

and fetus. Undoubtedly, with proper pre-pregnancy, prenatal, and

postpartum care, many of these complications can be prevented or

treated. The growing popularity of emerging technologies such as

Artificial Intelligence (A.I) and Internet of Things (IoT) technology

has led to the development of smart IoT devices that can support

maternal health.
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FIGURE 4

Loss and accuracy variables. (A) shows a comparison of the loss and validation loss variables over the course of training the model. (B) shows a

comparison of the accuracy and validation accuracy variables over the course of training the model.

Our findings indicate that the model was successful with

an accuracy of 94.88%, a comparable result with other models

built on the same data in past literature (Ahmed and Kashem,

2020; Raza et al., 2022). Ahmed and Kashem (Ahmed and

Kashem, 2020) proposed a random forest model that achieved

an impressive accuracy of 96% after cross-validation. However,

further comparison could not be done as little is known about the

model’s architecture and hyperparameters. We would have loved to

further compare other crucial performance metrics for evaluating

the effectiveness of a multi-class prediction model; like precision,

recall, and F1 score, but they were omitted.

Similarly, Raza, Siddiqui (Raza et al., 2022) proposed an

architecture where a deep neural network and a decision tree

are utilized for feature engineering and the data is subsequently

predicted on several machine learningmodels, with Support Vector

Machines (SVM) algorithm emerging as the best performing

model, achieving an accuracy of 95% and an F1 score of 96%.

However, the accuracy of the model increased to about 98% after

data resampling was done using a data augmentation technique;

Synthetic Minority Over-Sampling Technique (SMOTE). The

use of data resampling techniques often improves a model’s

performance, but the limitation of this is that noise patterns may be

introduced to the data, which may lead to model bias (Saglam and

Cengiz, 2022). This difference in preprocessing techniques may be

attributed to the difference in our results.

Notably, we provided detailed information about the

model’s architecture and hyperparameters, which can aid in

reproducibility and generalization of our results. Additionally,
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we report precision, recall and F1 score in addition to accuracy,

which provides a more comprehensive evaluation of our

model’s performance. Furthermore, we did not use any

data resampling techniques, which can inadvertently lead to

model bias.

Our hybrid model (MaternalNET-RF) has important

implications for maternal health risk classification in clinical

practice. By accurately identifying high-risk patients, healthcare

providers can take preventative measures to reduce the likelihood

of complications and improve maternal and fetal outcomes.

This becomes even more important in low resource settings

without specialists or skilled healthcare workers as it could help in

predicting level of risk of pregnant women at antenatal. Invariably,

the model can aid in resource allocation and efficient use of

healthcare resources. Furthermore, due to the relative accessibility

of the variables used in building the model, it could be quite

possible that the model be incorporated into a web Application

Point Interface (API) or an offline standalone application where

TABLE 3 Stratified KFold cross-validation of the RF classifier.

Fold Accuracy AUC Recall Precision F1

0 0.7778 0.9108 0.7836 0.8006 0.7818

1 0.7358 0.9030 0.7401 0.7509 0.7406

2 0.8113 0.9249 0.8200 0.8255 0.8130

3 0.7547 0.9012 0.7619 0.7579 0.7560

4 0.8113 0.9382 0.8175 0.8155 0.8122

5 0.8302 0.9343 0.8386 0.8352 0.8321

6 0.6792 0.8868 0.6772 0.6844 0.6815

7 0.8113 0.9118 0.8228 0.8157 0.8045

8 0.7547 0.9228 0.7698 0.7515 0.7517

9 0.6604 0.8413 0.6701 0.6769 0.6643

Mean 0.7627 0.9075 0.7702 0.7714 0.7638

Standard
deviation

0.0540 0.0267 0.0565 0.0541 0.0537

Shows the complete 10-iteration StratifiedKFold cross-validation for the RF classifier.

the pregnant women can easily utilize from the comfort of

their homes.

The high accuracy of the model suggests that an ensemble

of deep learning and machine learning models has the potential

to be useful tools in maternal health risk classification. However,

our study is limited by the fact that the original author of the

dataset did not furnish any explicit inclusion and exclusion criteria

used in recruiting the participants. Consequently, variables such

as blood group and genotype, history of chronic diseases, history

of familial diseases, and infections that have the potential to

influence maternal health outcomes could not be accounted for and

thoroughly examined. Furthermore, the study was conducted on

a small dataset, collected singly in the rural areas of Bangladesh.

This might bias the model’s ability to generalize, especially

when it comes to its utilization on a global population or

among Africans.

5. Recommendations

Future research should aim to collect more data and

test the generalizability of our model on diverse populations.

Various other suitable ensemble techniques can as well be

explored, and the differences in metrics, and computational

efficiency be compared. Moreover, there could also be the

incorporation of other easily accessible variables not utilized in

this study; such as packed cell volume, medication use, and

vaccination history. Additionally, future research can leverage

unstructured data such as text or images, in addition to

structured variables used in this study. This allows more

optimization and even better maternal health risk classification

in pregnancy.

6. Conclusion

In conclusion, our study developed a novel deep hybrid

model (MaternalNET-RF) for maternal health risk classification

that achieved high accuracy and performed comparably to

previous models. The model has important implications for

TABLE 4 Performance comparison of ANN, RF classifier, and MaternalNET-RF.

Model Classes Precision Recall F1 Score AUC Accuracy

ANN Low risk 0.6500 0.9000 0.7600 0.7784 0.7126

Mid risk 0.6600 0.3500 0.4500

High risk 0.8700 0.8800 0.8800

RF classifier Low risk 0.9000 0.4100 0.9100 0.9133 0.8858

Mid risk 0.8600 0.8500 0.8500

High risk 0.9000 0.9000 0.9000

MaternalNET-RF Low risk 0.9500 0.9400 0.9500 0.9622 0.9488

Mid risk 0.9300 0.9400 0.9300

High risk 0.9700 0.9700 0.9700

Shows an analysis of the detailed comparison of metrics between ANN, RF, and MaternalNET-RF.
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FIGURE 5

Confusion matrix of the model’s predictions. Figure shows the confusion matrix with distribution of correct and incorrect predictions across risk

categories.

clinical practice, and our findings suggest the ensemble technique

of deep learning and machine learning models can be useful

tools for maternal health risk classification. Future research

is needed to confirm the generalizability of our findings and

to optimize the use of structured and unstructured data in

these models.
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