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Human language is characterized by complex structural features, such as the

hierarchical combination of words to form sentences. Although other animals

use communication systems, empirical evidence of hierarchical structures is

rare. Computational studies of language evolution have suggested that cultural

transmission plays a key role in the emergence of structural features in human

languages, including hierarchy. While the previous study demonstrated the

emergence of hierarchical structures in non-linguistic systems, we argue that their

laboratory studymay have overestimated the role of cultural transmission because

of a lack of appropriate controls and analyses. To directly test the e�ect of cultural

transmission, we conducted an experiment with no cultural transmission as a

control (individual condition) in addition to replicating the previous transmission

experiment (transmission condition). Our study has added a quantitative analysis

of the hierarchical depth. We found that sequences became more structured

as the number of generations increased; however, those produced under the

transmission condition were more structured than those under the individual

condition. These findings suggest that cultural transmission plays an important

role in the emergence of hierarchical structures, which cannot be explained by

increased learnability alone. The emergence of complex structural properties in

human culture, such as language, technology, and music, may have resulted from

information transmission processes between di�erent individuals. In conclusion,

this study provides evidence of the crucial role of cultural transmission in the

emergence of hierarchical structures in non-linguistic communication systems.

Our results contribute to the ongoing debate on the origins of human language

and the emergence of complex cultural artifacts. The results of this study have

implications for the study of cultural evolution and the role of transmission in

shaping the emergence of structural features across diverse domains.
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cultural transmission, cumulative cultural evolution, emergent property, hierarchical
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1 Introduction

The most remarkable feature of human language is its

systematic structure. For example, human languages generate

words, phrases, and sentences by merging morphemes, words,

and phrases, respectively. Through the recursive merging of sub-

elements, human languages express meanings that cannot be

transmitted merely by listing the sub-elements (Tamariz and Kirby,

2015; Fujita, 2017). Animals other than humans have rarely been

reported to use hierarchical signals to communicate with others

(Hauser et al., 2002; Fitch and Hauser, 2004; but see also Suzuki

et al., 2020). In humans, not only language, but also other cultures,

such as music and stone toolmaking, have hierarchical structures

similar to language (Stout, 2011; Asano and Boeckx, 2015; Asano,

2022) and the ability to generate hierarchical structures may

contribute to the production of various solutions (Toya and

Hashimoto, 2018).

Computational evolutionary linguists argue that language

structure is an emergent property of the iterative process of learning

from and transmitting to others (Kirby et al., 2007). Researchers

have used an iterated learning approach to demonstrate the

cumulative cultural evolution of language structures (Kirby et al.,

2008). Iterated learning is designed to replicate the process of

language transmission from parents to children. When children

learn language from adult utterances, they are not explicitly

taught systematic grammatical rules but are given a limited set

of utterances. Children infer grammatical rules from a limited set

of adult utterances and speak based on these inferences (Hsu and

Griffiths, 2016). As children grow up, the next generation receives

and infers language from the previous generation. Many studies

applying iterated learning to computational models and laboratory

experiments have shown that random sequences of characters

(artificial languages) gradually become learnable through learning

and transmission processes between generations, resulting in a

systematically structured language (Brighton et al., 2005; Kirby

et al., 2007). Thus human language may have evolved culturally

such that children can learn language from limited examples.

However, the language structures that emerge in the laboratory

are heavily influenced by the experimental framework and the

participants’ prior language biases (Kirby, 2017). The participants

were informed that the goal of learning was language. They

were shown many alphabetic sequences and were asked to recall

them after learning. Of course, they learn natural language

through a systematic structure. Thus, they were able to apply

their natural language structure to the experimental task, and the

structures that emerged in the laboratory could be artifacts of

the participants’ intentional design. However, the emergence of

a systematic structure can be explained as a general property of

iterated learning, and not just a language bias. Human cultures

other than language have hierarchical structures similar to those

of language, as discussed above (Stout, 2011; Asano and Boeckx,

2015; Asano, 2022). Cornish et al. designed an iterated learning

experiment using a non-linguistic task (Cornish et al., 2013).

They developed a task based on the Simon Game, an electronic

game for children. The participants were asked to remember the

order of the flashed color sequence on a tablet device and to

reproduce the sequence immediately after it was displayed. One

participant remembered and reproduced the 60 sequences, which

were transmitted to a next-generation participant following the

iterated learning paradigm. As a result of ten generations of iterated

learning, randomly ordered sequences (seed sequences) gradually

became learnable and structured. Although their study lacked the

appropriate control condition and a quantitative analysis of the

hierarchical structure, it had several implications. Their findings

suggest that the cultural selection of learnability generally leads

to the emergence of a systematic structure. In other words, the

emergence of systematic structures such as hierarchies in human

culture could be explained by a single common process.

Given the important implications of Cornish et al. (2013)

regarding the cumulative cultural evolution of a systematic

structure, improving their experimental design and analysis is

valuable. To test the validity of the argument that systematic

structures emerge through iterated learning, we modified the work

of Cornish et al. (2013). Two major changes were introduced.

First, we added a control condition with no cultural transmission

(individual condition). To assess the contribution of cultural

transmission beyond individual cognitive processes, we compared

the individual condition with the transmission condition by

replicating the work of Cornish et al. (2013). The procedure

for cultural transmission was identical to Cornish’s experiments.

Second, we added a quantitative analysis of the emergence of the

hierarchical structure. Previous studies qualitatively analyzed the

structures that emerged in their experiments and found hierarchical

structures. We applied grammar compression algorithms to extract

the depth of the hierarchy from the sequences. If the cumulative

cultural evolution of a structure is a general phenomenon, not

only language but also cultural transmission contributes to the

emergence of structures in sequences.

2 Methods

We confirmed the robustness of our findings by conducting two

experiments using slightly different procedures. Unless otherwise

stated, the methods used in the two experiments were identical.

2.1 Participants

2.1.1 Experiment 1
A total of 120 undergraduate and graduate students from

Hokkaido University (36 female, 84 male; mean age 20.00 years,

age range 18–23) were recruited. One hundred participants were

assigned to the transmission condition and 20 to the individual

condition; each participant experienced only one condition.

2.1.2 Experiment 2
A total of 180 undergraduate and graduate students at

Hokkaido University (74 female, 106 male; mean age 20.55 years,

age range 18–23) were recruited. A total of 150 participants were

assigned to the transmission condition and 30 to the individual

condition; the participants experienced only one of the conditions.
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2.2 Task

In this experiment, participants performed the Simon Game

task (Cornish et al., 2013), which required them to memorize

a sequence of stimuli that combined four colors (Figure 1).

Participants tapped the “start” button on a tablet and were

presented with a sequence of four colors (red, green, yellow, and

blue) that flashed in sequence. The length of all the presented

stimulus sequences was 12. After the presentation, the participants

were asked to reproduce the sequence in the order presented by

tapping the corresponding color fields on the tablet. Once tapped,

participants could not go back, and after a total of 12 taps, a

“Done” button appeared. After tapping the “Done” button, the

correct rate of the sequence reproduced by the participant (details

for calculation described below) was presented. The process from

presenting the sequence to displaying feedback at the correct rate

is one trial. Participants could proceed to the next trial by tapping

the “Start” button again. The experimental task was created using

Visual Basic 2017 (version 15.0) software.

2.3 Procedure

Participants worked on the tasks individually while seated in

separate booths. In the iterated learning experiments, after the first

participant completes the task, the second participant receives the

output of the first participant and works on the task. In experiments

that replicate cultural transmission, the first participant is called

the first generation of participants, and a sequence of participants

is called a (transmission) chain. Each transmission chain can be

considered a different society or social group in which a unique

culture evolves independently. The transmission condition was

a replication of Cornish et al. (2013), who used an iterated

learning design to simulate intergenerational cultural transmission

in the laboratory (Figure 2). Under this condition, each participant

completed a 60-trial task, with the first generation receiving a

randomly generated stimulus sequence. Subsequent generations

were presented with 60 stimulus sequences generated by the

previous generation of participants who completed the task. The

participants were not informed that the stimulus sequences were

generated by other participants. Ten chains of ten transmission

generations were used in this experiment.

The participants in the individual condition completed a total

of 300 trials, that is, 30 trials per generation for 10 generations.

In the first 30 trials of this condition, the participants were

presented with 30 randomly selected stimulus sequences from the

60 sequences presented to the first generation in the transmission

condition and reproduced them. For trials 31–60, the participants

were presented with the sequences they had reproduced in trials

1–30. Similarly, every 30 trials, participants were presented with

the stimulus sequences they generated in the previous 30 trials

so that each participant in the individual condition completed 10

generations of the task. Participants in the individual condition

were not informed that they would be presented with their

own stimulus sequences. To prevent participants from noticing

this manipulation, they were instructed to take breaks of at

least 10 seconds after every 50 trials. The post-trial questionnaire

responses showed that none of the participants were aware that

they were being presented with their own stimulus sequences.

To ensure that the number of stimulus sequences per generation

was equal across all chains and conditions, we set the number of

sequences per generation to 30 in the individual condition and ran

the experiment with 20 chains, which was twice the number used in

the transmission condition. In both conditions, the order in which

the stimulus sequences were presented was counterbalanced across

the transmission chains and generations.

The reward amounts were based on the participants’

performance and calculated from the average percentage of correct

responses across all tasks. Because participants in the individual

condition neededmore time to complete the task, we decided to use

two different pay scales for the two conditions in order to keep the

hourly pay comparable. In the transmission condition, participants

were paid 120 JPY (approximately 0.8 EUR/0.9 USD) per 10%

average correct response rate, with a minimum compensation

of 120 JPY for an average correct response rate of 0–10%, and a

maximum of 1,200 JPY for an average correct response rate of

91–100%. Similarly, the individual condition paid 450 JPY per 10%

average correct response rate, with a minimum of 450 JPY for an

average correct response rate of 0–10%, and a maximum of 4,500

JPY for an average correct response rate of 91–100%.

In Experiment 1, the order of presentation of the stimulus

sequences was fixed across chains and generations. In the individual

condition, the stimulus sequence that the participant reproduced in

the first trial of the first generation was presented in the first trial

of the second generation (Trial 31), and the stimulus sequence that

the participant reproduced in the second trial of the first generation

was presented in the second trial of the second generation (Trial

32). In Experiment 2, the order in which the stimulus sequences

were presented was randomized and modified to differ between

generations and transmission chains.

2.4 Analysis

For quantitative analysis, four-color sequences were converted

into strings. Each color, red, green, blue, and yellow, was converted

to “r,” “g,” “b,” and “y” string data, respectively. We measured

the same dependent variables as in Cornish et al. (2013): the

accuracy of reproduction, compression ratio for structure, and

diversity of sequences across transmission chains. While Cornish

et al. (2013) performed a qualitative analysis of hierarchical

structures, we applied a grammatical compression algorithm to

quantitatively analyze the depth of the hierarchy. To examine the

effect of cultural transmission on each measure, two multilevel

Bayesian (beta regression) models were constructed. In Model 1,

the dependent variable was each measure (accuracy, compression

ratio, depth of hierarchy, or diversity), the independent variables

were condition (0: transmission condition, 1: individual condition)

and generation, and the random intercepts were the transmission

chain number and stimulus sequence number. In Model 2, the

interaction between the condition and generation was added to

Model 1 as an independent variable. All models were analyzed using

the rethinking package (McElreath, 2020) ver. 2.31 (https://github.

com/rmcelreath/rethinking). Results were evaluated by analyzing
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FIGURE 1

Sample screenshot of the experiment. (A) Is the screen where the participant tapped to reproduce a sequence. (B) Is a screen with feedback on the

accuracy of reproduction. English translations of the labels are added.

FIGURE 2

Graphical representations of the two conditions. Transmission condition: Generation 1 participant learned the sequence order and were asked to

reproduce it. The number of trials of the task was 60 per generation, and di�erent sequences were presented between trials. Sequences reproduced

by the Generation 1 participant were transmitted to the Generation 2 participant as a learning set. This learning and transmission procedure continued

until Generation 10. Individual condition: The same participants were assigned to all generations, so there was no actual generational change. The

number of trials of the task was 30 per generation. The sequences reproduced by the participant in the first 30 trials (Generation 1) were presented to

the same participant in the next 30 trials (Generation 2). This procedure continued until Generation 10 (i.e., participants worked on 300 trials).

the effects of the variables, and checking the adequacy of the

analytical model; each model was evaluated in terms of the

estimated parameter values and 89% credible intervals, model

comparison using WAIC, and posterior predictive distribution.

We checked whether the 89% credible intervals of the model

parameters did not cross zero. A total of 89% credible intervals

are the default in the Rethinking package and are used to

prevent researchers from inadvertently confusing the results with

null hypothesis significance tests (McElreath, 2020). For model

comparisons, we compared the WAIC value of the models. Lower

WAIC value indicates that it was considered a better model.

Following McElreath (2020), we evaluate the effect of variables

by combining these two criteria. Posterior predictive distributions

include uncertainty in the estimated parameter, uncertainty in the

prediction, and checking the posterior predictive distributions is

useful for verifying the adequacy of the statistical model. See the

Supplementary material for details on the model formulae used in

each analysis.

2.4.1 Accuracy
Cornish et al. (2013) reported that the participants’ accuracy

gradually increased across generations in their transmission chains.

To measure the accuracy, we calculated the normalized edit

distance between sequences (Levenshtein, 1966). The edit distance

between two sequences is the minimum number of changes, that is,
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insertions, deletions, or substitutions. For example, the string ABC

can be converted into anADCDby replacing BwithD and inserting

D at the end of the string. In other words, the editing distance is 2.

In this study, we calculated the standardized edit distance,

which is the edit distance divided by the maximum length of the

string, and the value 1- standardized edit distance was used as the

accuracy measure. If the sequence reproduced by the participant

perfectly aligned with the presented sequence, the accuracy took

the maximum value of 1. During the experimental task, accuracy

was expressed as a percentage (rounded down to the nearest whole

number) and fed back to the participants.

2.4.2 Compression ratio
Cornish et al. (2013) measured the compression ratio of a

sequence as an indicator of the structure. We used GZIP to

compress the text file stored in each sequence and calculated

the compression ratio (file size after compression/file size before

compression). If the distribution of strings is skewed, such as

repetition of some chunks (e.g., “rgb-rgb-rgb-rgb”), the text file is

compressed smaller. In other words, a smaller value indicates that

the sequence has a non-random structure. Note that compression

ratio is an indirect indicator of the structure and cannot identify the

type of structure.

2.4.3 Depth of hierarchy
Cornish et al. (2013) reported that hierarchical structures

emerged in sequences consisting of several chunks, such as

“[ry]-[ry]-[rbyg]-[rbyg],” as a result of 10 generations of cultural

transmission. This suggests the possibility of the cumulative

cultural evolution of hierarchical structures. In this study, we

conducted a new analysis using a grammar-compression algorithm

to quantitatively evaluate the cumulative cultural evolution of

hierarchical structures. To extract the hierarchical structure within

sequences, we used “sequitur,” a grammar compression algorithm

(Nevill-Manning and Witten, 1997). “Sequitur” repeats the process

of assigning a new string to the pattern of two adjacent characters in

the target string, replacing it with a shorter string with a hierarchical

structure. In this study, we measured the depth of the hierarchical

structure extracted by “sequitur.”

2.4.4 Diversity
Cornish et al. (2013) found that the transmission of stimulus

sequences increased the diversity among the transmission chains

as generations progressed, and that different structures emerged

for each chain. To measure diversity, we calculated the within-

chain and across-chain similarities of sequences using edit distance

and accuracy. Within-chain similarity is the average similarity of

reproduced sequences from a participant in a chain. Across-chain

similarity is the average similarity between reproduced sequences

from one participant in a chain and reproduced sequences from

other chains of participants of the same generation. Diversity was

calculated as [within-chain similarity]/[within-chain similarity +

across-chain similarity] and ranged from 0 to 1. A diversity value

>0.5 indicates that the within-chain similarity is relatively higher

than the across-chain similarity, i.e., the diversity between chains

is higher.

3 Results of Experiment 1

3.1 Accuracy

We examined whether accuracy increased across generations

in the transmission condition, a replication of Cornish et al. (2013);

whether accuracy also increased in our individual condition; and

whether there were differences in the rate of increase across

conditions. Figure 3 shows the mean accuracy values and 95%

confidence intervals (calculated on 1,000 bootstrap samples using

the Python seaborn package ver. 0.11.2) under each condition

and generation. In both conditions, the accuracy increased as the

number of generations increased.

Model 2, which included an interaction term, showed a

smaller WAIC (−83,932.82) than Model 1, which did not include

an interaction term (WAIC = −83,912.29), indicating a higher

predictive power. The difference in the WAIC between the two

models was 20.53 (dSE = 10.62), which is sufficiently large. The

Bayesian estimation results forModel 2 (Table 1) show that the 89%

confidence intervals for the condition, generation, and interaction

terms did not include 0 (condition: β = 0.51, CI = [0.24, 0.77];

generation: β = 0.16, CI = [0.15, 0.17]; interaction: β = 0.04, CI

= [0.02, 0.05]). That is, the accuracy improved with each successive

generation in both conditions, but the improvement was greater in

the individual condition.

The posterior predictive distribution for Model 2 with

interactions is shown in Figure 4, where the rows indicate

generations (1–10) and the columns indicate conditions (0:

transmission condition, 1: individual condition). The horizontal

and vertical axes of each plot indicate accuracy and frequency,

respectively. The distribution of posterior predictions for the first

generation shows that the transmission condition is slightly more

accurate than the individual condition, but there is not much

difference. As generations progressed, both conditions became

more accurate, but the individual conditions showed higher values.

For example, in the 10th generation, the mode of the histogram

in the individual condition was 0.95, while it was <0.9 in the

transmission condition.

3.2 Compression ratio

We examined whether compression ratio decreased across

generations in the transmission condition, a replication of

Cornish et al. (2013); whether compression ratio also decreased

in our individual condition; and whether there were differences

in the rate of decrease across conditions. Figure 5 shows

the mean compression ratio values and 95% confidence

intervals under each condition and generation. Under both

conditions, the compression ratio decreased as the number of

generations increased.

Model 2, which included an interaction term, showed a

smaller WAIC (−14,641.87) compared to Model 1, which

did not include an interaction term (WAIC = −14,602.55),
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FIGURE 3

Changes in mean accuracy (10 chains in transmission chain; 20 chains in individual condition) over the course of ten generations in Experiment 1.

TABLE 1 Bayesian estimated values for Model 2 (with interaction) with accuracy in Experiment 1 as dependent variable.

β Std Lower 0.89 Upper 0.89 n_e� Rhat

Intercept 0.67 0.14 0.45 0.88 3,244.10 1.00

Condition 0.51 0.17 0.24 0.77 2,785.34 1.00

Generation 0.16 0.01 0.15 0.17 28,368.87 1.00

Interaction 0.04 0.01 0.02 0.05 27,973.73 1.00

indicating a greater predictive power. The difference in

WAIC between the two models was 39.32 (dSE = 16.58),

which is sufficiently large. The Bayesian estimation results

in Model 2 (Table 2) show that the 89% confidence intervals

for the generation and interaction terms did not include 0

(generation: β = −0.06, CI = [−0.07, −0.06]; interaction: β

= 0.02, CI = [0.02, 0.03]). In other words, the compression

ratio decreased with increasing generations under both

conditions; however, the degree of decrease was greater under the

transmission condition.

The posterior predictive distribution of the model with

interactions is shown in Figure 6. The rows in the figure

indicate generations (1–10) and the columns indicate conditions

(0: transmission condition, 1: individual condition). The

vertical axis of each graph shows the frequency, and the

horizontal axis represents the compression ratio. There was

no clear difference in the posterior predictive distribution

of the compression ratios in the first generation. As the

generation progressed, the compression ratio decreased in

both conditions, but less so in the transmission condition. For

example, in the 10th generation, the mode of the histogram

for the individual condition was 0.65, while it was 0.55 in the

transmission condition.

3.3 Depth of hierarchy

Cornish et al. (2013) qualitatively analyzed the emergence of

hierarchical structures, whereas we quantitatively analyzed their

depth. We examined whether the depth of the hierarchy increased

across generations in both conditions, and whether there were

differences in the rate of increase across conditions. Figure 7 shows

the mean depth of the hierarchy and 95% confidence intervals

under each condition and generation. Under both conditions, the

depth of the hierarchy increases with the number of generations.

The WAIC (34,171.12) for Model 2 with the interaction

included was smaller than the WAIC (34,172.46) for Model 1

without the interaction, indicating greater predictive power. The

difference in WAIC between the two models was 1.33 (dSE =

1.83), a small difference. The Bayesian estimation results for Model

2 (Table 3) showed that the 89% confidence intervals for the

generation and interaction terms did not include zero (generation:

β = 0.03, CI = [0.02, 0.04]; interaction: β = −0.01, CI =

[−0.01, −0.00]). In other words, the hierarchy becomes deeper

as generations progress in both conditions but more so in the

transmission condition.

The posterior predictive distribution for the model with

interactions is shown in Figure 8. The rows in the figure indicate
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FIGURE 4

Accuracy predicted from posterior distribution in Experiment 1. The left column shows the transmission condition, and the right column shows the

individual condition. Rows indicate generations.

generations (1–10) and the columns indicate conditions (0:

transmission condition, 1: individual condition). The vertical axis

of each plot indicates the frequency, and the horizontal axis

indicates the depth of the hierarchy. The posterior predictive

distribution of the hierarchy depth in the first generation showed

little difference. As the generations progress, the hierarchy becomes

deeper under both conditions, but the transmission condition

shows a greater increase. For example, in the 10th generation, the

mode of the histogram for the individual condition was 1, while it

was 2 in the transmission condition.

3.4 Diversity

We examined whether diversity increased across generations in

the transmission condition, a replication of Cornish et al. (2013);

whether diversity also increased in our individual condition;

and whether there were differences in the rate of decrease

across conditions. Figure 9 shows the mean diversity values and

95% confidence intervals under each condition and generation.

Under both conditions, the diversity increased as the number of

generations increased.
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FIGURE 5

Changes in mean compression ratio (10 chains in transmission chain; 20 chains in individual condition) over the course of ten generations in

Experiment 1.

TABLE 2 Bayesian estimated values for Model 2 (with interaction) with compression ratio in Experiment 1 as dependent variable.

β Std Lower 0.89 Upper 0.89 n_e� Rhat

Intercept 0.66 0.08 0.52 0.79 5,251.99 1.00

Condition −0.04 0.10 −0.20 0.12 4,707.90 1.00

Generation −0.06 0.00 −0.07 −0.06 56,584.82 1.00

Interaction 0.02 0.00 0.02 0.03 60,522.84 1.00

The WAIC (−2,309.741) for Model 2 with the interaction

included was smaller than the WAIC (−2,304.816) for Model

1 without the interaction, indicating greater predictive power.

The difference in the WAIC between the two models was

4.92 (dSE = 5.70), which is not sufficiently large. The

Bayesian estimation results for Model 2 (Table 4) showed

that the 89% confidence intervals for the generation and

interaction terms did not include zero, but the estimates for

the interaction term were very close to zero (generation: β =

0.001, CI = [0.001, 0.002]; interaction: β = 0.000, CI = [0.000,

0.001]). In other words, diversity increased with increasing

generations under both conditions, but the slopes did not differ

between conditions.

Figure 10 shows the posterior predictive distribution of the

interaction model. The rows indicate generations (1–10) and

the columns indicate conditions (0: transmission condition,

1: individual condition). The vertical and horizontal axes of

each plot indicate the frequency and diversity, respectively.

For both conditions, the diversity increased with each

generation. In the 10th generation, the distribution of the

individual condition was slightly wider to the right, but

the mode frequency of the histograms was 0.60 for both

conditions.

4 Results of Experiment 2

In Experiment 1, the presentation order of the sequences was

fixed between chains and generations. This could have contributed

to the learnability of the participants in individual conditions. To

exclude this possibility and confirm the robustness, we generated

new, randomly organized stimulus sequences and conducted

Experiment 2, which randomized the presentation order of the

sequences among chains and generations. All procedures, except

for the presentation order and analysis methods, were identical to

those used in Experiment 1.

4.1 Accuracy

Supplementary Figure S1 shows the mean accuracy values and

95% confidence intervals under each condition and generation.

In both conditions, the accuracy increased as the number of

generations increased.

Model 2, which included an interaction term, showed a

smaller WAIC (−98,495.45) than Model 1, which did not

include an interaction term (WAIC = −98,467.61), indicating a
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FIGURE 6

Compression ratio predicted from posterior distribution of Model 2 in Experiment 1. The left column shows the transmission condition, and the right

column shows the individual condition. Rows indicate generations.

higher predictive power. The difference in WAIC between the

two models was 27.84 (dSE = 13.69), which is a sufficiently

large difference. The Bayesian estimation results for Model 2

(Supplementary Table S1) showed that 89% confidence intervals for

the condition, generation, and interaction terms did not contain

zero (condition: β = 0.45, CI = [0.18, 0.73]; generation: β = 0.15,

CI= [0.15, 0.16]; interaction: β = 0.03, CI= [0.02, 0.04]). In other

words, the accuracy improved with each successive generation

in both conditions, but the improvement was greater in the

individual condition.

Supplementary Figure S2 shows the distribution of the

posterior predictions for Model 2 with interactions. The rows

indicate generations (1–10) and the columns indicate conditions

(0: transmission condition, 1: individual condition). The vertical

and horizontal axes of each plot indicate frequency and accuracy,

respectively. Comparing the distribution of the posterior

predictions for the first generation, the transmission condition

was slightly more accurate than the individual condition; however,

the difference was not clear. As the generations progressed, the

accuracy of both conditions increased; the individual condition

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2023.1221329
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Nakata and Takezawa 10.3389/frai.2023.1221329

FIGURE 7

Changes in mean depth of hierarchy (10 chains in transmission chain; 20 chains in individual condition) over the course of ten generations in

Experiment 1.

TABLE 3 Bayesian estimated values for Model 2 (with interaction) with the depth of hierarchy in Experiment 1 as dependent variable.

β Std Lower 0.89 Upper 0.89 n_e� Rhat

Intercept 0.28 0.04 0.22 0.34 6,517.67 1.00

Condition 0.01 0.05 −0.06 0.08 6,782.07 1.00

Generation 0.03 0.00 0.02 0.04 34,134.93 1.00

Interaction −0.01 0.00 −0.01 −0.00 32,119.27 1.00

showed higher values. For example, in the 10th generation, the

mode of the histogram in the individual condition was 1.00, while

it was 0.85 in the transmission condition.

4.2 Compression ratio

Supplementary Figure S3 shows the mean compression ratio

values and 95% confidence intervals under each condition

and generation. Under both conditions, the compression ratio

decreased as the number of generations increased.

Model 2, which included an interaction term, showed a smaller

WAIC (−26,688.86) compared to Model 1, which did not include

an interaction term (WAIC = −26,600.45), indicating a greater

predictive power. The difference in WAIC between the two models

was 88.41 (dSE= 20.35), which is a sufficiently large difference. The

Bayesian estimation results for Model 2 (Supplementary Table S2)

showed that the 89% confidence intervals for the generation and

interaction terms did not include zero (generation: β = −0.06, CI

= [−0.06,−0.05]; interaction: β= 0.02, CI= [0.02, 0.03]). In other

words, under both conditions, the compression ratio decreased

with increasing generations; however, the degree of decrease was

greater under the transmission condition.

The posterior prediction distributions of the interaction

model are shown in Supplementary Figure S4. Rows indicate

generations (1–10) and columns indicate conditions (0:

transmission condition, 1: individual condition). The vertical

and horizontal axes of each plot indicate the frequency and

compression ratio, respectively. There was little difference

in the posterior predictive distribution of the compression

ratios in the first generation. As the generation progresses,

the compression ratios become smaller in both conditions

but are lower in the transmission condition. For example,

in the 10th generation, the mode of the histogram in the

individual condition was 0.65, while it was 0.60 in the

transmission condition.

4.3 Depth of hierarchy

Supplementary Figure S5 shows the mean depth of the

hierarchy and 95% confidence intervals under each condition and
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FIGURE 8

Depth of hierarchy predicted from posterior distribution of Model 2 in Experiment 1. The left column shows the transmission condition, and the right

column shows the individual condition. Rows indicate generations.

generation. Under both conditions, the depth of the hierarchy

increases with the number of generations.

The WAIC (50,751.16) for Model 2 with the interaction

included was smaller than the WAIC (50,767.63) for Model 1

without the interaction, indicating greater predictive power. The

difference in the WAIC between the two models was 16.47 (dSE

= 4.87), which was a small difference. The Bayesian estimation

results for Model 2 (Supplementary Table S3) show that the 89%

confidence intervals for the generation and interaction terms

did not include zero (generation: β = 0.04, CI = [0.03, 0.04];

interaction: β = −0.02, CI = [−0.02, −0.01]). In other words, the

hierarchy deepens as generations progress in both conditions, but

is deeper in the transmission condition.

The posterior predictive distribution of the interaction model is

shown in Supplementary Figure S6. The rows indicate generations

(1–10) and the columns indicate conditions (0: transmission

condition, 1: individual condition). The vertical axis of each

plot indicates the frequency, and the horizontal axis indicates

the depth of the hierarchy. The posterior predictive distribution

of the hierarchical depth for the first generation was not very
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FIGURE 9

Changes in mean diversity (10 chains in transmission chain; 20 chains in individual condition) over the course of ten generations in Experiment 1.

TABLE 4 Bayesian estimated values for Model 2 (with interaction) with the depth of diversity in Experiment 1 as dependent variable.

β Std Lower 0.89 Upper 0.89 n_e� Rhat

Intercept 0.499 0.004 0.493 0.505 1,793.94 1.004

Condition 0.000 0.005 −0.007 0.008 1,707.70 1.004

Generation 0.001 0.000 0.001 0.002 57,558.54 1.000

Interaction 0.000 0.000 0.000 0.001 57,133.02 1.000

different. As the generations progress, the hierarchy deepens under

both conditions, but the transmission condition shows a greater

increase. For example, in the 10th generation, 1 remained the mode

for the depth of the hierarchy in the individual condition, while 2

was the mode in the transmission condition.

4.4 Diversity

Supplementary Figure S7 shows the mean diversity values and

95% confidence intervals under each condition and generation.

Under both conditions, the diversity increased as the number of

generations increased.

The WAIC (−3,427.173) for Model 2 with the interaction

included was smaller than the WAIC (−3,422.743) for Model

1 without the interaction, indicating greater predictive power.

The difference in the WAIC between the two models was

4.43 (dSE = 5.36), which was not sufficiently large. The

Bayesian estimation results for Model 2 (Supplementary Table S4)

showed that 89% confidence intervals for the generation and

interaction terms did not include zero (generation: β = 0.002,

CI = [0.001, 0.002]; interaction: β = 0.001, CI = [0.000,

0.001]). In other words, diversity in both conditions increases

with advancing generations, but the individual conditions are

more diverse.

The posterior predictive distribution of the model with

interactions is shown in Supplementary Figure S8. The rows

indicate generations (1–10) and the columns indicate conditions (0:

transmission condition, 1: individual condition). The vertical and

horizontal axes of each plot indicate the frequency and diversity,

respectively. The diversity of both conditions increased as the

generations progressed; however, the diversity of the individual

conditions increased with each generation. For example, in the

10th generation, the mode for the transmission condition was 0.60,

whereas that for the individual condition was 0.65.

5 Discussion

In this study, we examined the effects of cultural transmission

on the emergence of hierarchical structures through two laboratory

experiments using nonverbal tasks. In addition to the transmission

conditions, in a replication of Cornish et al. (2013), we used an

individual condition without cultural transmission. While Cornish

et al. (2013) qualitatively analyzed the emergence of hierarchical

structures, we quantitatively analyzed the depth of the hierarchical

Frontiers in Artificial Intelligence 12 frontiersin.org

https://doi.org/10.3389/frai.2023.1221329
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Nakata and Takezawa 10.3389/frai.2023.1221329

FIGURE 10

Diversity predicted from posterior distribution of Model 2 in Experiment 1. The left column shows the transmission condition, and the right column

shows the individual condition. Rows indicate generations.

structures that emerged. We conducted two experiments to verify

the robustness of our findings.

We found that the transmission condition replicated the

findings of Cornish et al. (2013), indicating that structures,

such as repetition and hierarchical structures, emerge gradually

over generations. Compared to the individual condition, in

which a single individual repeated learning and reproduction

without generational turnover, more structuring occurred in

the transmission condition, in which cultural transmission was

repeated among several different individuals. However, participants

in the individual condition reproduced the stimulus sequence more

accurately than those in the transmission condition. Furthermore,

the degree of diversification was higher under the individual

condition. In other words, the stimulus sequences in the individual

condition may have produced unique patterns for each participant

that differed from the repetition and hierarchical structures.

Figure 11 shows how four of the sequences used in generation 0

(seed) of the individual condition changed after 10 generations.

As a result of iterative modification by only one individual, the

sequences at generation 10 share common parts. As cognitive
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FIGURE 11

Example sequences from a chain of individual condition in Experiment 1. (A) A sample of four initially seeded sequences at generation 0. (B)

Sequences when the four in (A) change slightly between generations and are reproduced at generation 10.

biases vary slightly between individuals, unsurprisingly, the easily

remembered patterns differ for each individual. These small

differences may have been amplified by repeated reconstructions

within individuals, resulting in greater diversity under the

individual condition than under the transmission condition. On

the other hand, there is a common tendency to reduce the

randomness of sequences. In general, the sequences with the

highest randomness do not have a hierarchical structure. Reducing

the randomness of sequences produces hierarchical structure.

In addition, sequences with hierarchical structure have multiple

chunks, which are generally easier for people to remember (Mathy

et al., 2016). Therefore, cultural selection works when sequences

are culturally transmitted: hierarchical structures are more likely

to be preserved, while other patterns are more likely to be lost.

Through repeated cultural selection process, hierarchical structures

evolve cumulatively. In Experiment 2, we aimed to replicate the

results of Experiment 1 while eliminating the possible influence

of presentation order on the stimulus sequences. Experiment

2 replicated the results of Experiment 1 and demonstrated

its robustness.

Based on these results, in the transmission condition, the

structure likely emerged as a result of the cumulative cultural

evolution of stimulus sequences with general features that were

easily remembered by many individuals through iterated cultural

transmission between different people. Therefore, structural

features in the human language, such as hierarchical structures, are

likely to evolve cumulatively through iterated cultural transmission

among different individuals. This finding supports the claim of

computational evolutionary linguistics that learnability promotes

the cumulative cultural evolution of structure (Kirby et al., 2008)

and extends this traditional claim to cultures other than language.

Furthermore, it provides a detailed explanation that the structural

features of human culture evolve cumulatively through iterated

transmission among different individuals who share and inherit the

culture and thus become, on average, more likely to be learned.

Furthermore, the finding that cultural transmission can emerge as

a structure may not apply to groups of people in which there is little

diversity in biases toward learning and transmission. It has been

reported that a compositional structure is less likely to emerge in

iterated learning involving only children (Raviv and Arnon, 2018).

These results could potentially be attributed to the fact that children

have not yet developed a bias toward structure, and there is less

diversity in biases among individuals. The relationship between the

various biases held by people and the emergence of structures is not

well understood, and further research is required.

In this study, we have shown that hierarchical structures

can arise from even minimal processes of cultural evolution:

learning and transmission. This may explain why, in addition

to language, similar hierarchical structures are found in different

human cultures. In the case of our cultures, even more diverse and

complex structures can emerge due to the demands of functions

such as expression and convenience. For example, to study the

cumulative cultural evolution of the grammars of human languages,

it is necessary to introduce into the experiment the requirement of

expressing meaning with sequences (Saldana et al., 2019b).

In our experiment, we conducted an individual condition

in addition to replicating Cornish et al.’s (2013) transmission

condition to manipulate the presence of cultural transmission.

However, the individual conditions may have unintended effects.

As the total number of trials per participant in the individual

condition wasmuch higher than in the transmission condition (300

trials), we interspersed breaks every 50 trials. However, it was not

possible to completely eliminate the effects of fatigue or reduce

the concentration. Although accuracy increased in the individual
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condition, the break itself may have had some effect on the memory

and replay of the stimulus sequence. To test the hypothesis that

cultural transmission among diverse populations promotes the

cumulative cultural evolution of hierarchical structures, future

modifications to the experimental design will be necessary. For

example, one could compare a ten-participant transmission chain

in the transmission condition of this study with a half-participant

transmission chain (five participants), which would require twice

as many stimuli per participant (120 trials) as a ten-participant

transmission chain. With 120 trials per person, it was possible to

complete the task without breaks. If this hypothesis is correct, the

five-person transmission chain experiment may reveal a cumulative

cultural evolution of hierarchical structures that are intermediate

between the transmission and individual conditions of this study.

Although our study used a grammatical compression algorithm

to quantitatively analyze the cumulative cultural evolution of

hierarchical structure depth, it examined only a small subset of the

structures present in real human culture. Most of the hierarchical

structures that emerged in this study had shallow hierarchies with

depths of 1–2. One possible explanation for this limitation is the

short length of the stimulus sequence, which was set at 12. A

longer stimulus sequence was required to facilitate the emergence

of deeper hierarchical structures. In addition, longer transmission

chains may be necessary for the cumulative development of

deeper hierarchical structures in the culture. In this study, the

experiment was conducted over 10 generations, but the number

of stimulus sequences to be learned was reduced to half the

number of participants in the transmission condition because of

concerns about the participant load in the individual condition. By

manipulating the number of individuals in the transmission chain

as described above, experiments can be conducted over a period

longer than 10 generations. The “sequiter” algorithm used in our

study could also be applied to artificial language learning tasks.

Previous iterated learning experiments have focused primarily

on the quantitative analysis of compositional structures (Kirby

et al., 2008, 2015; Raviv and Arnon, 2018), with only a qualitative

analysis of hierarchical structures (Saldana et al., 2019b). Applying

a quantitative analysis of the hierarchical structure, which is a

prominent feature of human language, to experiments with more

realistic language-like tasks would provide further insights into

the origins of language structures. For instance, iterated learning

experiments can be conducted on non-human animals (Claidière

et al., 2014; Saldana et al., 2019a), enabling the direct comparison

of emergent structures across species.
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