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We develop a methodology to create data-driven predictive digital twins for

optimal risk-aware clinical decision-making. We illustrate the methodology as an

enabler for an anticipatory personalized treatment that accounts for uncertainties

in the underlying tumor biology in high-grade gliomas, where heterogeneity

in the response to standard-of-care (SOC) radiotherapy contributes to sub-

optimal patient outcomes. The digital twin is initialized through prior distributions

derived from population-level clinical data in the literature for a mechanistic

model’s parameters. Then the digital twin is personalized using Bayesian model

calibration for assimilating patient-specificmagnetic resonance imaging data. The

calibrated digital twin is used to propose optimal radiotherapy treatment regimens

by solving a multi-objective risk-based optimization under uncertainty problem.

The solution leads to a suite of patient-specific optimal radiotherapy treatment

regimens exhibiting varying levels of trade-o� between the two competing clinical

objectives: (i) maximizing tumor control (characterized by minimizing the risk

of tumor volume growth) and (ii) minimizing the toxicity from radiotherapy.

The proposed digital twin framework is illustrated by generating an in silico

cohort of 100 patients with high-grade glioma growth and response properties

typically observed in the literature. For the same total radiation dose as the SOC,

the personalized treatment regimens lead to median increase in tumor time to

progression of around six days. Alternatively, for the same level of tumor control

as the SOC, the digital twin provides optimal treatment options that lead to a

median reduction in radiation dose by 16.7% (10 Gy) compared to SOC total

dose of 60 Gy. The range of optimal solutions also provide options with increased

doses for patients with aggressive cancer, where SOC does not lead to su�cient

tumor control.
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1. Introduction

A digital twin can be defined as a mathematical model (or

a collection of models) that provides a virtual representation

of a specific physical object (e.g., a tumor), updates its status

by assimilating object-specific data (e.g., imaging and clinical

measurements of tumor growth and radiotherapy response),

predicts the behavior of the object under external actions (e.g.,

treatments), and enables decision-making to optimize the future

behavior of the object (e.g., design an optimal radiotherapy plan

maximizing tumor control and minimizing toxicities) (Rasheed

et al., 2020; Kapteyn et al., 2021; Laubenbacher et al., 2021;

Niederer et al., 2021; Wu et al., 2022). Recent work explores

the use of digital twins in healthcare and medicine to perform

simulations of cardiovascular diseases (Corral-Acero et al., 2020;

Peirlinck et al., 2021), enable virtual reality for surgery (Ahmed

and Devoto, 2021), and enable improved decision-making in

clinical oncology (Hernandez-Boussard et al., 2021; Madhavan

et al., 2021; Wu et al., 2022). However, most of the work on

digital twins in medicine relies on deterministic implementations.

Predictive digital twins account for uncertainty through a Bayesian

framework (Kapteyn et al., 2021) and provide a computational

environment to support personalized risk-based management of

solid tumors supported by computer forecasts of biologically-

inspired mechanistic models representing these diseases and their

treatments. We propose a patient-specific predictive digital twin

that can address the three critical needs of: (i) accounting for

uncertainty in the mechanistic model parameters by continuous

integration of incoming patient data, (ii) forecasting the parameter

uncertainty to estimate risk associated with the therapeutic

outcomes, and (iii) supporting risk-aware clinical decision-making

under uncertainty. To illustrate the methodology, we present a

predictive digital twin to enable the personalized monitoring and

forecast of high-grade glioma (HGG) response to radiotherapy

(RT), as well as the design of optimal adaptive RT regimens for

individual HGG patients (see Figure 1).

HGG is a class of brain tumors that typically exhibit an

aggressive, infiltrative behavior as well as high heterogeneity in both

tumor physiology and cell composition (Omuro and DeAngelis,

2013). Patients with HGG are usually treated surgical resection to

reduce the tumor burden and intracranial pressure followed by

adjuvant radiotherapy (RT) and chemotherapy to target residual,

unresected tumor cells. The standard-of-care (SOC) RT plans

account for patient-specific heterogeneity in tumor shape and

location through pre-treatment anatomical or structural imaging

approaches, such as T1- and T2-weighted magnetic resonance

imaging (MRI), that can identify the residual tumor after surgery

and define a surrounding 2–3 cm margin. However, the SOC RT

dose and schedule generally conform to the Stupp protocol (Stupp

et al., 2005), which is informed from clinical studies involving

large populations, consisting of 60 Gy delivered in 30 fractions of

2 Gy. A fundamental challenge in the treatment of HGG is that

response to RT is highly variable from patient to patient due to

the inherent heterogeneity in both cellular architecture and tumor

micro-environment (Aum et al., 2014; Hill et al., 2015), which may

ultimately lead to poor treatment outcomes. This heterogeneity in

tumor physiology, growth, and radiation response characteristics

translates into uncertainty in the therapeutic outcomes of HGG

patients receiving a standard RT protocol. This work addresses the

challenge of quantifying the uncertainty in tumor characteristics

from limited patient-specific data early in the course of treatment,

propagating this uncertainty via mechanistic models to determine

the uncertainty in treatment outcomes, and optimizing adaptive RT

plans to improve overall survival through individualized predictive

digital twins.

Adaptive RT has been regarded as a promising strategy

to account for heterogeneity in tumor response. The varying

treatment regimens aim at adjusting the dose, number, and timing

of the radiation fractions in the prescribed RT plan on a patient-

specific basis to account for the individual response of their HGG to

radiation. Adaptive RT plans can be guided by quantitative imaging

measurements to improve target delineation to deliver radiation,

enable the voxelization of the RT plan (i.e., dose-painting), and

facilitate the adaptation of the treatment regimen in response to

observed tumor dynamics (Raaymakers et al., 2009; Jaffray, 2012;

Troost et al., 2015; Kong et al., 2017). Another approach for

adaptive RT planning is through a predictive framework that can be

constructed by leveraging patient-specific computational forecasts

of HGG growth and response to RT, which are obtained via

computer simulation of biologically-inspired mechanistic models

informed by routine clinical and imaging data collected before and

during the course of treatment (Rockne et al., 2009; Unkelbach

et al., 2014; Le et al., 2016; Poleszczuk et al., 2018; Enderling et al.,

2019; Subramanian et al., 2020; Hormuth et al., 2021a; Woodall

et al., 2021; Zahid et al., 2021; Lorenzo et al., 2022). However, the

tumor forecasts obtained with these models are estimated using

a deterministic approach. Systematically accounting for data and

model uncertainties has shown promise in Bayesian calibration

of tumor models (Lima et al., 2017; Oden et al., 2017; Lipková

et al., 2019; Lorenzo et al., 2022). The clinical translation of current

computational technologies to forecast HGG response to RT needs

to accommodate a probabilistic risk assessment of pathological and

therapeutic outcomes to support clinical decision-making along

with progressive update of model according to incoming data.

Predictive digital twins are a step toward personalized medicine

that can address patient-specific clinical decision-making while

accounting for the underlying uncertainty.

We construct the digital twin on an MRI-informed biology-

inspired mechanistic model, which describes HGG growth and

response to RT, and a probabilistic graphical model (Kapteyn

et al., 2021), which accounts for uncertainty quantification and

enables the risk assessment of therapeutic outcomes during tumor

forecasting and RT optimization. We use prior distributions of

the mechanistic model parameters informed from clinical data

to initialize the digital twin. The personalization of the digital

twin starts with the Bayesian model calibration for assimilating

patient-specific MRI data followed by risk-aware optimized RT

regimens for each patient. We solve a multi-objective risk-based

optimization under uncertainty (OUU) problem to provide a

suite of optimal RT regimens that trade-off maximizing tumor

control and minimizing the toxicity from RT. We use the α-

superquantile risk measure (Rockafellar et al., 2000) that accounts

for the magnitude of exceeding a set threshold in a particular tumor

characteristic. The risk-based optimization formulation allows one
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FIGURE 1

Creating and evolving an HGG patient-specific predictive digital twin. Our digital twin methodology is illustrated for the case of HGG growth and

response to RT from the post-surgery imaging visit to post-RT monitoring for disease progression. The digital twin is personalized through

calibration using MRI data and then used to design an optimal risk-aware treatment regimen under uncertainty. The digital twin also allows for

monitoring the disease progression throughout the patient’s treatment and recovery.

to account for the patient’s and treating physician’s risk preferences.

We illustrate the predictive digital twin using an in silico population

of HGG patients that is constructed by pooling clinical data of

MRI measurements of HGG cellularity and mechanistic parameter

values describing the dynamics of HGG growth and RT response

from the literature (Qi et al., 2006; Wang et al., 2009; Hormuth

et al., 2021c). We investigate varying levels of total dose to analyze

the ensuing suite of therapeutic planning options. Our results

show that the optimal RT plans can lengthen time to progression

(TTP) with respect to the SOC regimen for the same total RT

dose. Furthermore, we show that for certain patients, the proposed

digital twin can provide optimal RT plans achieving similar tumor

control as the SOC regimen, while significantly lower toxicities by

lowering the radiation dose. We show that the range of optimal

solutions also provide options for patients with aggressive cancer

with increased radiation doses. We demonstrate that the optimal

RT plans are non-inferior to the SOC regimen in terms of tumor

control and always maintain the total radiation dose within a

clinically-admissible range.

The rest of this work is organized as follows. Section 2 describes

the proposed digital twin methodology to create a patient-specific

predictive digital twin for HGG growth and RT response under

uncertainty. Section 3 illustrates the digital twin methodology for

a cohort of in silico patients. Section 4 discusses the proposed

predictive digital twin framework as well as the results of our

computational study, the limitations of this work, and future lines

of investigation.

2. Patient-specific digital twin
methodology

In this section, we describe the methodologies used to create,

update, and utilize a patient-specific predictive digital twin. We

begin with an overview of the components comprising the

predictive digital twin and ground them in the oncology setting in

Section 2.1. We then describe the mechanistic model in Section 2.2

followed by the treatment control parameters in Section 2.3 and

the generation of observational data for an in silico patient in

Section 2.4. The Bayesian model calibration, the propagation of

uncertainty for patient-specific prognosis, and the multi-objective

risk-based optimization under uncertainty problem are described

in Sections 2.5, 2.6, and 2.7, respectively. We detail the survival

analysis method used to assess the performance of the optimal

treatment plans in Section 2.8.

2.1. Predictive digital twin formulation

We adopt the mathematical abstraction for a predictive digital

twin proposed in Kapteyn et al. (2021). We formally define

a predictive digital twin in terms of the six quantities shown

in Figure 2 representing the physical and digital twins: physical

state, observational data, control inputs, digital state, quantities

of interest, and reward, where each of these six quantities will

be considered to vary with time. The physical twin refers to the

specific patient and the physical state represents the physiology

and anatomy of the patient, which is only partially and indirectly

observable. The digital twin is characterized by a computational

model or a set of coupled computational models that can represent

the physical twin to the desired level. The digital state is considered

to be the parameterization of the computational models comprising

the digital twin. To understand the health of the patient and inform

our digital state, we rely upon observational data obtained from the

physical twin, such as data obtained from MRI. There is a strong

relationship between the digital state and the observational data

since the accuracy of the digital state depends on the type and

quantity of the observational data. The control inputs in a clinical

setting are the therapeutic decisions that influence the physical

state of the patient, such as the dose and scheduling of medical
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FIGURE 2

Overview of the components comprising a predictive digital twin in the oncology setting.

interventions. The control inputs can also comprise scheduling

decisions for observational data, such as when a patient comes

in for imaging. We will use the predictive digital twin to inform

our choice of control inputs. The quantities of interest (QOIs)

are computational estimates of possibly unobservable patient

characteristics, which are evaluated using the computational

models underlying the digital twin, such as tumor cell count, time

to progression and toxicity. The reward is used to quantify the

performance of the patient-twin system and can encode the success

or failure of the system after applying a specific control, such as

the risk of under-treating a specific disease giving a therapeutic

plan. These quantities describe an abstract coupled patient-twin

system representing a patient physical twin and their associated

computational digital twin.

2.2. Mechanistic tumor growth model
comprising the HGG digital twin

The computationalmodel underlying the predictive digital twin

is the logistic growth model of tumor growth governed by the

ordinary differential equation (ODE) (Benzekry et al., 2014; Jarrett

et al., 2018; Hormuth et al., 2022)

dN

dt
= ρN

(

1−
N

K

)

;

N(t = 0) = Ninitial,

(1)

whereN(t) is the number of tumor cells at time t,Ninitial is the initial

tumor burden, ρ is the net proliferation rate of the tumor cells, and

K is the carrying capacity of the tissue (i.e., the maximum number

of tumor cells that can be sustained physically and biologically).

We model the effects of RT and concomitant chemotherapy as

discrete treatment events that result in an instantaneous reduction

of tumor cell count at treatment time,Npost-treatment, to a fraction of

the pre-treatment cell count Npre-treatment, given by

Npost-treatment(t; ut) = Npre-treatment(t)S(ut), (2)

where S is the surviving fraction of tumor cells resulting from a

single dose of RT and chemotherapy at time t, which is given by ut .

The surviving fraction is defined by a linear-quadratic model of cell

survival (McMahon, 2019) with amultiplicative term to account for

the concurrent chemotherapy effect as

S(ut) = SCSRT(ut) = SC exp
(

−αRTut − βRTu
2
t

)

, (3)

where SC is the surviving fraction resulting from a single dose of

chemotherapy, SRT is the surviving fraction resulting from a single

dose of RT, and αRT and βRT are the radiosensitivity parameters.

The entire model formulation given by Equations (1)-(3) can be

written as

dN

dt
= f (N; θ , u), (4)

where N(t; θ , u) is the number of tumor cells at time t given

that θ :=[ρ,K,Ninitial,αRT]
⊤ ∈ � ⊆ R

4
+ are the patient-specific

probabilistic model parameters in the digital state and u is a vector

comprising all the RT treatment doses ut given at time t. The

treatment control considered here adapts the RT dose u to specific

patients as elaborated in Section 2.3. All the parameters necessary

to define the ODE model are provided in Table 1. We fix the

radiosensitivity parameter ratio to αRT/βRT = 10 (Rockne et al., 2009)

and the surviving fraction resulting from chemotherapy to SC =

0.82 (Hormuth et al., 2021c). The system of ODEs in Equation (4) is

solved via a forward Euler scheme with sufficiently small time step

size of 0.2 days to ensure numerical stability. The discrete treatment

events are applied at the beginning of each day.
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TABLE 1 Mechanistic tumor growth model parameters.

Parameter
type

Name Symbol Units

Probabilistic

parameters

Proliferation rate ρ day−1

Carrying capacity K cells

Initial tumor

burden

Ninitial cells

Radiosensitivity

parameter

αRT Gy−1

Fixed parameters Surviving fraction

due to

chemotherapy

SC -

Radiosensitivity

parameter ratio

αRT/βRT Gy

2.3. Treatment control: patient-specific RT
treatment regimen

The treatment goal considered for this digital twin illustration

is to adapt the RT regimen to specific patients. The Stupp protocol

(Stupp et al., 2005) is the current SOC for treatment of HGG. The

SOC administers six weeks of treatment featuring five consecutive

treatment days each week with a fractionated RT dose of 2 Gy/day.

We consider a similar setup as the SOC dose fractionation to define

the treatment control u ∈ U ⊆ R
nu
+ as a vector of weekly-

fractionated RT dose with nu = 6 being the number of weeks

of RT. Under this setup, the SOC is represented by uSOC =

[2, 2, 2, 2, 2, 2] Gy/day leading to a total dose of 5‖uSOC‖1 = 60

Gy, where ‖ · ‖1 denotes the ℓ1 norm (i.e., the summation of

the absolute value of the vector entries). The SOC is used as the

baseline to compare with the optimized RT treatment regimens.We

administer chemotherapy throughout the six weeks even when no

RT is prescribed. Note that extensions of this work can consider

a finer time scale, such as allowing for a varying dose on a daily

basis within each week of the treatment as well as adapting the

chemotherapy treatment.

To calibrate the RT-related parameters in the predictive digital

twin, we need at least one observation after starting the RT

treatment (see Section 2.5 for details on calibration). Thus, we

consider that the patients receive the SOC RT plan during this

first week and that the intra-treatment MRI is performed at the

end of the first week of RT (here, simulated patients as described

in Section 2.4). We fix the fractionated dose of the first week to

the SOC value of 2 Gy/day and use the predictive digital twin to

optimally control the RT doses for the remaining five weeks (i.e.,

u = [u1 = 2, u2, . . . , u6], where ui ∈ [0, 10] Gy/day, i = 2, . . . , 6).

Importantly, this strategy to optimally adjust the RT plan with

our predictive digital twin follows the same approach as image-

driven adaptive RTmethods that are currently being explored in the

clinical-research setting (Nijkamp et al., 2008; Sonke et al., 2019).

2.4. Simulated patients as proxy for
observational clinical data

The physical twin state of each patient is partially and indirectly

observed through specific observational data, which are leveraged

to inform the digital twin state. In the HGG setting, these

observational data can be acquired non-invasively using MRI.

Recently, MRI data have been used to calibrate computational

models and obtain tumor forecasts (Hormuth et al., 2015, 2020,

2021c,d) after appropriate post-processing. In particular, the MRI

data needs to be post-processed to extract the total tumor burden

as a cell count, such that it relates to the state variable N of the

ODE model in Equation (4). Since we are collapsing the spatial

information of the tumor provided by the MRI data, we incur a

volume-wise error in the measurement of the tumor burden. This

source of error has been studied by both Mazzara et al. (2004) and

Paldino et al. (2014), although it is difficult to quantify its effect on

the model parameterization and ensuing forecasts.

We consider an in silico patient cohort where the physical state

of theHGG tumors is simulated by generating noisy observations of

the solution to the ODEmodel in Equation (4) using an underlying

“true” parameter set θtrue, which is varied for each patient in the

cohort. Note that θtrue is never seen by the predictive digital twin

and themodel parameters instead adopt a probabilistic formulation

based on the noisy observations generated for each in silico patient.

We simulate a collection of nobs observations o =

[

ot1 , . . . , otnobs

]

at times {ti}
nobs
i=1 with an additive noise model as

oti = N(ti; θtrue, u)+ εi, (5)

where the noise εi follows a truncated normal distribution

T N (0, σ 2,−N(ti; θtrue, u),+∞) with a lower truncation bound of

−N(ti; θtrue, u) to avoid non-physical negative observations. The

general truncated normal distribution definition T N (µ, σ 2, a, b)

can be read as µ and σ 2 specifying the mean and variance,

respectively, of the general normal distribution with the truncation

range as [a, b] (Cohen, 1991). For this work, we assume a constant

standard deviation of σ = 2 × 109 cells, corresponding to a value

of 10% of the mean value from population data used to model the

initial tumor burden.

2.5. Patient-specific tumor modeling via
Bayesian model calibration

We use a Bayesian formulation that combines prior knowledge

with observed data to update the probabilistic distribution placed

on the model parameters. The observational data from the patient

are assimilated by solving an inverse problem to calibrate the

parameters in the computational model (Stuart, 2010; Biros et al.,

2011; Oden et al., 2016) to the specific patient. The Bayesian

framework provides confidence levels for the computational model

output. Prior knowledge plays a critical role in the oncology setting

as it is an especially data-poor regime owing to the difficulty

and expense of collecting quantitative patient information such

as MRI data. Priors allow us to inject knowledge of the disease

at the population level to inform the modeling process of a

specific patient. Priors P(θ) for the probabilistic parameters θ are

constructed from reported values of clinical data in the literature.

The study by Wang et al. (2009) computed the global proliferation

rate for a cohort of 31 patients. Qi et al. (2006) conducted a

study to compute a plausible set of radio-sensitivity parameters for

the linear-quadratic model. We define an independent truncated
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TABLE 2 Prior distribution for the probabilistic model parameters θ :=[ρ,K,Ninitial,αRT]
⊤.

Parameter Mean Standard deviation Lower bound Upper bound

ρ 0.09 0.15 0.007 0.25

K 1× 1011 2× 1010 9× 1010 1.8× 1011

Ninitial 1.9× 1010 1.2× 1010 4.7× 109 4.7× 1010

αRT 0.05 0.025 0.001 0.1

normal distribution based on the values from the literature

as our prior distribution as shown in Table 2. A truncated

normal distribution is used to enforce positivity as well as to

account for physically reasonable upper and lower bounds on the

model parameters.

Observational data o from the patient are assimilated to

estimate the updated probability distribution of θ , otherwise known

as the posterior distribution, through the Bayesian update formula

given by

P(θ |o) ∝ P(o|θ)P(θ), (6)

where P(θ |o) is the posterior distribution of the digital state

conditioned upon the observed data,P(o|θ) is the likelihood of the

observed data given a digital state, andP(θ) is the prior distribution

that encodes our knowledge about the patient’s state before any

observations are made.

We consider a scenario with three available MRI observations

on days 0 (post-surgery image), 20 (pre-RT image), and 27 (mid-

RT image). As noted in Equation (5), we assume an additive noise

model for our observational data generation. The observation on

day 0 only provides knowledge about the initial tumor burden

Ninitial for the patient. The observation on day 20 provides

information on all the probabilistic model parameters except the

radiosensitivity parameter αRT. The observation on day 27 is

generated using the SOC fractionated dose and provides knowledge

about all the probabilistic model parameters {ρ,K,Ninitial,αRT}.

This leads us to solve the inverse problem for model calibration in

two steps:

Step 1: After obtaining the post-surgery image for the patient,

the first step updates the posterior of the initial tumor burden

to use the truncated normal distribution associated with the

observation ot1 at t1 = 0 days as the mean with σ 2 accounting

for themeasurement error asNinitial ∼ T N (ot1 , σ
2, max{0, ot1−

2σ }, ot1 + 2σ ). The upper and lower truncation bounds are

defined by ±2σ from the observational data. The lower

truncation bound is further modified to avoid non-physical

negative values of initial tumor burden by using max{0, ot1 −

2σ }. The updated distribution of Ninitial is used as the prior

distribution in Step 2.

Step 2: The Bayesian inference is performed via Markov

Chain Monte Carlo (MCMC) for assimilating the remaining

two observations [ot2 , ot3 ] from t2 = 20 days and t3 =

27 days to complete the digital twin model calibration for

tumor physiology and radiation response. We use the updated

distribution of Ninitial from step 1 and the priors for ρ,K,αRT

given in Table 2. Then the patient-specific posterior distribution

for all the probabilistic model parameters are obtained by using

MCMC for the remaining two observations. We use the MCMC

implementation in the PyMC3 Python package (Salvatier et al.,

2016) with four chains of 100, 000 samples each. The posterior

distribution is characterized by 100, 000 retained samples. For

a more in-depth discussion of MCMC techniques, the reader is

referred to (Smith, 2013) and the references within.

2.6. Patient-specific prognosis via
uncertainty propagation

Consider an uncertain digital state defined by the posterior

distributions of the model parameters generated by Bayesian model

calibration as described in Section 2.5. At any point in time,

we can propagate uncertainty forward in time using the model

in Equation (4) to estimate our quantities of interest, which

characterize the tumor control resulting from an RT regimen and

the treatment toxicities. Hence, a QoI maps realizations of random

model parameters θ ∈ � and a treatment control u ∈ U to a real

value as M :U × � 7→ R. There are a variety of clinically relevant

QOIs that could be considered to characterize the tumor control

resulting from a treatment regimen. These include the predicted

tumor burden (e.g., defined through the tumor cell count) after a

set period of time post-treatment, time to progression (TTP) of the

tumor cell count beyond a given threshold, or the amount of time

that the tumor cell count is kept below a specified threshold. In this

work, the QoI for tumor control is based on the TTP (Saad and

Katz, 2009). We consider toxicity to be proportional to the total

dose of radiation delivered to the patient during RT, i.e, 5‖u‖1.

Note that the QoI for toxicity does not depend on θ and, thus, it

is a deterministic quantity since we have no uncertainty in the dose

administered to a patient.

We define the TTP as the amount of time that the tumor takes

to proliferate to a clinically-relevant size after the conclusion of six

weeks of RT, which we set as the tumor cell count right before

the onset of the RT regimen (i.e., at t = 20 days). Hence, to

calculate the TTP, we further define a threshold tumor cell count

Nth(θ) : = N(t = 20; θ , u), which does not depend on u since it

is a pre-treatment quantity. Additionally, we denote the day of the

conclusion of RT as tpost-RT (here, tpost-RT = 20+ 6× 7 = 62 days).

Since a second round of chemotherapy is generally prescribed

to prevent or combat tumor progression three months after the

conclusion of RT, we consider a finite time-horizon of tfinite = 152

days after surgery for the end of our simulations and the calculation

of the TTP. We can now express the TTP as

TTTP(u, θ) := min
tpost-RT<t≤tfinite

{t : N(t; θ , u) > Nth(θ)} − 20. (7)
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We want to maximize the TTP, or equivalently, minimize the

negative of TTP. Thus, we define our QoI for tumor control as

M(u, θ) = −TTTP(u, θ) to be compatible with the definition of a

general minimization problem (see Section 2.7).

In general, the nonlinear effects of the underlying

computational model and the non-parametric distributions

of θ prohibit one from obtaining an analytic expression for the

distribution of the QoI, hence we rely on theMonte Carlo sampling

approach. We sample a realization of the parameter set θ from the

posterior distribution describing a patient’s digital state, solve the

forward model in Equation (4) to obtain the TTP, and compute

the QoI M(u, θ). The process is continued till a desired number of

samples nMC of θ are processed to obtain the realizations of TTP as

shown in Figure 3A. The distribution of TTP and the connection

withM(u, θ) is illustrated in Figures 3B, C.

To make decisions concerning the patient-specific design of

optimal treatment regimens, there are different statistics associated

with the distribution of M(u, θ) that can be used as the reward

function. We use a risk measure as the statistic to characterize the

risk in tumor control associated with a given treatment regimen u.

The risk measure is denoted by R :U × � 7→ R. Different types

of risk measures can be used to quantify the risk associated with

tumor control, such as the probability of exceeding a threshold

TTP value and the α-quantile for a set risk level α. We use the

α-superquantile risk measure (Rockafellar et al., 2000; Rockafellar

and Royset, 2013, 2015; Kouri and Surowiec, 2016), which has

certain desirable mathematical properties. The α-superquantile

satisfies two notions of certifiability in risk-based OUU (Chaudhuri

et al., 2022): (i) accounting for near-failure and catastrophic

failure events, and (ii) preserving convexity of the underlying

QoI to aid in convergence guarantees for risk-based optimization

formulations. The α-superquantile risk measure accounts for the

magnitude of the largest 100(1− α)% realizations that captures the

specified portion of the worst-case scenarios through risk level α. In

oncology, it is important to account for the extent to which a tumor

progresses beyond a specified threshold or remains in remission but

close to the threshold rather than just the frequency of exceeding

the threshold. Clinical ramifications of such extreme cases could

result in under-treatment of aggressive disease resulting in poor

tumor control and early disease progression. This is especially

important in high-grade glioma where the prognosis is already

overwhelmingly poor. The α-superquantile risk measure can take

into account the magnitude of the TTP exceeding a set threshold to

build in a desired level of conservativeness in a data-driven way.

To define the α-superquantile risk measure, we first define the

related quantity of α-quantile Qα for risk level α ∈ (0, 1) as

Qα

[

M(u, θ)
]

:= F−1
M(u,θ)

(α), (8)

where F−1
M(u,θ)

is the inverse cumulative distribution function of

M(u, θ). Then, we can define the α-superquantile Qα[M(u, θ)] as

Qα[M(u, θ)] := Qα[M(u, θ)]+

1
1−α

E

[

[

M(u, θ)− Qα

[

M(u, θ)
]]+

]

, (9)

where [·]+ = max(0, ·). When the cumulative distribution of

M(u, θ) is continuous, we can view Qα[M(u, θ)] as the conditional

expectation of the QoI conditioned on the QoI exceeding the α-

quantile as Qα[M(u, θ)] = E
[

M(u, θ) | M(u, θ) ≥ Qα

[

M(u, θ)
]]

.

We use Algorithm 1 in Chaudhuri et al. (2022) to estimate the α-

superquantile through Monte Carlo simulations. Figure 3C shows

an illustration of the data-driven conservativeness inferred from

the Monte Carlo samples when using α-superquantile compared

to α-quantile (Qα[M(u, θ)] > Qα[M(u, θ)]).

The α-superquantile risk measure is used to formulate a risk-

based optimization problem under uncertainty to select the optimal

treatment regimen as described in Section 2.7. The α-superquantile

risk measure helps in making risk-aware decisions, where the risk

preference for each patient can be adjusted by changing the value of

α. Hence, larger values of α lead to more risk-averse decisions. We

demonstrate our approach with a value of α = 0.95.

2.7. Optimal patient-specific RT treatment
regimens under uncertainty

In this work, we consider two clinical objectives: (i) minimizing

the risk associated with the QoI characterizing the tumor control,

and (ii) minimizing toxicity through a proportional quantity to

the total RT dose. To define personalized optimal RT regimens

achieving these goals, we formulate a multi-objective risk-based

optimization problem under uncertainty. This method results in a

suite of eligible optimal RT regimens featuring different levels of

trade-off between (i) decreasing toxicity by minimizing the total

dose, or (ii) minimizing the risk associated with tumor control. The

multi-objective formulation is given by

u
∗ = argmin

u∈U

(

R(M(u, θ)), 5‖u‖1
)

, (10)

where optimized therapy comes into effect after the first week of

RT and we optimize the RT doses for the remaining five weeks as

denoted by u = [u1 = 2, u2, . . . , u6] (see Section 2.3). Note that

we can also explore the trade-off with changing risk preferences

by varying the risk level α for the α-superquantile risk measure,

as discussed in Section 2.6. An illustration of the predictive digital

twin for HGG that shows the specific timeline is shown in Figure 4.

To solve the multi-objective problem in Equation (10), we

reformulate it into a constrained single-objective problem using the

ǫ-constraint method (Haimes, 1971; Hwang and Masud, 2012) as

u
∗ = argmin

u∈U

R(M(u, θ))

s.t. 5‖u‖1 ≤ Dmax,

(11)

where Dmax is the total dose to be delivered. The value of

Dmax is varied over a range of total doses to obtain the

Pareto optimal solutions (Hwang and Masud, 2012). Each of

the Pareto optimal solutions provide different balance of toxicity

and tumor control. Hence, the ǫ-constraint method is suitable

for our application since we have a known primary objective

of minimizing the risk associated with tumor control, while

reducing the dose is a secondary objective for controlling

toxicity. We also have a structured way to define the range

of values for Dmax based on the preferred total dose, which
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FIGURE 3

Illustration of TTP and use of negative TTP as QoI. (A) Visual representation of TTP for various trajectories obtained from nMC Monte Carlo samples of

θ , (B) histogram of samples of TTTP(u, θ ), and (C) histogram of samples of QoI −TTTP(u, θ ) along with the estimated risk with α = 0.95.

solves the challenge of selecting meaningful levels in the ǫ-

constraint method. Thus, the specific advantages of the ǫ-

constraint method in the context of the multi-objective problem

defined in Equation (10) are: (i) preserving properties of

the underlying problem, such as convexity of QOIs and risk

measures, and (ii) ease of specification of the number of Pareto

optimal treatment plans by selecting the number of Dmax values

and solving a single-objective constrained optimization problem

each time.

The solution of Equation (11) will always lead to an optimal

treatment regimen with active constraint (5‖u∗‖1 = Dmax) since

increasing dose directly leads to decreasing risk. However, after

an initial analysis of the optimization problem in Equation (11),

we found that it leads to sub-optimal solutions for patients whose

HGG exhibits a low tumor cell proliferation rate and/or low initial

tumor burden. We observed that these patients do not require

the maximum total dose enforced by an active constraint at the

optimal solution to achieve the same amount of tumor control

after the conclusion of the RT regimen. Typically for such patients,

the amount of tumor control corresponds to a maximum possible

value of 132 days for the TTP realizations based on the finite

time-horizon of 152 days for our simulations. In other words,

the same amount of risk associated with tumor control can be

obtained while reducing the total dose below Dmax for these

patients. To account for such cases, we add an additional penalty

term using parameter λ (here, λ = 0.001) on the total delivered

dose as

u
∗ = argmin

u∈U

R(M(u, θ))+ λ‖u‖1

s.t. 5‖u‖1 ≤ Dmax.

(12)

The single-objective constrained optimization problem

in Equation (12) is solved for various selections of the total

dose threshold, Dmax ∈ {40, 50, 60, 70, 80, 100} Gy, to obtain

the Pareto front of optimal solutions. The SciPy Python

package (Virtanen et al., 2020) is used for solving the optimization

problem. We use the basin-hopping algorithm (Wales and

Doye, 1997) for multi-start local optimization with the

gradient-free COBYLA (constrained optimization by linear
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FIGURE 4

Predictive digital twin timeline for HGG patients. The predictive digital twin features a personalized risk-based strategy to optimize the adaptive RT

regimen under uncertainty. This strategy is constructed assuming a standard collection of MRI data during the course of the clinical management of

HGG after surgery, whereby MRI scans are prescribed after the surgical intervention (day 0), before the onset of RT (day 20), and during the second

week of the RT regimen (day 27). On day 27, the digital twin is calibrated using the MRI data and then the risk-aware treatment plan is solved using

the calibrated model and deployed for the remaining five weeks of RT.

approximation) optimizer (Powell, 1994) from the SciPy package.1

We use 20 restarts of COBYLA with a maximum of 200

function evaluations in each restart. The risk estimation in each

function evaluation during the optimization uses nMC = 5000

forward simulations.

The risk-based multi-objective problem formulation with the

specific choice of objectives used here has the following desirable

properties:

• accounts for uncertainty during clinical decision-making

process to provide multiple patient-specific optimal treatment

regimens

• leads to a suite of patient-specific optimal treatment regimens

with different levels of trade-offs between tumor control and

toxicity from RT to allow more flexibility to consider the

patient’s and the treating physician’s preferences

• provides an optimal treatment regimen option for a patient

that can achieve similar tumor control as the SOC,

but with reduced RT dose to mitigate toxicity effects

whenever possible

• provides an optimal treatment regimen option with

increased RT dose for patients with aggressive cancer,

where the SOC does not provide sufficient tumor control

1 SciPy Basin-hopping; SciPy COBYLA.

either for patient preference or to allow for further

surgical intervention

2.8. Survival analysis

To assess the tumor control achieved with the different

optimized treatment regimens for varying Dmax and compare

them against the SOC, we analyze the time to tumor progression

across the in silico patient cohort using the Kaplan-Meier

estimator (Kaplan and Meier, 1958; D’Arrigo et al., 2021). In this

case, a right-censor criterion is enforced to account for the finite

time-horizon of HGG response simulation at tfinite = 152 days,

which leads to a maximum TTP value of 132 days. For a cohort

of np patients, we define the probability of survival to tumor

progression at time t as the probability of the α-superquantile value

of the TTP being longer than time t. Thus, for each treatment

obtained with a different Dmax, the α-superquantile value of the

TTP of each patient is used to calculate the survival probability as

PS(t) :=
∏

i:ti≤tfinite

(

1−
d(ti)

m(ti)

)

, (13)

where d(ti) denotes the number of patients with TTP equal to time

ti and m(ti) are the number of patients with TTP larger than time
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ti−1 for all i = 0, . . . , np. A further advantage of the probabilistic

modeling approach used in the predictive digital twin is the ability

to estimate the variance in survival probability numerically from

the samples of the TTP instead of relying on the approximation

provided by the Greenwood’s formula (Greenwood, 1926).

To assess the statistical significance of different treatment plans,

the logrank test (Bland and Altman, 2004) is used to compare

the survival distributions between digital-twin-based treatment

plans and the SOC. The logrank test is implemented through the

LifeLines Python package (Davidson-Pilon, 2019). Note that the

null hypothesis for this test is that there is no difference between

the populations in the probability of survival, so significant p-values

indicate that the considered treatment is significantly different from

the SOC.

3. Illustrative cohort of in silico

patients

This section presents an illustration of the digital twin

methodology for a cohort of in silico patients. We describe

the details of the computational study in Section 3.1 followed

by the results for Bayesian calibration (Section 3.2), risk-based

OUU (Section 3.3), and survival analysis (Section 3.4). The code

used for generating the results reported for the predictive digital

twin is available at https://github.com/Willcox-Research-Group/

predictive-dtwin-glioma-frontiers.

3.1. Computational study format

We initialize an in silico cohort of 100 patients whose true

physical states θtrue are determined by sampling from the marginal

distributions of the population level priors (see Section 2.4).

Noisy measurements are then generated from this cohort using

Equation (5) to mimic the data that would be collected in the

clinic. The specific observational and control timeline used for

our predictive digital twins is outlined in Figure 4. Note that we

are considering a finite time-horizon of three months post-RT

(tfinite = 152 days) for our simulations and optimization. Thus, the

maximum possible value of TTP is 132 days [see Equation (7)].

We divide the cohort of 100 patients into three groups based on

the SOC TTP α-superquantile exhibited by the patient:

(i) Early progressors: 16 patients with SOC TTP α-superquantile

≤ 1 month after end of RT

(ii) Intermediate progressors: 62 patients with SOC TTP α-

superquantile between 1-3 months after end of RT

(iii) Late progressors: 22 patients with SOC TTP α-superquantile

≥ 3 months after end of RT

We first analyze the results for Bayesian calibration and risk-

aware treatment plans produced by the patient-specific predictive

digital twins for three patients with varied growth and response

behaviors. The underlying physical state of the three patients

is provided in Table 3. Note that these patient parameters are

not known to the digital twin and are only used to generate

observational data for the case-study. Patients 1 and 2 are

intermediate progressors and Patient 3 is an early progressor

according to the patient groups defined above. We then analyze

the effectiveness of our predictive digital twins over the 100 patient

cohort and the three patient groups.

3.2. Patient-specific Bayesian calibration of
the digital twin

The patient-specific calibrated digital twin is obtained by

assimilating the three observational data available for each patient

as described in Section 2.5, while the priors of all patients are

obtained from population clinical data as described in Table 2.

The histograms in Figure 5 show the prior and the posterior

distributions for the probabilistic model parameters θ in the digital

state for the three case-study patients.We observe that the posterior

distributions concentrate around the (unseen) true physical state

θtrue given in Table 3 (shown by dashed lines in Figure 5). We can

also see that the overall uncertainty in the probabilistic parameters

reduces compared to the prior distribution. In the clinical context,

this could be interpreted as updating our belief about the specific

patient’s tumor dynamics as more data is collected during the

clinical management of the disease.

To forecast model uncertainty, the uncertainty in the

probabilistic model parameters is propagated forward by sampling

10, 000 parameter sets from the joint posterior obtained by MCMC

and solving the mechanistic model in Equation (4) to generate the

posterior trajectories. Figure 6 shows the posterior trajectories for

the three case-study patients with the maximum and minimum

bands. The posterior trajectories simulated from the calibrated

digital twins exhibit tighter bounds (as shown by the orange

posterior vs blue prior shaded regions) compared to the prior

trajectories, which indicate a decrease in overall uncertainty. This

is a consequence of our updated belief about the patient’s tumor

dynamics resulting from the integration of longitudinal data into

the digital twin for each individual patient. We also see that the

observations for each patient are captured within the shaded region

of the respective posterior trajectories, which indicates the range of

posterior trajectories. The quantification of uncertainty in model

outputs is crucial for estimating the risk of tumor propagation used

for risk-aware clinical decision-making.

3.3. Patient-specific treatment optimization
under uncertainty

We now present the risk-aware optimal treatment regimens

obtained using the calibrated digital twins. We use the α-

superquantile risk measure for quantifying risk of tumor growth as

described in Section 2.6 and then solve a risk-based multi-objective

problem to obtain a suite of patient-specific optimal treatment

regimens under uncertainty as described in Section 2.7. Figure 7

shows the results of our patient-specific treatment optimization for

the three case-study patients. We plot the TTP α-superquantile

against the dose threshold to show the Pareto front indicating the

trade-off between the two quantities. Figure 7 shows that the SOC

regimen is not the optimal dosing schedule in multiple ways. First,

for the applied radiation dose of 60 Gy, the optimal radiotherapy
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TABLE 3 Physical state model parameters θtrue for simulating in silico case-study patients.

Model parameter Patient 1 Patient 2 Patient 3

Proliferation rate ρ (day−1) 1.14e-01 1.09e-01 2.25e-01

Carrying capacity K (cells) 1.17e+11 1.09e+11 1.40e+11

Initial tumor burden Ninitial (cells) 1.54e+10 2.60e+10 2.62e+10

Radiosensitivity parameter α (Gy−1) 1.05e-03 4.58e-02 3.90e-02

Chemotherapy surviving fraction SC 0.82

Radiosensitivity parameter ratio α/β (Gy) 10

plan can demonstrate superior tumor control in terms of longer

TTP. Second, similar or better tumor control can be exerted with a

reduced amount of dose compared to SOC, as shown by the TTP

values at the 40 Gy and 50 Gy levels. Third, greater tumor control

than the SOC regimen can be exerted for total doses ≥ 60 Gy as

seen in Figure 7.

Figure 8 shows the entire distribution of the TTP using the

optimized treatment regimens compared to the SOC treatment for

the three case-study patients. For Patient 1 in Figure 8A, we observe

that with total dose constraint Dmax ≥ 60 Gy we see a progressive

separation between the TTP distributions obtained from the SOC

and the optimized treatment plans as we increase the total dose.

The TTP distribution for optimized plans move toward higher TTP

values. Thus, the optimal treatment plans lead to TTP distributions

that are therapeutically superior than the ones obtained from the

SOC. Additionally, considering total doses lower than the 60 Gy

administered by the SOC, we observe that there is not much

separation in the distributions of TTP. This result highlights the

possibility of reducing the total dose administered in the SOC

protocol by 10-20 Gy while obtaining a similar tumor control for

Patient 1. A similar trend in separation of TTP distributions is

seen for Patient 3, as shown in Figure 8C. In fact, the separation is

obvious even at a total dose constraint of 50 Gy, for which the TTP

distribution obtained from the risk-aware optimization already

indicates superior therapeutic outcomes than the one obtained

from the SOC. At higher doses, the TTP distributions from the

optimized results shift toward higher TTP values for patient 3 and

shows separation from the TTP distribution obtained from the

SOC. For Patient 2 in Figure 8B, the most likely outcome is that

the disease is controlled within the finite time horizon considered

in this study (i.e., tfinite = 152 days). However, the optimized

treatment plans still increase the probability of treatment success.

This can be seen by the higher peaks at the “end of simulation” in

Figure 8B.

The SOC and optimized treatment regimens for the three case-

study patients are visualized in Figure 9, which shows the dose

schedule over the six weeks of RT. At lower total dose levels,

treatment plans tend to feature one large dose roughly halfway

through the six week treatment course. At intermediate total doses,

there is a secondary dose similar to the SOC in the second week of

treatment and a large dose applied toward the end of the treatment

timeframe. Finally, strategies featuring a higher total dose tend to

feature one large dose in the second week of treatment and then

another dose toward the end of the therapy. This second dose

can be larger or lower than the one delivered the second week of

treatment, but it tends to be larger than the corresponding SOC

dose. Overall, Figure 9 shows that optimized plans tend to leave

weeks without RT with only the chemotherapy being administered

during that time. This can be viewed as an additional advantage

with not requiring patients to come in every week.

We now analyze the performance of the predictive digital

twins at the cohort level relative to the SOC and highlight the

performance for the three patient groups defined in Section 3.1.

To this end, we deploy the predictive digital twins for each

of the 100 in silico patients to obtain patient-specific optimal

RT treatment regimens. Figure 10 shows the boxplot of TTP

α-superquantile values obtained for the patient-specific optimal

treatment regimens and the SOC treatment. We denote the

solution of the optimization problem in Equation (12) with

Dmax = X Gy as “OUU: X Gy” in Figure 10. We can see that

the optimal treatment regimens lead to better TTP compared

to the SOC over the cohort of 100 patients with Dmax ≥ 60

Gy. We further analyze the change in TTP α-superquantile

given by [(TTP α-superquantile from “OUU: X Gy”) −

(TTP α-superquantile from SOC)] for each patient in the different

patient groups. Figure 11 shows the boxplots for the change in TTP

α-superquantile values for early and intermediate progressors.

Figure 11A captures the response to optimal treatment for early

progressors. For optimal solutions “OUU: 60 Gy”, which use the

same total dose as the SOC, we obtain a median change in TTP

α-superquantile of +2.4 days with all 16 early progressors having

better TTP α-superquantile values compared to the SOC. The

higher dose optimal treatment regimens provide other therapeutic

options to the patient and the treating physician with up to +8.5

days median change in TTP α-superquantile. Figure 11B captures

the response to optimal treatment for intermediate progressors. In

this case, the optimal solution “OUU: 60 Gy” leads to a median

change in TTP α-superquantile of+7 days with all 62 intermediate

progressors having better TTP α-superquantile values compared

to the SOC. The higher dose optimal treatment regimens provide

additional therapeutic strategies with up to +21.3 days median

change in TTP α-superquantile.

The late progressors are not expected to have any reduction

in TTP since almost all treatment options reach the TTP α-

superquantile maximum value of 132 days. One can see that

the definition of late progressors coincides with the finite time

horizon considered. Instead, the late progressors can have similar

tumor control with reduction in total required dose. Recall that to

achieve this therapeutic objective of mitigating the toxicity effects

with our digital twin formulation, we use the penalty parameter
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FIGURE 5

Posterior parameter distributions of the calibrated digital twins after assimilating observed data at the three imaging visits are shown for three

patients: (A) Patient 1, (B) Patient 2, and (C) Patient 3. The dashed gray line indicates true parameter values for reference and not seen by the digital

twin. Note that the same prior distribution is used for initializing digital twins of all the patients. Posterior distributions concentrate around the unseen

true parameters and show reduction in uncertainty compared to prior distributions.

λ = 0.001 in Equation (12) to drive the optimizer to lowest

possible dose while obtaining the same level of tumor control,

as described in Section 2.7. Figure 12 shows that this approach

achieves a reduction in total radiation dose while maintaining a

similar treatment efficacy as SOC for the entire cohort of 100

patients as well as the three patient groups. We can see that risk-

aware optimal treatment plans can lead to a median of 10 Gy

(16.7%) reduction in total dose compared to the SOC over all

100 patients, while keeping the TTP α-superquantile within ±1

day of that obtained for the SOC. Analyzing the effect on the

different patient groups provides additional insight on the possible

amount of dose reduction depending on the underlying dynamics

of tumor response. For the early and intermediate progressors,

we can see a median reduction in dose of 10 Gy and 20 Gy,

respectively. However, for the late progressors we can see that

the median reduction in dose is 46.7 Gy. This comparatively

higher decrease in dose is a direct consequence of slower tumor

growth and lower number of tumor cells in the tumors of late

progressors within the post-treatment timeframe considered in

this study.
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FIGURE 6

Calibrated digital twin posterior trajectory after assimilating observed data at the three imaging visits compared to prior trajectory for the three

patients: (A) Patient 1, (B) Patient 2, and (C) Patient 3 (median shown by solid line; minimum and maximum shown by dashed lines). Posterior

trajectories capture the observed data and reduce uncertainty compared to prior trajectories.

3.4. Survival analysis of optimal treatments

We now show the results for the Kaplan-Meier survival

analysis described in Section 2.8. The results on survival analysis

indicate that making optimal decisions at the individual level using

patient-specific predictive digital twins provide either the same

survivability as SOC plans or improve it across the cohort of

patients. The survival curves in Figure 13 show that all optimal

therapeutic regimens generated with a total dose threshold greater

than or equal to that of the SOC plan of 60 Gy have survival curves

that are superior to the corresponding curve obtained with SOC

plan. There is a clear gap between the 80 Gy and 100 Gy plans and

the SOC with logrank p-values of 0.005 and 0.0002, respectively.

For the optimized therapy with maximum allowable dose of 60
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FIGURE 7

Pareto front showing the suite of patient-specific optimal therapy solutions obtained from the multi-objective risk-based OUU compared to SOC

treatment for the three patients: (A) Patient 1, (B) Patient 2, and (C) Patient 3. The treatment plans from OUU solutions show increased TTP

compared to the SOC.

FIGURE 8

Comparing TTP distribution using optimized treatment under uncertainty vs. SOC treatment for the three case-study patients: (A) Patient 1, (B)

Patient 2, and (C) Patient 3. Note that “end of simulation” refers to the maximum TTP value of 132 days stipulated by tfinite = 152 days. We can see the

optimized treatment plans lead to separation in TTP distributions compared to the SOC and move toward higher TTP values indicating superior

tumor control.

Gy, the survival curve is statistically superior to the SOC treatment

option with p-value of 0.05. Figure 13 further shows that the 40 Gy

plans show almost no difference in tumor control when compared

to the SOC. With a p-value of 0.35 ≫ 0.05, we conclude that the

optimized treatment plans with maximum allowable dose of 40 Gy

are not significantly different than the SOC, which uses 60 Gy.

4. Discussion

Our digital twin methodology provides the computational and

mathematical foundation to dynamically integrate patient data with

any given model of tumor growth and response. The predictive

digital twin can provide risk-aware personalized treatment plans
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FIGURE 9

Optimized dose schedules reveal di�erent strategies on a patient-specific level as well as for the solutions along the Pareto front for the three

patients: (A) Patient 1, (B) Patient 2, and (C) Patient 3. Generally, optimized dose schedules result in larger doses toward the end of the treatment time

frame.

FIGURE 10

Comparison between optimal treatment regimens under

uncertainty and SOC for TTP α-superquantile over the cohort of

100 patients. The solution of the optimization problem in

Equation (12) with Dmax = X Gy is indicated as “OUU: X Gy”. Optimal

treatment regimens lead to better TTP with Dmax ≥ 60 Gy and

similar TTP with Dmax < 60 Gy when compared to the SOC.

and we demonstrate it through optimized RT treatment regimens

for HGG. There is a rich literature of modeling glioma growth and

response across different scales (Alfonso et al., 2017; Hormuth et al.,

2022); however, there are limited approaches that integrate these

models with patient-specific data to optimize or adapt therapy in a

dynamic fashion while accounting for underlying uncertainty. For

development and demonstration of this framework, we employed

an ODE model describing the total tumor cell proliferation.

Response to radiotherapy and chemotherapy were reduced to

an instantaneous effect at the time of treatment. While the

model’s biological detail is sufficient to demonstrate from end-to-

end the key components of the predictive digital twin, a more

biologically complex model may be needed in the clinical setting

to account for inter-tumor heterogeneity in treatment delivery,

proliferation rates, and resistance to therapy. Brain tumor growth

and response to treatment has been described via a more complex

reaction-diffusion model (Swanson et al., 2000; Alfonso et al.,

2017; Hormuth et al., 2021c) that describes the spatial-temporal

evolution of tumors cells throughout the brain due to invasion

(i.e., the diffusion term) and proliferation (i.e., the reaction term).

Our predictive digital twin can be readily adapted to other more

complex models and cancer types where the prerequisite spatial-

temporal or temporal data are available. We plan to extend the

predictive digital twin to a more descriptive partial differential

equation model that can extract the spatial information, but comes

with a much higher computational cost challenge. These partial

differential equation models could incorporate other components

of the tumor microenvironment including the vasculature (and the

blood brain barrier) which fundamentally influences the delivery

and efficacy of chemotherapy and RT (Hormuth et al., 2021b).

We have previously explored these components at the pre-clinical

(Hormuth et al., 2020) and clinical levels (Hormuth et al., 2021c)

and it would be natural to apply our digital twin framework to

these models. While this digital twin focused on the delivery of RT

concurrently with chemotherapy, our predictive digital twin could

be adapted to other treatment modalities (e.g., immunotherapy,

tumor treatment fields, convection-enhanced delivery) provided

the pre-requisite data andmodels are available.We will also explore

the critical issue of when to get the patient in to gather more

imaging data.

We stress that the overall motivation of this work was the

development of a digital twin framework which could be applied

to any biology-based model of tumor growth. However, clinical

treatment should ultimately be based upon established clinical

guidelines (Horbinski et al., 2023). Indeed, one limitation of this

study is the use of an in silico patient cohort whose growth

and response parameters are sampled from literature values and

governed by our model. We would anticipate that when applied to

actual patient data, the precise gains between different RT regimen

would differ to those presented in this work due to variability in the

patient population and limitations of our current model. Therefore,

a clinical trial would be necessary to establish the benefit of digital

twin adapted RT regimens.

The optimized treatment regimens identified here tended

toward a more hypofractionated (i.e., larger dose per day over a
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FIGURE 11

Change in TTP α-superquantile when using optimal treatment regimens as compared to SOC for (A) early progressors: 16 patients with TTP

α-superquantile <1 month after end of RT and (B) intermediate progressors: 62 patients with TTP α-superquantile between 1 and 3 months after end

of RT. Median values are indicated in text above each box plot. The solution of the optimization problem in Equation (12) with Dmax = X Gy is

indicated as “OUU: X Gy”. The median change indicates longer TTP compared to the SOC when optimal treatments are used.

FIGURE 12

Reduction in total dose compared to SOC total dose of 60 Gy to achieve TTP α-superquantile within ±1 day of SOC over the cohort of 100 patients

and for the di�erent patient groups of early, intermediate, and late progressors. Median values are indicated in red text above each box plot. Optimal

treatment plans lead to 16.7% median dose reduction over the 100 patient cohort and 77.8% median dose reduction for the late progressors

compared to the SOC.

shorter period of time) or intermittent paradigm for treatment.

While not widely used in the standard-of-care setting for initial

treatment, hypofractionated radiotherapy is safe and tolerable

(Gutin et al., 2009) and employed in the recurrent setting and

for patients with poor prognoses (Trone et al., 2020). Compared

to standard treatment schedules, hypofractionated radiotherapy

has an increased cell kill over a shorter period of time, potential

immunogenic effects, but at a potentially increased neuro-toxicity

(Hingorani et al., 2012; Reznik et al., 2018). In the context of

first-line treatment following surgery for HGG, the benefits of

hypofractionated radiotherapy are less clear but some studies have

reported similar tumor control and a palliative benefit due to its

condensed treatment schedule (Floyd et al., 2004). Other modeling

approaches from Leder et al. (2014), Brüningk et al. (2021), and

Randles et al. (2021) have also identified optimized therapies that

do not conform to the standard treatment paradigm. Recently, in

the pre-clinical setting, Randles et al. (2021) predicted improved

outcomes with a hyperfractioned regimen (i.e., smaller doses more

than once a day) compared to standard dosing and this was

validated via experiments. At the clinical level, Brüningk et al.

(2021) explored intermittent radiation therapy (i.e., 6 Gy × 1 day

every 6 weeks) in comparison to hyperfractionated radiotherapy

for recurring disease. Brüningk et al. (2021) observed similar tumor

control for both scenarios, but prolonged time to progression when

additional intermittent doses of radiotherapy were delivered. In a

future work, we plan to explore different clinical objectives and

treatment controls, which could lead to other types of treatment

regimens with further improvement in treatment efficacy.
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FIGURE 13

Illustrating patient-specific digital twins for cohort of 100 patients and analyzing the performance of proposed optimal treatment plans vs. SOC

through Kaplan-Meier survival analysis using the TTP α-superquantile values.

5. Conclusions

We have developed a predictive digital twin methodology that

enables end-to-end uncertainty quantification and optimization of

personalized treatment regimens under uncertainty. The predictive

digital twins employ a Bayesian perspective to account for

uncertainty through the entirety of the clinical process to capture

our knowledge (or lack thereof) of the individual dynamics. We

illustrate the effectiveness of the predictive digital twin to optimize

RT treatment plans for individual high-grade glioma patients.

This subclass of tumors are aggressive and highly heterogeneous

in nature, motivating the need for patient-specific modeling and

treatment planning. We applied the predictive digital twin to a

cohort of in silico patients with response and growth characteristics

assigned from literature studies. We calibrated the digital twin with

patient-specific data and used the calibrated digital twin to inform

risk-aware clinical decision-making. We solve a multi-objective

risk-based optimization under uncertainty problem to provide a

suite of treatment plans balancing tumor control and toxicity. The

risk-aware patient-specific optimization of the dose for the in silico

study demonstrated that we were able to extend the progression-

free survival for the standard total dose of 60 Gy relative to the

standard-of-care. Additionally, we were able to identify potential

reductions in the total dose delivered for similar tumor control

response as the standard-of-care. These results represent a first

step toward a practical digital twin for treatment optimization and

future studies should expand this approach to data collected in the

clinical setting.
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