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The accurate and comprehensive mapping of land cover has become a central

task in modern environmental research, with increasing emphasis on machine

learning approaches. However, a clear technical definition of the land cover class

is a prerequisite for learning and applying a machine learning model. One of

the challenging classes is naturalness and human influence, yet mapping it is

important due to its critical role in biodiversity conservation, habitat assessment,

and climate change monitoring. We present an interpretable machine learning

approach to map patterns related to territorial protected and anthropogenic areas

as proxies of naturalness and human influence using satellite imagery. To achieve

this, we train a weakly-supervised convolutional neural network and subsequently

apply attribution methods such as Grad-CAM and occlusion sensitivity mapping.

We propose a novel network architecture that consists of an image-to-image

network and a shallow, task-specific head. Both sub-networks are connected by

an intermediate layer that captures high-level features in full resolution, allowing

for detailed analysis with a wide range of attribution methods. We further analyze

how intermediate layer activations relate to their attributions across the training

dataset to establish a consistent relationship. This makes attributions consistent

across di�erent scenes and allows for a large-scale analysis of remote sensing

data. The results highlight that our approach is a promising way to observe and

assess naturalness and territorial protection.

KEYWORDS

explainable machine learning, attributions, saliency maps, weakly-supervised learning,

remote sensing, Sentinel-2, territorial protection, AnthroProtect

1 Introduction

Accurate and comprehensive land cover (LC) mapping has become a central task in

modern environmental research, driven by the increasing adoption of machine learning

(ML) methods. However, this process faces challenges, particularly in defining and

classifying LC types that lack a clear technical definition, such as natural and human-

influenced areas. Nevertheless, accurate mapping of these regions is crucial, as areas with

limited human influence offer significant ecological and social benefits. Therefore, it is
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important to identify and preserve such positive characteristics and

ecological functions for conservation and sustainable development.

Approaches such as the human influence index by Sanderson

et al. (2002) provide important insights into the global distribution

of naturalness. However, they are restricted to low spatial and

temporal resolution due to their underlying data. In contrast,

satellite imagery is a valuable tool for continuously monitoring

undisturbed regions, moreover reducing the need for physical

visits. To address the ambiguity in mapping ecological naturalness

and move toward a more technical characterization usable for

automated mapping, interpretable ML techniques can be used, as

highlighted by Roscher et al. (2020).

Interpretable ML refers to the development of models

and techniques that represent the ML decision process in

understandable terms to humans. When combined with domain

knowledge, these interpretations can lead to explanations that

are sought for various reasons. Beyond gaining trust as a

common reason, interpretable ML supports finding patterns

in the given data and thus can provide novel scientific

knowledge. Attribution methods, for example, are valuable

tools to detect patterns in images by assigning an attribution

value to each pixel of the input image. This can be achieved,

for example, by training a convolutional neural network

(CNN) using targets at an image level, and, subsequently,

extracting information at a pixel level. Such a strategy can

be seen as a weakly-supervised segmentation task, where the

attributions are used to pixel-wise decide on the semantic

class (Kwak et al., 2017; Selvaraju et al., 2020; Zhang and Ma,

2021).

In this article, we introduce a method to map patterns that

account for protected and anthropogenic areas, as proxies for

naturalness and human influence, respectively. To this end, we use

satellite images from such regions to train a CNN with targets

at an image level. Subsequently, we employ diverse attribution

methods and map the patterns related to the two categories to

test scenes. In doing so, we propose a novel CNN architecture

that consists of an image-to-image network and a shallow, task-

specific head, e.g., a regressor or classifier. The intermediate layer

thus represents the patterns within the input as high-level features

with regard to the task at hand in full resolution. The attributions of

this representation are determined at a pixel-wise level by applying

a desired attribution method to the NN head. We provide two

methodological novelties concerning the NN architecture and the

evaluation of attributions:

• We provide high-level attributions with the resolution of the

input image (Figures 1A, D).

• We harmonize the attributions consistently across similar

activations throughout the training dataset. This way, we

establish a direct linkage between activations and attributions

that can be used for mapping test scenes (Figure 1E).

Abbreviations: ASOS, activation space occlusion sensitivity; CNN,

convolutional neural network; LC, land cover; ML, machine learning;

NN, neural network; WDPA, World Database on Protected Areas.

2 Related work

2.1 Mapping naturalness

The human influence index by Sanderson et al. (2002) provides

important insights into the global distribution of natural areas. It

is based on population density, land transformation, accessibility

indicators such as roads, and electrical power infrastructure.

Defined scoring methods result in an index, globally mapped with

a resolution of 1 km2. The wilderness quality index by Fisher et al.

(2010) is mapped within Europe using similar databases, but terrain

ruggedness is used instead of electrical power infrastructure. Both

methods are restricted to the low spatial and temporal resolution

of the data they are based on. Replacing some of the reliant

indicators with more recent geospatial data, the naturalness index

by Ekim et al. (2021) achieves a resolution of 10 m for regional

maps. However, these mapping approaches offer limited insight

since they are based on human-made assumptions. Using remote

sensing data to recognize patterns found in protected areas using

machine learning can solve this issue. Ma et al. (2019) review the

variety of remote sensing applications that can be addressed with

deep learning including a critical conclusion and open challenges.

Several remote sensing applications have been used for monitoring

protected areas (Wang et al., 2020).

2.2 Explainable ML and attribution
methods

ML models are able to find patterns and relations in large

datasets that are not necessarily recognizable by humans. Roscher

et al. (2020) highlight the usefulness of such models being

interpretable and explainable. There are various approaches in

the field of explainable ML, where Samek et al. (2021) review

the important ones specifically for deep learning applications. For

example, attribution methods such as Grad-CAM proposed by

Selvaraju et al. (2020) and occlusion sensitivity mapping proposed

by Zeiler and Fergus (2014) are valuable tools to detect image

patterns by assigning an attribution value to each pixel of the

input image.

There are various methods for achieving attribution maps.

Gradient-based approaches such as saliency maps by Simonyan

et al. (2014) take the gradients of the output score regarding

the input image as a measure for attribution. Since saliency

maps tend to be noisy, there are numerous extensions to

this approach such as SmoothGrad by Smilkov et al. (2017),

Guided Backpropagation by Springenberg et al. (2015), and

Integrated Gradients by Sundararajan et al. (2017). For Grad-

CAM (Gradient-weighted Class ActivationMapping), gradients are

usually computed regarding the last convolutional layer, averaged,

and multiplied by the activations of this layer (Selvaraju et al.,

2020). A different approach to receiving attribution maps is to

occlude parts in the input image and to identify subsequent

changes in the model’s outcome. Zeiler and Fergus (2014) replace

similarly shaped patches with a specific value in the input image

to compute occlusion sensitivity maps. Petsiuk et al. (2018)

extend this approach by occluding random areas in the image
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FIGURE 1

Grad-CAM applied to di�erent NN layers and harmonized Grad-CAM attributions. (A) Satellite image. The image is tiled into four tiles with 256× 256

pixels each. Each tile is treated separately for the following experimental examples. (B) Grad-CAM applied to the input layer. The attributions consider

low-level features, only. (C) Grad-CAM applied to the last convolutional layer. High-level features are considered but the resolution is low.

(D) Grad-CAM applied to our intermediate layer. High-level features are considered in full resolution. However, attributions exhibit inconsistency

across the tiles resulting in various intensities. (E) Harmonized Grad-CAM attributions. Attributions are consistent. (F) Harmonized attributions with

density consideration. Activations that are rarely represented in the training data are not considered when determining the attributions and are

masked (gray color). [Copernicus Sentinel data 2020].

instead of uniformly shaped patches (Randomized Input Sampling

for Explanation, RISE). There are multiple other well-known

attribution methods, such as LIME (Local Interpretable Model-

agnostic Explanations) by Ribeiro et al. (2016) and SHAP (SHapley

Additive exPlanations) by Lundberg and Lee (2017). Several ones

are evaluated on models for LC classification using Sentinel data

by Kakogeorgiou and Karantzalos (2021). They conclude that the

approaches Grad-CAM, occlusions, and LIME lead to the most

reliable results.

Most CNNs handling image-wise targets are built such that,

as the network gets deeper, the layers have a higher number

of channels but a lower resolution. This way, the receptive

field of the filters becomes larger and at the same time, fewer

computations have to be performed. Bengio et al. (2013), Zeiler

and Fergus (2014), and Selvaraju et al. (2020) show, that the

learned representation of a CNN captures higher-level features in

deeper layers. As a consequence, attribution methods applied to

deep convolutional layers consider high-level semantics but the

resulting attribution maps have a low resolution (cf. Figure 1C).

On the other hand, if applied to the input image low-level

semantics are considered in full resolution (Figure 1B). Adebayo

et al. (2020) show in their experiments that, in this case,

many saliency methods have an analogy to edge detectors only.

Therefore, Selvaraju et al. (2020) recommend applying Grad-CAM

to the last convolutional layer and increasing the resolution by

bilinear upsampling.

Attribution methods provide insights into the model’s

decision for individual input images. Nevertheless, the presence

of multiple patterns within a single image introduces a

complexity where these patterns can interact and influence

each other. Consequently, similar patterns might exhibit diverse

attributions across different images. However, especially in the

field of remote sensing, it is important to universally evaluate

attribution maps of large scenes and to be able to compare

them with each other. Our idea for harmonizing attributions

builds upon the approach of Stomberg et al. (2021), who

utilize a similar network architecture relating activations to

specific concepts.

3 Methodology

3.1 Network architecture and training

To obtain high-level features in full resolution, we combine an

image-to-image NN and a task-specific head. For the experiments

shown in this article we use a modified form of the U-Net by

Ronneberger et al. (2015), as it is a well-known architecture

for image-to-image tasks; and a task-specific head (regressor

or classifier) with significantly fewer parameters consisting of

convolutional and linear layers (see Figure 2).

Our modified U-Net has the following characteristics: (1) It

consists of four encoding and four decoding steps. Instead of two

convolutional layers per encoding or decoding step, our U-Net

has only one such layer. Furthermore, we reduce the number of

output channels for each convolution by a factor of two. It turns

out that the so reduced number of parameters is sufficient for the

complexity of our task. (2) The convolutional layers are activated

with leaky ReLU. ReLU could be used just as well. (3) We add

batch normalization after each convolutional layer. (4) Including

padding to each convolution, we preserve the image size at each

skip connection. (5) We replace the deconvolutional upsampling

with bilinear upsampling as proposed by Odena et al. (2016) to

prevent checkerboard artifacts. (6) Instead of a single-channel input

image, our U-Net takes Cin-channel input images. Furthermore,

we consider the number of activation map channels Cact as a

hyperparameter. The activation map is the output of the U-Net.

(7) The activation map is not batch-normalized and activated with

the hyperbolic tangent function (tanh) so that the activation map

has values in the range of −1 and 1. With this architecture, the

predicted activation map of an image with shape (h, w, Cin) has

shape (h, w, Cact)—so height h and width w remain unchanged.

The task-specific head consists of three convolutional layers

and two fully connected linear layers. Each convolutional layer

doubles the number of channels, has a kernel size of 5, and a

stride of 3. The output of the last convolutional layer is flattened.

Two fully connected linear layers follow with 384 and 1 neuron(s),

respectively. All hidden layers are activated with leaky ReLU.
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FIGURE 2

Architecture of our NN. It consists of a modified U-Net, followed by a task-specific head (regressor or classifier). It takes multispectral images and

predicts one score ŷ ∈ (0, 1). The activation map at the intermediate layer has the same height h and width w as the input image. [Created with

PlotNeuralNet by Iqbal (2018); Copernicus Sentinel data 2020].

The U-Net and the task-specific head are trained jointly end-

to-end on a regression or classification task. The loss function

and final activation function are chosen according to the task (see

Section 5.1).

3.2 Attribution methods and
harmonization

After the NN has been trained, a desired attribution method

is applied to the intermediate layer using the task-specific head.

This way, attributions of the representing high-level features are

determined on a pixel-wise level.

We harmonize the attributions across the whole training set

by calculating mean attributions for similar activations of the

intermediate layer. To this end, we define an activation space

as follows: Having N training samples, we obtain N activation

maps at the intermediate layer. We treat each activation (pixel)

in each activation map as a vector representing the Cact channels

of the activation map. These activations build an Cact-dimensional

activation space, in which each axis represents the values of one of

the Cact channels. The described steps are visualized in Figure 3,

steps (a) and (b), for the specific case Cact = 3. The intuition for

building the activation space is that similar activations are close

together in this space.

Each activation (pixel) of all activation maps is represented

as a vector in the activation space [Figure 3, steps (c) and

(d)]. Hence, every vector has an attribution determined by the

attribution method. We tile the activation space into (lh)
Cact

hypercubes with a side length lh. Within each hypercube,

we receive a distribution of attributions coming from similar

activations. We define the mean value of these attributions to

be a measure of the harmonized attribution for the volume of

the hypercube [Figure 3, step (e)]. In this way, the activation

space is discretized and an attribution is assigned to each discrete

volume (hypercube).

Simply calculating the mean value over all attributions within

a hypercube gives greater importance to data samples in which

the corresponding activations are represented more often; and it

gives less importance to those samples with fewer corresponding

activations. Therefore, we calculate the mean attribution within

each image and then take the unweighted mean of these mean

attributions over all images.

3.2.1 Activation space occlusion sensitivities
(ASOS)

To obtain conventional occlusion sensitivities, rectangular-

shaped patches are occluded in the activation maps. This

might lead to simultaneous occlusions of different activations

and, therefore, different high-level features. If these features

contrast in their attribution, this leads to an inaccurate

estimate of attributions. We, therefore, propose to not define

the occlusions by patches in the activation maps, but by

hypercubes in the activation space. For each hypercube, the

activations within its volume are occluded in the activation map.

This results in only similar activations being occluded at the

same time.

3.3 Predicting attribution maps of test data

Attributions of test data are no longer determined using

the original attribution method and the task-specific head.

First, the activation map is predicted using the trained image-

to-image network. Second, this activation map is evaluated

using the linkage between activation values and harmonized

attributions defined by the volumes of the hypercubes within

the activation space. Since our image-to-image network

is a pure CNN, test images can have any height h and

width w.

Activations within low-density regions in the activation space

rarely occur in the training data and are therefore not well
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FIGURE 3

Harmonizing attributions. (a) Activation maps of all N = 19, 123 training images are predicted using the image-to-image network. Here, each

activation map has Cact = 3 channels so that they can be visualized as red-green-blue images. (b) Each activation (pixel) in all activation maps is

represented within the three-dimensional activation space, in which each axis represents the values of one of the three channels. (c) For each

activation map, the attributions are determined—here using Grad-CAM. (d) All vectors in the activation space can be colored accordingly. (e) The

mean values within the hypercubes are calculated. (f) Having used the training data, we have defined a linkage between activations and harmonized

attributions. This linkage is used to directly determine attribution maps from activation maps—also for test data. The higher the attribution, the more

the corresponding activation is connected with protected characteristics (green); the lower, the more it is connected to anthropogenic

characteristics (purple); the closer to zero, the less connected to either of the classes (beige). In the color bar, µ stands for 1e-6. Only one out of

10,000 vectors is randomly chosen for visualizing the activation space. [Plotly Technologies Inc. (2015); Copernicus Sentinel data 2020].

represented by it. As a consequence, we set a density threshold

to disregard these regions when predicting attribution maps and

mask these areas (Figure 1F). This idea is related to the “area

of applicability” estimation proposed by Meyer and Pebesma

(2021) which, however, considers input features and distances

to clusters instead of activations and densities, respectively. The

exclusion of specific features increases the reliability of the

other attributions.

3.4 Code availability

The code for the methodology and the experiments is available

at: https://gitlab.jsc.fz-juelich.de/kiste/asos.

4 Study area and data

4.1 Protected and anthropogenic regions
in Fennoscandia

Over the last 300 years, the landscapes of Fennoscandia
(Norway, Sweden, Finland), especially forests, have seen
anthropogenically-driven changes before regulations were
introduced to protect them. This affects the southern regions
more than the northern ones. Kouki et al. (2001) and Östlund

et al. (1997) give detailed overviews of forest fragmentation

in Fennoscandia and the transformation of the boreal forest

landscape in Scandinavia, respectively. Nevertheless, there

have been longstanding, strict conservation efforts in certain

protected regions. All three countries have high environmental
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FIGURE 4

AnthroProtect dataset. (A) Shown are three Sentinel-2 images for each category: anthropogenic, WDPA Ia, Ib, and II. (B) Shown are the locations of

the 7,003 protected and 16,916 anthropogenic samples which are split into three independent subsets for training (80%), validation (10%), and testing

(10%). For better clarity, the coloring of both classes di�ers only for the training set. [Copernicus Sentinel data 2020; Plotly Technologies Inc. (2015);

Copyright holders of the map are Carto and OpenStreetMap contributors].

standards according to the Environmental Performance Index

by Wendling et al. (2020). Furthermore, both the human

influence index by Sanderson et al. (2002) and the wilderness

quality index by Fisher et al. (2010) map wide areas within

Fennoscandia as areas with relatively minimal (disruptive)

anthropogenic influence.

To find protected territories, we use the World Database on

Protected Areas (WDPA) by UNEP-WCMC and IUCN (2021)

which contains polygons of protected areas categorized as proposed

by Dudley (2008). We consider terrestrial areas of categories

Ia (strict nature reserve), Ib (wilderness area), and II (national

park) with a minimum area of 50 km2. To find anthropogenic

areas, we use the Copernicus CORINE LC dataset by the

European Environment Agency (2018) and locate areas with LC

classes 1 (artificial surfaces) and 2 (agricultural areas). Then,

three morphological functions are applied in the following order:

(1) closing with a radius of 2 km to remove holes and gaps,

(2) opening with a radius of 2 km to increase compactness and

filter small structures, and (3) dilation with a radius of 1 km to

create a buffer. Finally, all areas are filtered for a minimum area

of 50 km2.

4.2 Multispectral Sentinel-2 imagery

Within the given regions, we export multispectral images of

the Sentinel-2 satellites with a resolution of 10 m and a size of

256 × 256 pixels. Their instruments are specialized in vegetation

which we assume to provide significant patterns of protection and

anthropogenic influences, respectively. We decide to use Sentinel-

2 over Landsat 8/9, due to the better spatial resolution and the

additional red-edge bands. Further, Astola et al. (2019) conclude in

a study that Sentinel-2 outperforms Landsat 8/9 in predicting forest

parameters in Finland.

For each protected and anthropogenic area, we proceed as

follows: (1) The atmospheric corrected Sentinel-2 products (Level-

2A) are used with a resolution of 10 m. Bands with a resolution

of 20 m are upsampled using nearest-neighbor interpolation.

(2) Images are filtered for the time period of summer 2020 (July 1st–

August 30th). The temporal differences to WDPA from 2021 and

to CORINE LC from 2018 have a negligible effect. (3) A mask for

clouds, cirrus, and cloud shadows is created for each image using

the Quality-60 m band (QA60) and scene classification map (SCL)

provided by Sentinel-2. Only images with a mask fraction of <5%
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TABLE 1 Distribution of the CORINE LC classes in the AnthroProtect

dataset separated by classes.

CORINE LC class Protected/% Anthropogenic/%

11 Urban fabric 0.0 2.4

21 Arable land 0.0 26.4

23 Pastures 0.0 1.0

24 Heterogeneous agricultural
areas

0.0 8.2

31 Forest 34.6 50.8

32 Shrub and/or herbaceous
vegetation associations

27.1 3.7

33 Open spaces with little or
no vegetation

16.9 0.3

41 Inland wetlands 14.6 1.1

51 Inland waters 3.8 5.0

Other 3.0 1.1

100.0 100.0

within the region of interest are taken. (4) The masked areas are

dilated with a radius of 100 m to prevent artifacts at the transitions.

(5) For each pixel and band, the 25th percentile is calculated across

all remaining images in that region. Masked areas are not taken

into account. This way, we receive a single image composite for

that region. (6) The following ten bands are exported: B2, B3, B4,

B5, B6, B7, B8, B8A, B11, B12. (7) We manually look at the red-

green-blue channels (B4, B3, B2) and remove the image composite

if it has strong artifacts. This concerns a total of two regions in

the whole dataset. (8) The region of interest is tiled into images

of size 256 × 256 pixels. Samples for each category are shown

in Figure 4A.

Besides the mentioned protected and anthropogenic regions,

some further Sentinel-2 images are exported for regions that

are of interest for investigation. This includes several villages,

forests, power plants, wind parks, airports, and more. For

many of these regions, time series of the years 2017 to 2021

are included.

4.3 Land cover data

The following LC data is exported for each image and can

be used for evaluation purposes: (1) the Copernicus CORINE

LC dataset by the European Environment Agency (2018), (2) the

MODIS LC Type 1 (Annual International Geosphere-Biosphere

Programme Classification) by Friedl and Sulla-Menashe (2019),

(3) the Copernicus Global Land Service by Buchhorn et al. (2020),

(4) the ESA GlobCover by Arino et al. (2012), and (5) a composite

(most common value) of the Sentinel-2 scene classification map

(SCL). Data with lower resolution than 10 m has been upsampled

using nearest-neighbor interpolation. The distribution of the

CORINE LC classes over all protected and anthropogenic images

in the dataset is listed in Table 1.

TABLE 2 Number of samples (#) in the AnthroProtect dataset separated

by categories and subsets.

Class WDPA
category

#
Train

#
Val

#
Test

#
Total

Protected Ia 295 37 37 369

Ib 3,601 465 446 4,512

II 1,693 220 209 2,122

Anthropogenic – 13,534 1,670 1,712 16,916

19,123 2,392 2,404 23,919

4.4 Data split

The data is divided into three subsets for training, validation,

and testing with split fractions of 80/10/10%, respectively.

The three subsets are independent of each other, spatially

consistent, and categorically consistent. To ensure categorically

consistency, the data split is performed separately for each category

(WDPA categories Ia, Ib, and II, and anthropogenic). To ensure

independence and spatial consistency, in the first step, spatial

clusters are built as follows: Data samples are separated if their

distance is larger than 10 km using the clustering algorithm

DBSCAN developed by Ester et al. (1996). Large clusters are

spatially clustered again, using the k-means algorithm by Lloyd

(1982). Subsequently, all samples within one cluster are assigned

to the same dataset. Hereby, samples within very small clusters are

assigned to the training dataset. We use scikit-learn by Pedregosa

et al. (2011) to perform both clustering algorithms. Compared

with a random data split, our procedure reduces the incidence of

nearby samples appearing in different datasets. The data split is

listed in Table 2 and visualized in Figure 4B. It is ensured that all

investigative regions do not overlap with samples of the training,

validation, or test set.

4.5 Data availability

Our workflow for the data export is mainly based on Google

Earth Engine by Gorelick et al. (2017). The full AnthroProtect

dataset and the code for the data export are available at: https://

phenoroam.phenorob.de/geonetwork/srv/eng/catalog.search#/

metadata/6b1b0977-9bc0-4bf3-944e-bc825e466435.

5 Experiments and results

5.1 Main experiment

5.1.1 NN and training
We build our model using PyTorch by Paszke et al.

(2019). According to the multi-spectral Sentinel-2 data of our

AnthroProtect dataset, the number of input channels is Cin = 10.

We set the number of activation map channels to Cact = 3. Other

values are possible which is addressed in Section 5.2. Our modified

U-Net has about 1.8 million parameters. The task-specific head is

significantly smaller with about 0.2 million parameters.
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FIGURE 5

CutMix samples. (A) Two anthropogenic areas are CutMixed

resulting in score 0. (B) An anthropogenic and a protected area are

CutMixed resulting in score 0.16. (C) A protected and an

anthropogenic area are CutMixed resulting in score 0.72. (D) Two

protected areas are CutMixed resulting in score 1. [Copernicus

Sentinel data 2020].

Our data provides a binary classification task with the

classes anthropogenic and protected. However, we find that

our methodology works best, if we define a regression task by

implementing CutMix similar to Yun et al. (2019). This way, our

NN acquires a continuous understanding of anthropogenic and

protected characteristics making the NN sensitive to small changes

which is useful for most attribution methods. When applying

CutMix, we paste a stripe from a random sample to a random edge

of the original image. Thus, a spatial relationship between the two

categories (protected and anthropogenic) is maintained. The size

of the stripe makes up a random amount between 0 and 50% of

the original image. The label is adjusted proportionally resulting in

a target score between 0 and 1. Samples of resulting images and

their scores are shown in Figure 5. Yun et al. (2019) use CutMix as a

data augmentation technique combined with the cross-entropy loss

function. We, on the other hand, use CutMix to define a regression

task from classification labels and, therefore, make use of the mean

square error loss. Our last layer is activated with sigmoid, yielding

predictions ŷ in the range of 0 (anthropogenic) to 1 (protected).

The pixel values of the Sentinel-2 Level-2A products range from

0 to 10,000. We normalize all values to be in a range from 0 to 1 and

perform random image rotations of 0, 90, 180, 270◦ during training
to increase variability. Our model is trained with a batch size of 32

and using all 10 available spectral bands. We perform the 1cycle

learning rate policy by Smith and Topin (2019) with a maximum

learning rate of 1e-2 and optimize the model’s parameters with

stochastic gradient descent. For regularization, we add a weight

decay of 1e-4 to the loss function. In total, the model is trained for

5 epochs on a NVIDIA A100 40 GB PCIe for about 10 min.

The normalized root mean square error calculates as√
MSE/(ymax − ymin), where MSE represents the mean square

error, and ymin and ymax are 0 and 1, respectively. For the

training, validation, and test datasets, it results in values of 5.7,

6.0, and 5.9%, respectively. Under the assumption of a normal

distribution, this can be interpreted as the 1-sigma value, meaning

that 68% of all predictions have an error lower than about 6%. The

predictions of the test dataset are visualized in Figure 6. Predicting

the non-CutMixed test samples with the same trained model

and setting 0.5 as a decision threshold value, 1 out of the 1712

anthropogenic samples and 3 out of the 692 protected samples are

falsely predicted.

FIGURE 6

Evaluation of the test dataset. Each scatter point represents the

prediction of a CutMixed image. The closer the point to the

diagonal, the closer the prediction to the given target value.

[Matplotlib by Hunter (2007)].

5.1.2 Attribution methods and harmonization
With our trained model, we predict N = 19, 123 activation

maps for all CutMixed training samples. We determine their

attributions by applying the two well-known attribution methods

Grad-CAM by Selvaraju et al. (2020) and occlusion sensitivity

mapping by Zeiler and Fergus (2014) to demonstrate our

methodology. Both methods are computed using the Captum

library by Kokhlikyan et al. (2020). We further apply our proposed

ASOS method, which is based on occlusions defined by the

hypercubes in the activation space (Section 3.2.1).

Usually, only positive attributions are considered when

applying Grad-CAM by utilizing ReLU. However, since we face a

single-target regression task, we do not restrict the attributions to

positive values only. To determine occlusion attributions, we use a

patch side length of lpatch = 8 and a stride of lstride = 4. As discussed

in Section 3.2, we cover the tanh-activated values with zeros to

switch them off.

We use the activation space to harmonize the attributions as

described in Section 3.2. We set the side length of the hypercube to

lh = 0.1 which results in 8,000 hypercubes across the activation

space. We evaluate this number as a good compromise between

continuity and computation time. The use of other numbers of

hypercubes is discussed in Section 5.2.

5.1.3 Comparing attribution methods
Figure 7 shows the original and harmonized attributions

within the activation space for all tested attribution methods.

For Grad-CAM and ASOS, positive and negative attributions
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FIGURE 7

Original and harmonized attributions for di�erent attribution methods. (A) Grad-CAM. (B) ASOS. (C) Occlusion sensitivity mapping. The range of the

color bar is chosen according to the 99.9 percentile of all absolute harmonized attribution values for every method. [Plotly Technologies Inc. (2015)].

FIGURE 8

Distributions of the Grad-CAM attributions in the test dataset without CutMix, (A) subdivided into protected and anthropogenic regions;

(B) subdivided into CORINE LC classes. The visualization compensates for an uneven amount of the subcategories within the dataset. [Seaborn by

Waskom (2021); Matplotlib by Hunter (2007)].

are clearly separated across the activation space with neutral

attributions in between. Such a neutral area does not exist for

occlusion sensitivity mapping. Instead, original attributions are

rather mixed in the corresponding area. Other than the first

two attribution methods, occlusion sensitivity mapping works

independently of the activation values. Square-shaped patches are

occluded in the map and thus, various activations (features) might

be occluded at the same time leading to more noise within the

activation space.

After harmonizing the attributions, their distribution across

the activation space is similar for all methods. There are

some differences in the intensities, e.g., Grad-CAM’s positive

attributions are more intense while for ASOS it is the negative

attributions. Further, the neutral area is shifted for the occlusion

sensitivity mapping.

The similarity of the harmonized activation spaces

consequently applies to the attribution maps. Therefore, we

present only the results for Grad-CAM in the following.
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5.1.4 Analyzing test data
Figure 8 illustrates some distributions of the harmonized

attributions of the test dataset without CutMix. Scenes showing

protected areas have almost entirely positive attributions, while

scenes showing anthropogenic regions have mainly negative

attributions (Figure 8A). Figure 8B shows the distributions of

attributions subdivided into CORINE LC classes present in the

test dataset. The distributions basically reflect the amounts of LC

in the dataset classes (see Table 1): LC classes that only occur in

anthropogenic areas (urban fabric, arable land, etc.) have almost

entirely negative attributions; LC classes that mostly occur in

protected areas (open spaces, inland wetlands) have almost only

positive attributions. LC classes occurring in both areas (forest,

shrubs, and herbaceous vegetation, etc.) have both negative and

positive attributions. Patterns that clearly assign inland waters

to one of the two classes hardly seem to exist, resulting in a

distribution around zero.

5.1.5 Analyzing scenes
The attribution maps of some representative scenes are shown

in Figure 9. We mask pixels that have activations in a low-density

region within the activation space of the training data (visualized in

gray), specifically, a density <0.5 of the average density. The three

scenes in Figure 9 show: (A) the hydroelectric power plant Letsi in

Sweden which is located in an area barely inhabited by humans;

(B) North Ostrobothnia, a region in Finland, in which forestry and

unused wetlands encounter according to LUCAS data by Eurostat

(2018); (C) the villages of the municipality Alvdal in Norway which

are located within the Østerdalen valley. For the last example, there

has been significant tree cover loss within the years 2017–2020

according to the global forest loss mapping by Hansen et al. (2013,

https://gfw.global/3qJLGPX). Deforestation areas can be seen in

the Sentinel-2 image of 2020 but appear very small. Based on the

analysis of more examples, we make the following observations:

(1) Anthropogenic influences such as villages and agricultural areas

are well-mapped with our method (e.g., municipality Alvdal in

2017). So are large interruptions, e.g., caused by power plants (see

power plant Letsi). (2) Deforestation areas are also well-detected.
If there are single but large deforestation areas, the area is usually
mapped accordingly (e.g., power plant Letsi, above the upper lake).
If there are multiple small deforestation areas, attributions are
spatially expanded over the whole fragmented area (municipality
Alvdal in 2020). (3) Spatial expansions also occur along some roads
(power plant Letsi, lower part). However, other roads might not
be mapped at all (North Ostrobothnia). The same applies to most
power lines (power plant Letsi, going centered from top to bottom).

(4) Our model distinguishes between different patterns occurring
in forests. For example, the forests in Letsi have protected patterns,
whereas the forests in North Ostrobothnia have anthropogenic
patterns. In fact, a closer look at the Sentinel-2 image of North

Ostrobothnia (bottom left) reveals that trees have been planted

in rows. (5) Wetlands have almost always protected attributions

(North Ostrobothnia, top right). This behavior is so strong that

even the brownish fields in the lower part of the image result in

FIGURE 9

Scene samples showing a Sentinel-2 image and its harmonized Grad-CAM attribution map. (A) Hydroelectric power plant Letsi in Sweden, located in

an area barely inhabited by humans. The shown scene covers about 100 km2. (B) Forestry and unclaimed wetlands encounter in North Ostrobothnia,

a region of Finland. The shown scene covers about 100 km2. (C) Municipality Alvdal in Norway, whose villages are located within the Østerdalen

valley. The scene covers about 420 km2. Between 2017 and 2020, there was a large anthropogenic expansion due to deforestation. The color scale

of the attribution maps is the same as in Figures 3, 7. Attributions not predicted due to a low density in the activation space are colored in gray.

[Copernicus Sentinel data 2017 and 2020].
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protected attributions. These fields, however, are peat production

areas.

5.2 Complementary experiments

Unless specified, we use the same training procedure as for

the main experiment in Section 5.1 including hyperparameter and

model architecture choices.

Weight decay:A relevant parameter that affects the appearance

of the activation space is the weight decay. The higher the weight

decay, the denser the activations in the activation space. A large

weight decay leads to a collapse of activations into a narrow, tube-

like area (see Figure 10A). However, this does not significantly

change the harmonized attribution maps. Although the intensities

change, the basic appearance remains similar.

Number of hypercubes: The attributions are harmonized by

subdividing the activation space into hypercubes. The number of

hypercubes does not directly influence the spatial resolution of the

FIGURE 10

Harmonized activation spaces and attribution maps for: (A) High weight decay, specifically 1e-2 instead of 1e-4. (B) Low number of hypercubes,

specifically 64 instead of 8000. (C) Cact = 2 activation map channels. (D) Classification task without CutMix instead of regression. (E) ResNet-18 as

task-specific head instead of a shallow CNN. *Unlike the others, this activation space shows the non-harmonized attributions. (F) Using red, green,

blue, and near-infrared channels only. (G) Using 1% of the training data corresponding to 191 samples. The range of the color bar is individually

chosen according to the 99.9 percentile of all absolute harmonized attribute values. The results of the main experiment are shown in Figures 7, 9.

[Plotly Technologies Inc. (2015); Matplotlib by Hunter (2007)].
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attribution maps as they group the activations according to their

values rather than their spatial location. Minor differences can be

observed in the transitions between the harmonized attributions.

With fewer hypercubes, the transitions become less smooth and

more abrupt (see Figure 10B).

Number of activation map channels: In the main experiment,

we present results obtained with Cact = 3 activation map channels,

resulting in a three-dimensional activation space. If Cact = 2, the

activation space can be visualized on a plane; if Cact = 1, it can

be visualized as a histogram. The number of possible hypercube

positions exponentially grows with the number of dimensions,

making the attribution analysis more computationally expensive

for higher dimensions. Although the mean square error of our NN

is similarly high when choosing Cact = 1, the resulting attribution

maps look abstract, e.g., containing stripe-like structures. If we

choose Cact = 2, the resulting 2-dimensional activation space

looks similar to a projection of the three-dimensional one onto

a plane (see Figure 10C). Thus, the attribution maps look very

similar and it makes little difference whether we choose Cact = 2

or Cact = 3.

Regression vs. classification task: In Section 5.1, we train our

model on a regression task by implementing CutMix. Training our

model using classification labels and the binary cross-entropy loss,

the negative and positive attributions have significantly different

intensities (see Figure 10D). The reason for the different behavior is

that for classification, a small part within an imagemight have a rare

effect on the overall decision which has a corresponding effect on

the attributions. Except for the intensities, we nevertheless obtain

similar results in the attribution maps.

ResNet-18 as task-specific head: We replace the small task-

specific head of our NN with a ResNet-18. This way, the

intermediate layer, to which the attribution methods are applied,

is no longer at the rear part of the NN. Since this NN is significantly

deeper, we train it twice as long, namely 10 epochs. Positive and

negative attributions mix significantly more within the activation

space (see Figure 10E).

RGB-NIR bands: We evaluate how a change in the input

channels affects the appearance of the activation space. Training

our model using only bands B2 (blue), B3 (green), B4 (red), and B8

(near infrared) yields similar results compared to ourmodel trained

with all bands (Figure 10F). Also, the appearance of the activation

space is similar to the original space, albeit rotated and more peaky.

To run this experiment, we modify the number of input channels

of the model to Cin = 4 instead of 10.

Training data size: We further evaluate how the amount of

training data affects our results and use a random subset of 1%

of the training data corresponding to 191 samples. We train the

model for 500 epochs instead of 5 to maintain the total number

of iterations. The results show that the activation space and the

attribution maps appear similar to the ones obtained with the full

training dataset (Figure 10G).

6 Discussion

In the field of remote sensing, it is crucial that results

are comparable within large scenes and across different scenes.

However, this is generally not the case for attribution methods

because multiple patterns within a single image interact and

influence each other (see Figure 1D). Fortunately, inputs and

activations have a consistent relationship in pure CNNs, if we

disregard the outer edges of the image. By harmonizing the

attributions across the training data, we further create a linkage

between activations and attributions. Harmonized attributionmaps

are thus consistent across inputs and remote sensing scenes can be

evaluated adequately.

The activation space allows for analyzing and evaluating the
distribution of attributions in relation to the activations at a glance
across a dataset. For our task, we observe a reasonable assignment
for all tested attributionmethods: Positive and negative attributions
are separated within the activation space and there is a transition
between both areas (cf. Figure 7). This behavior strengthens
confidence in the original attribution methods. Excluding low-

density regions from the prediction of attribution maps further

increases reliability.

Using several attribution methods often results in significantly

different attribution maps (e.g., Kakogeorgiou and Karantzalos,

2021). However, by harmonizing the attributions we obtain

similar outcomes for all tested attribution methods (cf. Figure 7).

Certainly, the intensities of attributions and the region of

neutral attributions within the activation space slightly differ.

Basic behavior, however, remains the same. To adjust those

differences, in future research, our method can be used to

harmonize multiple attribution methods by averaging them

within the activation space . This can help leverage the strengths
of different attribution methods and balance their weaknesses.

Furthermore, the robustness of the interpretation can be analyzed

this way.

Our approach fulfills two aspects of weakly-supervised

learning, namely, inexact and inaccurate supervision (Zhou, 2018);

inexact because we do not provide segmentation data, and

inaccurate because there might be anthropogenic influences in

protected areas and vice versa within the training data. This makes

our methodology promising for weakly-supervised segmentation

learning (Pathak et al., 2015; Kwak et al., 2017) including

multi-class problems. Here, attributions are vectors and can be

harmonized target by target so that one obtains one attributionmap

for each target. Theoretically, this works with any kind of gridded

data, including photographic images. However, our methodology

is primarily designed to recognize patterns in test scenes associated

with certain properties rather than to predict exact segmentation

boundaries. In photographic images, these patterns are often edges;

hence, applying our method for weakly-supervised segmentation

is only meaningful to a limited extent. For LC classes in remote

sensing images, the crucial patterns are often structures; thus, the

application of weakly-supervised segmentation learning is more

appropriate. Nevertheless, the spatial expansion of the images’

context is not preserved in activation maps of deeper layers. That

is naturally given due to convolutional and pooling calculations

and has an equivalent effect on the attributions. Harmonizing the

attributions cannot enhance this issue. For this reason, very fine

objects like roads are not suitable for exact segmentation purposes.

Using an Attention U-Net as proposed by Schlemper et al. (2019)

instead of a pure CNN U-Net might help in improving this
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issue since attention layers help to focus the activations on certain

spatial regions in the image. In future research, it can even be

investigated whether attentions can be harmonized meaningfully

instead of activations.

There are many types of human influence and not all of

them are apparent from a satellite’s perspective. For example,

anthropogenic influence on wildlife cannot be detected unless the

wildlife has a measurable effect on the vegetation. Plants or soil

obscured by larger plants are not apparent in satellite images.

ML models generally show a low generalization ability if the test

data has a significantly different distribution compared to the

training data. Thus, outside of Fennoscandia, our trained model

is likely not applicable—particularly if the region has distinctly

different landscapes or ecosystems such as savannas or tropical

forests. Here, one could set up a training dataset similar to

AnthroProtect for the biogeographic region(s) of interest. However,

the low density of strictly protected or wilderness areas in some

biogeographic regions might make it challenging to create a

suitable dataset.

7 Conclusion

In this article, we present an approach for mapping land

cover patterns of protected and anthropogenic areas using

interpretable ML techniques. Specifically, we propose a novel

mechanism to accordingly map these patterns considering a

learned representation that captures high-level features in full

resolution. We do not explain the model’s behavior for single

input images, as it is commonly done, but we average the overall

behavior across the training dataset to recognize the existing

patterns. This is realized by establishing a direct relationship

between activations and attributions, ensuring consistency across

different scenes, and enhancing the trustworthiness and reliability

of the results. Our methodology allows for seamless integration

with a wide range of attribution methods, including Grad-

CAM and occlusion sensitivity mapping. At the same time, it

enables a novel attribution technique: activation space occlusion

sensitivities (ASOS).

Territorial protection can offer important ecological and social

benefits; and there are urgent and pragmatic reasons (conservation,

sustainable development, etc.) to identify where the positive

characteristics and ecological functions associated with naturalness

are present and able to flourish. With this objective, satellite

imagery allows for continuous monitoring of broad, undisturbed

regions without the need of visiting them. Being able to analyze

the extent and characteristics of non-anthropogenic areas, even

if approximate, is a valuable tool that could be utilized for

tracking conservation areas, reforestation efforts, and existing

ecological naturalness.
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