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A review on artificial intelligence
for the diagnosis of fractures in
facial trauma imaging

Tuan D. Pham*, Simon B. Holmes and Paul Coulthard

Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London,

United Kingdom

Patientswith facial traumamay su�er from injuries such as broken bones, bleeding,

swelling, bruising, lacerations, burns, and deformity in the face. Commoncauses of

facial-bone fractures are the results of road accidents, violence, and sports injuries.

Surgery is needed if the trauma patient would be deprived of normal functioning or

subject to facial deformity based on findings from radiology. Although the image

reading by radiologists is useful for evaluating suspected facial fractures, there are

certain challenges in human-based diagnostics. Artificial intelligence (AI) is making

a quantum leap in radiology, producing significant improvements of reports and

workflows. Here, an updated literature review is presented on the impact of AI

in facial trauma with a special reference to fracture detection in radiology. The

purpose is to gain insights into the current development and demand for future

research in facial trauma. This review also discusses limitations to be overcome

and current important issues for investigation in order to make AI applications

to the trauma more e�ective and realistic in practical settings. The publications

selected for review were based on their clinical significance, journal metrics, and

journal indexing.
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1 Introduction

Fractures in facial trauma include damaged bones of the facial skeleton: forehead (frontal

bone), zygoma (cheekbone), maxilla (upper jaw), mandible (lower jaw), nose, and orbit (eye

socket). Oral and maxillofacial trauma describes soft and hard tissue injuries of the mouth

and face. Trauma management has evolved significantly over the last few decades. There

has been a focus on reducing mortality during the “golden hour” for patients experiencing

polytrauma. There has also been an increasing emphasis on enquiring about the etiology

of the presenting injury, in terms of safeguarding need, and understanding the nature of the

physical injury. Facial fracturesmay result from interpersonal violence, road traffic accidents,

falls, sports and industrial accident.

Facial trauma is classified into injures of the lower, middle, and upper thirds of the face.

The upper third includes the frontal bone, the mid-third includes the maxilla, zygomas,

orbits, nose and naso-ethmoidal complex, whilst the lower third includes the mandible.

Another classification of facial-bone injuries is midface fractures, which are also known as

Le Fort fractures: Le Fort I, II, and III (Patel et al., 2022). This type of fractured bones is

named after Rene Le Fort who studied the blunt force trauma of corpse skulls and defined

the lines of weakness in the maxilla, where fractures occurred. Le Fort I is the fracture that

extends above the maxilla; Le Fort II includes the lower area of one cheek across the bridge

of the nose, and to the lower area of the other cheek; and Le Fort III is the fractured part

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2023.1278529
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2023.1278529&domain=pdf&date_stamp=2024-01-05
mailto:tuan.pham@qmul.ac.uk
https://doi.org/10.3389/frai.2023.1278529
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2023.1278529/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Pham et al. 10.3389/frai.2023.1278529

that is across the nasal bridge and bones surrounding the eyes.

The Le Fort classification was commonly adopted method for

describing maxillary fractures. It is reserved to describe the

precise occurrence according the initial description (Vujcich and

Gebauer, 2018). Because of the complex structure of the facial

bone framework, there are many other types of bones found

in the deeper structure of the face (Facial Fractures, 2020). The

structural, diagnostic, and therapeutic complexity of the individual

midfacial subunits, including the nose, the naso-orbito-ethmoidal

region, the internal orbits, the zygomaticomaxillary complex, and

the maxillary occlusion-bearing segment are considered to be more

important and of superior clinical relevance (Dreizin et al., 2018).

Figures 1–3 shows some CT slides of facial bone fractures (nasal,

mandible, orbit, and cheek).

Facial trauma accounts for a large number of admissions to the

emergency department and a high level of morbidity and mortality

(Hooper et al., 2019), mostly among the working-age population

that are those whose ages are<40 years (Bocchialini and Castellani,

2019). Thus, facial trauma can result in the loss of productivity,

which is greater than the population of patients with cancer or

cardiomyopathy (Bocchialini and Castellani, 2019). Major facial

bone fractures are caused by high-impact accidents such as traffic

collisions, falls, sport injuries, and interpersonal violence. Fractures

of the nasal bones (broken nose) are the most common type of

facial trauma, which constitute 50% of cases (Atighechi and Karimi,

2009). Complex fractures of facial bones can suffer from irreversible

impairments and may even be capable of causing death as a result

of the airway obstruction or hemorrhage. Because of its proximity

to the brain and central nervous system, facial trauma may cause

damage to cranial nerves, result in losses of sensations, facial

expressions, and eye movements (Mistry et al., 2023).

According to the updated information given by the Cleveland

Clinic (Facial Fractures, 2020), facial fractures are treated by

performing either a closed or open reduction. A close reduction

is a non-surgical procedure for enabling repositioning of bony

fragments and healing. An open reduction is a surgical procedure

involving an incision for access to bony fragments, reduction, and

fixation. For a complex facial trauma with multiple bony fractures,

the performance of reconstructive surgery is needed. Particularly

when a facial trauma is life-threatening, immediate treatment

must be provided to avoid certain critical associated problems

described earlier.

Accurate diagnosis of complex facial trauma, particularly

midface injuries, is a challenge for radiologists with respect

to understanding the anatomical classification (Rosello et al.,

2020) and importance of fractures that are critical to inform

surgeons for effective management of the trauma (Hopper et al.,

2006). Discrepancies between reports provided by radiologists and

surgeons due to different diagnoses are part of challenges for

providing timely surgery to emergent cases of facial trauma (Ludi

et al., 2016). To alleviate the problem of missing fractures from

detection due to malocclusion, facial disfigurement, overlapping

bony fragments, and obscure soft-tissue swelling, the use of 3D

computed tomography (CT) imaging has been utilized in the

diagnosis of maxillofacial fractures. However, surgical treatments

were reportedly improved to only 33% of the cases (Shah et al.,

2016). Furthermore, given the timing and order of surgeries in

emergency departments, selecting optimal treatments for patients

with complex facial fractures imposes a challenging task for

radiologists, emergency physicians, and surgeons (Chung et al.,

2013).

Although the Le Fort classification has been commonly used

for diagnostics and treatment of facial fractures, it has certain

critical shortcomings (Donat et al., 1998). The Le Fort fails to

provide sufficient information, such as, for the fracture description,

complete treatment plan, definitions of the facial skeletal supports

and combined maxillary fractures, and description of fractured

bones bearing the occlusal segment. The facial fracture complexity

is also oversimplified by the Le Fort classification, which leads to

the limited description of critical facial fracture patterns. CT is

commonly used for assessing patients with blunt facial trauma.

Advancement of medical scanners significantly improve the image

resolution to allow the visualization of small fractures of the facial

skeleton. However, in complex midface injuries, the ability to detect

critical fractures that are needed to point out to trauma surgeons is

still a challenge to radiologists (Hopper et al., 2006).

To aid physicians, radiologists, and surgeons in emergency

departments, AI has been applied to assessing bone fractures in

other fields of trauma medicine. Such recent applications include

body-region fractures (shoulder and clavicle, spine, hand and wrist,

elbow and arm, hip and pelvis, femurs, rib cage, foot and ankle,

knee and leg, scaphoid, etc.) (Wu et al., 2013; Ozturk and Kutucu,

2017; Cheng et al., 2019, 2021; Bluthgen et al., 2020; Jones et al.,

2020; Krogue et al., 2020; Ajmera et al., 2021; Duron et al., 2021;

Lind et al., 2021; Ren and Yi, 2021; Sato et al., 2021; Yoon et al.,

2021; Guermazi et al., 2022; Liu et al., 2022, 2023; Murphy et al.,

2022; Nguyen et al., 2022; Oakden-Rayner et al., 2022; Bousson

et al., 2023; Gao et al., 2023; Hendrix et al., 2023). Reviews of AI

applications for detecting non-facial bone fractures in adults and

children have been reported in the literature (Lindsey et al., 2018;

Kalmet et al., 2020; Rainey et al., 2021; Cha et al., 2022; Dankelman

et al., 2022; Kuo et al., 2022; Meena and Roy, 2022; Shelmerdine et

al., 2022; Zech et al., 2022).

This paper aims to contribute an updated critical review

on applications of AI to the treatment and management of

facial trauma with a special reference to the image-based

prediction/classification of bone fractures. The rest of this paper

is organized as follows. As a background for the review on AI

applications to the image analysis and prediction of fractured bones

in facial trauma, different image modalities used for the diagnostics

will be presented. Subsequent sections are the review of how AI

systems can learn for automated image analysis and detection of

facial fractures, discussions of current research and outline of next

steps for investigation, and concluding remarks of the review.

2 Inclusion and exclusion criteria

In the context of this literature review on AI applications for

diagnosing fractures in facial trauma imaging, the utilization of

inclusion and exclusion criteria plays a crucial role in delineating

the scope of the review. These well-defined criteria serve the

purpose of incorporating pertinent and high-quality research

while concurrently excluding studies that might deviate from
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FIGURE 1

CT images showing nasal bone fractures: across the complete nasal bone (A), and with leftward deviation (B).

FIGURE 2

CT images showing factures of mandibular bones: a fracture of the left condyle, featuring lateral displacement of the proximal condylar fragment (A),

and condylar fracture with dislocation (B).

the intended objectives. Specific inclusion and exclusion criteria

applied in this literature review are outlined as follows.

2.1 Inclusion criteria

• Publication type: include peer-reviewed journal articles,

conference proceedings, and reputable research reports.

• Publication date: include articles published from 2010 to the

present to focus on recent advancements in AI for facial

trauma diagnosis.

• Language: include articles published in the English language.

• Study focus: include studies that specifically address AI

applications for the diagnosis of facial fractures. This

includes studies discussing AI algorithms, techniques, or tools

developed for fracture detection, classification, or assessment

in facial trauma imaging. Because of limited work on AI

applications for image-based fracture diagnosis in facial

trauma, a related topic on skull fracture detection is included

in this review.

• Study design: include various study designs, such as

experimental studies, clinical trials, retrospective analyses, and

case studies, as long as they contribute to the understanding of

AI applications in diagnosing facial fractures.

• Population: include studies involving human patients with

facial trauma or relevant imaging data.

• Interventions: include studies that describe or assess AI-

based interventions, including machine learning algorithms,

deep learning models, or computer-aided diagnosis systems,

applied to facial trauma imaging.

• Outcome measures: include studies reporting outcomes

related to AI performance, accuracy, sensitivity, specificity, or

any relevant diagnostic metrics for facial fracture detection.
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FIGURE 3

CT images showing factures of cheek and socket bones: before treatment (A), and after reduction and fixation (B–D).

2.2 Exclusion criteria

• Publication type: exclude non-academic sources, opinion

pieces, and editorials.

• Publication date: exclude studies published before 2010 unless

they are seminal works or provide crucial historical context.

• Language: exclude studies published in languages other

than English.

• Study focus: exclude studies that do not address AI

applications in facial fracture diagnosis or those that focus on

unrelated medical conditions.

• Study design: exclude studies with methodological flaws,

limited sample sizes, or poor experimental design that could

compromise the validity of their findings.

• Population: exclude studies that do not involve human

patients with facial trauma or relevant imaging data.

• Interventions: exclude studies that do not involve AI-based

interventions for facial fracture diagnosis.

• Outcomemeasures: exclude studies that do not report relevant

outcomes related to ai performance or diagnostic accuracy.

• Duplications: exclude duplicate publications or multiple

reports of the same study to avoid redundancy.

3 Conventional machine learning and
deep learning

Artificial intelligence (AI) and its subsets known as machine

learning and particularly the methods of deep learning (Esteva

et al., 2019) have been reportedly providing effective solutions to

many complex problems in health and medicine in timely and

efficient ways.

In conventional machine learning for pattern classification,

a selected classifier is trained with features extracted from

the training data by a manually selected algorithm for feature
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extraction. In deep learning, such as a convolutional neural network

(CNN), features are extracted through many hidden layers from

the training images by the network itself. The depth of a CNN

architecture, which can be up to about-hundred layers, is so

called deep learning. A CNN has two main parts: deep feature

extraction and deep feature learning for classification. The deep

feature extraction involves repeated executions of three operations

known as convolution, nonlinearity, and pooling (downsampling).

The learning phase for classification involves the vectorization or

flattering the extracted deep features, shared weights and biases,

and classification layers. The layer being next to the last layer of

the network is a fully connected layer that produces a vector of

probabilities for the number of image classes that the network has

been trained on. Unlike a traditional (shallow) neural network, the

shared weights and bias values of a CNN, which are the same for all

hidden artificial neurons (nodes) in a given layer. This designmakes

a CNN robust to translational orientations of patterns by being able

to detect an object wherever it is present in the image.

Figure 4 describes a basic comparison between conventional

machine learning and deep learning procedures, and Figure 5

shows the semantic architecture of a CNN.

Furthermore, generative models and classification models are

two fundamental paradigms in machine learning, each serving

distinct purposes in data analysis and decision-making. Generative

models, such as variational autoencoders (VAEs) and generative

adversarial networks (GANs), focus on learning the underlying

data distribution and generating new data points that resemble

the training data. They are particularly useful for tasks like image

synthesis, text generation, and data augmentation. In contrast,

classification models, like support vector machines (SVMs) or

convolutional neural networks (CNNs), are designed for the task of

assigning input data to predefined categories or classes. They excel

in tasks such as image recognition, natural language processing, and

sentiment analysis. While generative models enable creativity and

data generation, classification models empower decision-making

and pattern recognition, collectively contributing to the diverse

landscape of machine learning applications.

As a review paper on AI for facial fracture diagnosis, detailed

equations and figures for CNN architectures are not addressed for

some reasons:

• Scope of the review: review papers typically aim to provide a

comprehensive overview of existing literature, methodologies,

and trends in a specific field. While CNNs are important in

AI for image analysis, including detailed equations and figures

for a specific architecture may be beyond the scope of the

review, which should focus on broader trends, challenges,

and applications.

• Variability in architectures: CNN architectures can vary

significantly depending on the specific task, dataset, and

research objectives. Providing equations and figures for

one or few some particular CNN architectures may not

be representative of the diverse approaches used in facial

fracture diagnosis.

• Rapid evolution: the field of AI, including CNNs, is constantly

evolving with new architectures, techniques, and innovations

emerging regularly. Detailed equations and figures for a

specific architecture may quickly become outdated. It is more

practical to discuss general principles and trends that are likely

to persist over time.

The foundational principles and current trends in the field of

CNNs, particularly in the context of the applications discussed in

this review, encompass the following aspects:

• Hierarchical feature extraction: CNNs are fundamentally built

on the idea of hierarchical feature extraction. They consist

of multiple layers, including convolutional layers and pooling

layers, that progressively learn and extract features from input

data. This principle of hierarchical abstraction is likely to

remain at the core of CNN design.

• Convolution and filters: the convolution operation, which

involves sliding filters over input data to detect patterns and

features, is a foundational concept in CNNs. While filter

designs may evolve, the concept of local feature detection

through convolution is expected to persist.

• Depth and stacking: deeper networks have consistently shown

improved performance in various computer vision tasks.

This trend toward deeper architectures is likely to continue,

although optimization techniques like skip connections and

residual networks may mitigate some of the challenges

associated with depth.

• Transfer learning: transfer learning, where pre-trained models

on large datasets are fine-tuned for specific tasks, is a powerful

trend in CNNs. It enables the application of models trained

on general image recognition tasks to medical image analysis,

including facial fracture diagnosis.

• Data augmentation: data augmentation techniques, such as

rotation, scaling, and flipping, are used to increase the

effective size of training datasets. These techniques help CNNs

generalize better and are expected to remain crucial.

• Interpretability: interpretability and explainability of CNNs

are growing concerns, especially in medical applications.

Future trends may include the development of CNN

architectures that provide more transparent decision-making

processes, which is vital for medical professionals.

• Efficiency and hardware acceleration: as CNNs become more

complex, there’s a need for efficient implementations. Trends

will likely focus on optimizing models for deployment

on specialized hardware like GPUs, TPUs, or even

neuromorphic chips.

• Regularization techniques: techniques like dropout, batch

normalization, and weight decay are used to prevent

overfitting. They are expected to remain relevant as

researchers seek tomake CNNsmore robust and generalizable.

• Integration with clinical workflow: future trends may involve

the integration of CNN-based systems into clinical workflows.

This includes ensuring that AI systems meet regulatory

and ethical standards while providing actionable insights to

healthcare professionals.

• Ethical considerations: as AI becomes more prevalent in

medical diagnosis, ethical considerations such as patient

privacy, bias mitigation, and accountability will continue to be

important trends to address.
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FIGURE 4

Learning with AI: conventional machine learning (A), and deep learning (B).

FIGURE 5

Semantic architecture of a convolutional neural network.

4 Image modalities for the diagnostics
of facial trauma

If a fracture is suspected, an emergency or trauma physician

may order an initial imaging examination to determine the location

and the fracture type. Because there are several types of fractures,

there are different imaging modalities for suitable examination of

the suspected injury. A variety of diagnostic imaging methods are

recommended for evaluating facial trauma based on the following

locations of the injury (Expert Panel on Neurological Imaging et al.,

2022):

1. Forehead or frontal bone

2. Midface

3. Nose

4. Mandible

Conventional radiography has historically played a significant

role in the diagnosis of maxillofacial fractures. Nevertheless, its

utility is limited when it comes to visualizing overlapping bones,

soft-tissue swelling, and the dislocation of facial fractures (Shah

et al., 2016). To address these limitations, computed tomography

TABLE 1 Approptiate initial imaging evaluation of facial trauma following

primary survey (Expert Panel on Neurological Imaging et al., 2022).

Trauma location Imaging procedure

Forehead CT maxillofacial without intravenous contrast

CT head without intravenous contrast

Midface CT maxillofacial without intravenous contrast

Nose CT maxillofacial without intravenous contrast

US maxillofacial

Radiography paranasal sinuses

Mandible CT maxillofacial without intravenous contrast

Radiography mandible

(CT) has emerged as the prevailing diagnostic imaging modality.

The American College of Radiology recommends specific initial

imaging procedures for evaluating facial trauma following a

primary survey aimed at rapidly assessing and treating life-

threatening injuries, as outlined in Table 1. It is worth noting that
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while magnetic resonance imaging (MRI) and magnetic resonance

angiography (MRA) are included in this list, they are typically not

the primary modalities used for fracture detection, particularly in

acute settings.

Accurate diagnosis of fractures in patients with facial trauma

is a critical aspect of medical care, and various imaging modalities

play a pivotal role in achieving precise assessments and treatment

planning. In this context, advanced imaging techniques offer

valuable insights into the extent and nature of the fractures,

enabling clinicians to formulate tailored treatment strategies that

address both the immediate and long-term healthcare needs

of the patients. Additionally, the integration of cutting-edge

technologies, including AI models, has further augmented the

capabilities of medical practitioners in accurately identifying

and characterizing complex fracture patterns, thereby facilitating

timely interventions and improving patient outcomes. Such

advancements not only enhance the diagnostic accuracy but also

contribute to the optimization of surgical procedures, ultimately

ensuring comprehensive and patient-centric management of facial

trauma injuries.

One of the most frequently employed imaging modalities for

this purpose is X-ray radiography, which furnishes 2D images of the

facial bones. X-rays excel at swiftly identifying fractures, gauging

their severity, and determining the alignment of fractured bone

fragments. They prove particularly valuable for detecting fractures

in areas like the mandible, maxilla, and nasal bones. Furthermore,

X-ray imaging boasts the advantages of being non-invasive, readily

accessible, and cost-effective, rendering it a primary choice in many

emergency departments for the initial evaluation of facial trauma.

Having mentioned earlier, another indispensable imaging

modality in the realm of diagnosing facial fractures is CT.

CT scans, including cone beam CT (CBCT), provide high-

resolution 3D images of the facial bones, supplying intricate details

about the extent and complexity of fractures. This modality is

especially beneficial when assessing fractures of the orbital bones,

zygoma, and complex mid-face injuries. CT scans facilitate precise

surgical planning and are indispensable for evaluating potential

complications, such as airway compromise, vascular injury, or

brain involvement in severe facial trauma cases. The capacity to

visualize fractures from multiple angles and with exceptional detail

makes CT an indispensable cornerstone in the diagnostic workup

of facial fractures.

Different imaging modalities come with various levels of

radiation exposure and associated risks. X-rays are a form of

ionizing radiation that can potentially pose health risks, especially

with repeated exposure. Overexposure to X-rays can increase the

risk of tissue damage, cellular mutations, and potentially cancer

development. To minimize the risks, radiation doses should be

kept as low as reasonably achievable. Modern X-ray systems

are designed to reduce unnecessary radiation exposure while

maintaining image quality.

CT scans utilize X-rays in a more sophisticated manner,

resulting in higher radiation exposure compared to conventional

X-ray imaging. Repeated or high-dose CT scans can significantly

increase the risk of radiation-related complications, such as cancer,

especially in younger patients. Dose reduction techniques, such

as lowering tube current, using appropriate scanning protocols,

and employing iterative reconstruction algorithms, should be

implemented to minimize radiation exposure while maintaining

image quality.

CBCT employs a cone-shaped X-ray beam, resulting in

higher radiation exposure compared to traditional dental X-rays.

Prolonged or repeated exposure to CBCT imaging can potentially

lead to an increased risk of radiation-related complications,

particularly in sensitive areas of the head and neck. Being similar

to conventional CT scans, implementing dose reduction strategies

is crucial in minimizing radiation exposure during CBCT imaging.

The necessity of CBCT scans and alternative imaging methods

should be considered, especially for cases where lower radiation

exposure options are available.

Balancing the diagnostic benefits of these imaging modalities

with their associated risks is crucial in clinical practice.

Implementing appropriate protocols and using radiation

protection measures can help mitigate the potential repercussions

of radiation exposure during medical imaging procedures.

5 AI for fracture detection in facial
trauma

Below are reviews of various AI methods that have been

developed and employed for the detection of fractures in facial

trauma cases. This review paper offers insights into the diverse

applications of AI techniques in identifying and characterizing

complex fracture patterns within medical imaging data. While the

scope of this paper focuses primarily on discussing the performance

and efficacy of these AI methods, it is essential to acknowledge

the significance of detailed image dataset characteristics, which

contribute to the robustness and reliability of the proposed fracture

detection models. Readers seeking in-depth knowledge about the

specific attributes and compositions of these image datasets are

encouraged to refer to the relevant references provided within this

review paper. By consulting these referenced sources, readers can

gain a more comprehensive understanding of the intricate details

associated with the image datasets, ensuring a holistic perspective

on the methodologies and outcomes discussed in the context

of fracture detection in facial trauma. This approach not only

maintains the focus on the key findings and implications presented

in the review but also fosters an appreciation of the underlying data-

driven insights and advancements in this critical area of medical

imaging research.

5.1 Frontal-bone fractures

Up to date, it seems that AI has not been found its application

to predicting fractures of the frontal bone in facial trauma.

Similar studies were found for AI-based detection of critical

information of head trauma that needs urgent attention. Using non-

contrast head CT scans, Chilamkurthy et al. (2018) applied deep-

learning methods [ConvNets (Simonyan and Zisserman, 2014)]

for detecting calvarial fractures, midline shift, mass effect, and

five types of intracranial hemorrhage, which are intraparenchymal,

intraventricular, subdural, extradural, and subarachnoid. The
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authors collected more than 313,000 head CT scans from around

20 centers in India for training and validating the deep learning.

Although the results showed the potential application of the deep

learning for detecting critical abnormalities on head CT scans, it

seemed that the authors randomly selected a subset of the same

training data for validation, which was not supposed to be used, in

addition to a another validation dataset. Furthermore, the technical

development of the deep learning approach was not well described

as pointed out by other authors (Liu et al., 2019).

Wang et al. (2023) presented a deep learning framework

designed to automatically identify bone fractures in both

cranial and facial regions. Their system integrates YOLOv4 for

streamlined fracture detection and ResUNet++ (Jha et al., 2019)

for segmentation of cranial and facial bones. By consolidating

the outcomes of both models, the authors could pinpoint the

fracture location and identified the affected bone. The training

dataset for the detection model comprised soft tissue algorithm

images extracted from a comprehensive set of 1,447 head CT

studies (comprising 16,985 images), while the segmentation model

was trained on a carefully selected 1,538 head CT images. The

models underwent testing on a separate dataset of 192 head CT

studies (5,890 images). The approach achieved a sensitivity of 89%,

precision of 95%, and an F1 score of 0.91. Specifically, evaluation

of the cranial and facial regions demonstrated sensitivities of 85%

and 81%, precisions of 93% and 87%, and F1 scores of 0.89 and

0.84, respectively. The average accuracy for segmentation labels,

considering all predicted fracture bounding boxes, was 81%.

5.2 Midfacial fractures

Ryu et al. (2021) carried out a literature survey on the

applications of AI methods to other fields of medical imaging

diagnostics that are potential aiding craniofacial surgery, including

craniofacial trauma, congenital anomalies, and cosmetic surgery.

The survey particularly discussed the potential use of CNN,

recurrent neural network (RNN), and generative adversarial

network (GAN) models. These AI methods belong to the family

of deep learning. These authors suggested it is important for

craniofacial surgeons to understand the concepts and capabilities

of different deep-learning methods in order to know how to

appropriately utilize them and evaluate their performance.

Warin et al. (2023) evaluated the performance of CNN models

for the CT-based detection and classification of maxillofacial

fractures. The authors used 3,407 CT images, in which 2,407 images

contained maxillofacial fractures and other 1,000 maxillofacial

CT images were without fracture lines or pathologic lesions.

The imaging data were obtained from a regional trauma center.

Maxillofacial fracture lines on CT images were examined and

annotated as the ground truth by the consensus of five oral and

maxillofacial surgeons who had more than 5 years of experience

in maxillofacial trauma. The detection involved a multi-class

image classification task to categorize maxillofacial fractures into

frontal, midface, mandibular and no fracture classes. The adopted

CNN models were DenseNet-169 and ResNet-152 for image

classification, and Faster region-based CNN (Faster R-CNN) (Ren

et al., 2017) and YOLOv5 (Jocher et al., 2022) for object detection in

images. The frontal, midface and mandibular fracture images were

randomly split into training, validation, and test sets using the ratio

of 70:10:20%, respectively. DenseNet-169 achieved the best overall

accuracy of the best multiclass classification (70%), while Faster

R-CNN provided the best average precision (78%). Limitations of

the study pointed out by the authors include (1) the lack of data

obtained from multiple centers (data from only two centers were

used) that could not ensure the robustness and generalization of

the AI models; (2) low image resolution (512 × 512 pixels) that

adversely affected the model accuracy; and (3) the lack of other

image views such as coronal and sagittal plans for enabling the

detection of local sites of maxillofacial fractures.

Amodeo et al. (2021) adopted ResNet50, which is a pretrained

CNN model, for maxillofacial fracture detection using CT scans.

The number of CT scans corresponded to the number of patients,

where a CT scan was obtained for each patient. The total dataset

consisted of 208 CT scans of 208 patients, of which 11,260 image

slices were of the fracture class, and 49,762 image slices belonging

to the class of non-fracturing. The data were split into training

(120 scans of fracture and 28 images of non-fracturing), validation

(25 images of fracture and five images of non-fracturing), and test

sets (25 images of fracture and five images of non-fracturing). A

diagnosis was determined as having a fracture if two consecutive

slices were classified with the probability of fracture > 0.99.

The test results showed a binary classification accuracy of 80%.

Shortcomings of the AI model for fracture detection as outlined

by the authors are that it was not able to detect tiny fractures

and corner-bone fractures. More or less this study was a proof

of concept for AI-based maxillofacial fracture detection on CI

imaging, with more technical developments and inclusion of data

variety to entail.

5.3 Nasal fractures

Yang et al. (2022) tried to compare the performance of

detecting nasal-bone fractures between AI-based and radiologist-

based readings of CT imaging. The data consisted of enrolled 252

patients. The AI method was a deep-learning model. The human

team comprised 20 radiologists with different levels of experience.

Two radiologists were tasked to determine the radiologic findings.

It was reported that the AI-based detection system achieved higher

sensitivity (94%), specificity (90%) than the radiologists’ readings of

the CT images. However, there was no improvement in the fracture

detection of the AI model over the radiologists who had between 11

and 15 years of reading experience.

Seol et al. (2022) investigated the use of deep learning for 3D-

imaging diagnosis of nasal fractures. Facial CT data were obtained

from 2,535 patients, where there were 1,350 images of normal

nasal bones and 1,185 images of fractured nasal bones. The study

included only CT images that were scanned <2 days after fracture

onset to avoid the effect of bone deformation after fracture. The

AI models were 3D-ResNet34 and 3D-ResNet50. The CT images

were reconstructed to isotropic voxel data with the whole region of

the nasal bone represented in a fixed cubic volume. The data were

split into training (864 of normal condition and 758 of fracture),

validation (216 of normal condition and 190 of fracture), and
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test (270 of normal condition and 237 of fracture) sets for the

training and evaluation of the deep-learning (AI) models. Binary

classification results obtained from the five-fold cross-validation

showed the areas under the receiver operating characteristic curve

(AUC) of 0.95 and 0.93 provided by 3D-ResNet34 and 3D-

ResNet50, respectively. A limitation of the learning capacity of 3D-

ResNet34 and 3D-ResNet50 was that they likely failed to recognize

fractures with various deformed shapes. The authors reported that

out of about 150 cases, both deep networks produced detection

errors in several cases, where the cubic voxel data consisted of

minor fractures without depressed fractures or deviated nose. The

two AI-based models also misclassified small fractures when their

shapes were similar to those of normal nose categories.

Moon et al. (2022) adopted the YOLOX, which is a deep-

learning-based image object detector, for classifying different types

of facial bone fractures. The authors used 65,205 facial bone

CT images obtained from 690 patients, of which about 5,000

bounding boxes of nasal bone fractures were extracted for machine

learning (training). For constructing validation data, 4,681 facial

bone CT images obtained from 50 patients, of which about 500

bounding boxes of nasal bone fractures were extracted. The test

data consisted of about 400 bounding boxes extracted from CT

images of 20 patients with nasal bone fractures and 20 patients

without having fractures. It was pointed out that the AI model was

trained with only image boxes of nasal bone fractures, it was tested

against data that comprised facial bone fractures other than nasal

fractured bones. The purpose was to investigate if the AI detector

could recognize unforeseen non-nasal bone fractures of patients

with facial trauma. The positive class was defined as the class of

fracture, and the negative class indicated there was no fracture in

the bounding box. The task of the trained deep network was to

predict if each bounding box was either true positive (TP), false

positive (FP), or false negative (FN). Taking TP, FP, and FN into

account, the AI model obtained an average precision of 70% and a

sensitivity/person of 100%. Facing a similar difficulty encountered

by other studies reviewed earlier, the authors reported that the

detection of small objects of fractures was a difficult task for the AI

model. Furthermore, the ability of the deep learning to detect facial-

bone fractures from different image views was also not considered

in the study.

5.4 Mandibular fractures

Vinayahalingam et al. (2022) investigated the automated

detection of mandibular fractures on panoramic radiographs (PRs)

with the use of Faster R-CNN, where the Swin-Transformer (Liu

et al., 2021) was implemented as a backbone of the network.

The data consisted of 6,404 PRs obtained from 5,621 patients,

in which 1,624 PRs were with fractures and 4,780 PRs were

without fractures. Mandibular fractures on PRs were classified

and annotated with bounding boxes based on electronic medical

records. The bounding boxes fully enclosed the fracture lines.

Regarding dislocated fractures, the bounding boxes included both

fracture margins and gaps. The annotations were reviewed and

revised by the consensus of three clinicians, who had at least

five years of clinical experience. The training data consisted of

364 angle fractures, 492 condyle fractures, 61 coronoid fractures,

187 median fractures, 487 paramedian fractures, and 180 ramal

fractures. The validation data consisted of 44 angle fractures, 61

condyle fractures, eight coronoid fractures, 23 median fractures,

58 paramedian fractures, and 22 ramal fractures. The test data

consisted of 45 angle fractures, 65 condyle fractures, seven coronoid

fractures, 24 median fractures, 60 paramedian fractures, and 21

ramal fractures. The AI method achieved an AUC = 0.98 and F1-

score (combination of precision and recall scores) = 0.95. Some

limitations of the study being pointed out by the authors include the

lack of data obtained multiple centers to ensure the generalization

of the adopted model, the lack of device variety for acquiring

the PRs to validate its classification robustness as the data used

were obtained with only two different scanners, and the trained AI

system was not tested with data in clinical settings.

Wang et al. (2022) used two pretrained CNNs, which are the

U-Net and ResNet, for detecting and classifying nine subregions

of mandibular fractures on spiral CT scans. The CT data, which

were obtained from 686 patients with mandibular fractures,

were classified and annotated by three experienced maxillofacial

surgeons. There were 222, 56, and 408 CT scans used for the

training, validating, and testing the deep networks, respectively.

The AI models achieved classification accuracies >90%, and mean

AUC = 0.96.

Because the diagnosis of mandibular fractures on panoramic

radiographic (PR) images is quite difficult, CBCT imaging

is preferred by radiologists and surgeons. To alleviate the

unavailability of CBCT, Son et al. (2022) combined two deep

networks U-Net and YOLOv4 for detecting the location of

mandibular fractures based on PR images without the use of

CBCT. Another motivation of for the combination of the two

deep networks was to minimize the number of likely undiagnosed

fractures (symphysis, body, angle, ramus, condyle, and coronoid

regions). The U-Net was effective for performing the semantic

segmentation of mandibular fractures spreading over a wide area, it

could better detect fracture lines in the symphysis, body, angle, and

ramus regions. The YOLOv4 was complementary to the U-Net by

providing better detection of fractures in the condyle and coronoid

in the upper region of the mandible. The training data consisted

of 360 PRs of mandibular fractures. The test data consisted of 60

PRs of mandibular fractures. The task was to classify a mandibular

fracture into six anatomical types: (1) symphysis, (2) body, (3)

angle, (4) ramus, (5) condylar process, and (6) coronoid process.

The first three types are of middle fractures and the last two

types are of side fractures. The combined approach resulted in

the precision of 95%, recall of 87%. This study demonstrated the

complimentary combination of U-Net and YOLOv4 networks that

could improve the detection of mandible fractures by more than

90% (measured in terms of F1-score) than the individual networks.

5.5 Fractures in close proximity

A particular type of fracture that occurs in close proximity to

facial bone fractures is known as a fractured skull bone. A skull

fracture entails a break in the cranial bone structure and can be

categorized into four main types as follows (Head Injury, 2023).
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Linear skull fractures: linear fractures are the most common

type of skull fractures. They involve a break in the bone but

do not displace it. Patients with linear fractures are typically

observed in the hospital for a short period and can often resume

normal activities within a few days. Generally, no further medical

interventions are necessary.

Depressed skull fractures: this type of fracture can be observed

with or without a scalp laceration. In a depressed skull fracture, a

portion of the skull is indented due to the trauma. The severity of

this type of skull fracture may necessitate surgical intervention to

correct the deformity.

Diastatic skull fractures: diastatic fractures occur along the

suture lines in the skull. Sutures are the areas between the cranial

bones that fuse during childhood. In diastatic fractures, these

normal suture lines become widened. These fractures are more

commonly seen in newborns and older infants.

Basilar skull fracture: basilar skull fractures are the most severe

type of skull fracture and involve a break in the bone at the base of

the skull. Patients with this type of fracture often display bruising

around their eyes and behind their ears. Additionally, they may

experience clear fluid drainage from their nose or ears due to

damage to the brain’s covering. Patients with basilar skull fractures

typically require close observation in a hospital setting.

In the context of adult head injuries, an approach for the

detection of skull fractures was developed, building upon the Faster

R-CNN framework (Kuang et al., 2020). This method leveraged the

morphological characteristics of the skull, introducing a skeleton-

based region proposal technique to enhance the concentration

of candidate detection boxes in critical regions while minimizing

the occurrence of invalid boxes. This optimization allowed for

the removal of the region proposal network within Faster R-

CNN, reducing computational requirements. Additionally, a full-

resolution feature networkwas crafted to extract features, rendering

themodel more attuned to detecting smaller objects. In comparison

to prior methods for skull fracture detection, the authors observed

a significant reduction in false positives while maintaining a high

level of sensitivity.

Another study developed a deep learning system for automated

identification of skull fractures from cranial CT scans (Shan et

al., 2021). This study retrospectively analyzed CT scans of 4,782

male and female patients diagnosed with skull fractures between.

Additional data of 7,856 healthy people were included in the

analysis to reduce the probability of false detection. Skull fractures

in all the scans were manually labeled by seven experienced

neurologists. Two deep learning approaches were developed and

tested for the identification of skull fractures. In the first approach,

the fracture identification task was treated as an object detected

problem, and a YOLOv3 network (Redmon et al., 2015) was trained

to identify all the instances of skull fracture. In the second approach,

the task was treated as a segmentation problem and a modified

attention U-net (Ronneberger et al., 2015) was trained to segment

all the voxels representing skull fracture. The developed models

were tested using an external test set of 235 patients (93 with, and

142 without skull fracture). On the test set, the YOLOv3 achieved

average fracture detection sensitivity and specificity of 81% and

86%, respectively. On the same dataset, the modified attention U-

Net achieved a fracture detection sensitivity and specificity of 83%

and 89%, respectively.

A recent investigation was conducted to assess the diagnostic

capabilities of a deep learning algorithm [RetinaNet (Lin et al.,

2020)] for the detection of skull fractures in plain radiographic

images and to explore its clinical utility (Jeong et al., 2023). The

study encompassed a dataset of 2,026 plain radiographic images of

the skull, comprising 991 images with fractures and 1,035 images

without fractures, gathered from 741 patients. The deep learning

model employed for this purpose was the RetinaNet architecture.

TABLE 2 Chronological order of applications and developments of AI for facial fracture detection reviewed in this study.

Year References Fracture types Image modality AI methods

2018 Chilamkurthy et al. (2018) Frontal-bone fractures CT ConvNets

2020 Kuang et al. (2020) Skull CT Faster R-CNN

2021 Shan et al. (2021) Skull CT YOLO and U-Net

2021 Ryu et al. (2021) (survey) Cranial fractures Photographs, CT Pretrained CNNs, RNNs, GANs

2021 Amodeo et al. (2021) Maxillofacial fractures CT Pretrained CNN

2022 Yang et al. (2022) Nasal fractures CT Deep learning

2022 Seol et al. (2022) Nasal fractures CT 3D pretrained CNNs

2022 Moon et al. (2022) Nasal fractures CT YOLOX

2022 Vinayahalingam et al. (2022) Mandibular fractures Panoramic radiographs Faster R-CNN

2022 Wang et al. (2022) Mandibular fractures CT Pretrained CNNs

2022 Son et al. (2022) Mandibular fractures Panoramic radiographs U-Net, YOLO

2022 Choi et al. (2022) Pediatric skull CT YOLOv3

2023 Warin et al. (2023) Maxillofacial fractures CT Pretrained CNNs, Faster R-CNN, YOLO

2023 Wang et al. (2023) Craninal and facial fractures CT YOLOv4, ResUNet++

2023 Jeong et al. (2023) Skull Plain radiographs RetinaNet

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2023.1278529
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Pham et al. 10.3389/frai.2023.1278529

TABLE 3 Summarized advantages and disadvantages of AI models for facial fracture detection.

Model Advantages Disadvantages

Pretrained CNNs Feature extraction, reduced training time, generalization capability,

transfer learning

Limited specificity, overfitting risks, need for fine-tuning, limited

adaptability

RNNs Sequential data analysis, memory retention, dynamic temporal

modeling, contextual understanding

Vanishing gradients, training complexity, limited contextual memory,

sequential processing limitations

GANs Data augmentation, image enhancement and restoration,

unsupervised learning and feature extraction, anomaly detection

Training instability, computational complexity, data bias and

generalization challenges

Faster R-CNN Accurate object localization, real-time detection, robust feature

extraction, high performance on large datasets

Computational complexity, Limited generalization to unseen data,

Training data requirements, Interpretability and explainability

YOLO versions Real-time processing, high accuracy in object detection, efficient

resource utilization, simplicity and ease of implementation

Limited sensitivity to small objects, challenges in handling overlapping

objects, raining data requirements, generalization limitations

U-Net Effective image segmentation, robust feature extraction, residual skip

connections, adaptability to limited data

Computational complexity, limited generalization to unseen data, risk

of overfitting, model interpretability

ResUNet++ Highly effective feature extraction, comprehensive image

segmentation, residual connections for improved performance,

adaptability to limited data

Computational complexity, risk of overfitting, model interpretability,

limited generalization to unseen data

RetinaNet Precise object detection, efficient handling of scale variation, high

accuracy with dense object detection, effective training with

imbalanced data

Computational complexity, limited generalization to unseen data, risk

of overfitting with small datasets, model interpretability

The authors observed significant disparities in the true/false and

false-positive/false-negative ratios across different views, including

the anterior-posterior and both lateral perspectives. Notably,

false positives were often related to the detection of vascular

grooves and suture lines, while false negatives exhibited suboptimal

performance in detecting diastatic fractures, fractures crossing

suture lines, and fractures around vascular grooves and the orbit.

In the context of pediatric head injuries, YOLOv3 (Redmon

et al., 2015) was applied to the task of detecting skull fractures

in children using plain radiographs (Choi et al., 2022). This

retrospective, multi-center study incorporated a development

dataset sourced from two hospitals (n = 149 and 264) and an

external test set (n = 95) from a third medical facility. The

datasets encompassed children who had experienced head trauma

and had undergone both skull radiography and cranial CT scans.

The study involved the participation of two radiology residents,

a pediatric radiologist, and two emergency physicians in a two-

phase observer study using an external test set, both with and

without the assistance of AI. Results revealed an improvement in

the area under the receiver operating characteristic curve (AUC)

for radiology residents and emergency physicians when aided by

the AI model, with improvements of 0.094 and 0.069, respectively,

compared to readings performed without AI assistance. In contrast,

the pediatric radiologist experienced a more modest improvement

of 0.008. The findings indicate that the AI model can enhance

the diagnostic performance of less experienced radiologists and

emergency physicians when it comes to identifying pediatric skull

fractures on plain radiographs.

6 Discussions and next steps

Applications of AI are everywhere. Although AI has been

applied to perform imaging diagnostics and shown many show

breakthroughs in medical imaging (Moawad et al., 2022), its

limitations in fracture detection and classification have not been

well investigated in the literature (Langerhuizen et al., 2019). The

chronologically published works reviewed in this study, which are

summarized in Table 2, illustrate that the integration of AI methods

for the diagnosis and treatment planning of facial trauma is still in

an early stage. Limitations and discussions for further investigation

and development of AI-enabled imaging diagnostic systems are

addressed in the subsequent sections.

6.1 Advantages and disadvantages of
adopted AI models for facial and skull
fracture detection

Applications of the AI models discussed in this review

for the diagnosis of bone fractures in facial trauma present

specific advantages and disadvantages, which are elaborated below

(summary is given in Table 3).

6.1.1 Pretrained CNNs
Advantages:

• Feature extraction: pre-trained CNNs can leverage their ability

to extract intricate features from images, facilitating the

identification of complex patterns and subtle details associated

with different types of bone fractures in facial trauma.

• Reduced training time: by utilizing pre-trained CNNs,

the need for extensive training on large datasets is

minimized, thereby reducing the computational resources

and time required for model development, enabling quicker

deployment in clinical settings.

• Generalization capability: based on architectures that have

been fine-tuned and optimized on large-scale datasets, pre-

trained CNNs are adept at generalizing patterns from one
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domain to another, allowing for effective adaptation to various

types of bone fractures in facial trauma, even in cases with

limited training data.

• Transfer learning: pre-trained CNNs enable transfer learning,

wherein knowledge acquired from one dataset or problem

domain can be applied to a different but related problem,

facilitating the development of accurate and reliable fracture

diagnosis models even with limited labeled data.

Disadvantages:

• Limited specificity: pre-trained CNNsmight not be specifically

tailored for the diagnosis of bone fractures in facial trauma,

leading to potential challenges in accurately capturing the

intricate characteristics and variations associated with facial

trauma injuries, thereby compromising diagnostic accuracy.

• Overfitting risks: there is a risk of overfitting when using

pre-trained CNNs, especially when the pre-training dataset

significantly differs from the target application domain,

potentially leading to reduced generalizability and reliability

in fracture diagnosis.

• Need for fine-tuning: fine-tuning pre-trained CNNs requires

careful adjustments to ensure optimal performance for

the specific task of diagnosing bone fractures in facial

trauma, necessitating expertise in model adaptation and

parameter optimization.

• Limited adaptability: pre-trained CNNs may struggle

to adapt to rare or novel fracture patterns or cases

that deviate significantly from the distribution

of fractures seen in the pre-training dataset,

potentially leading to misdiagnosis or overlooked

critical cases.

6.1.2 RNNs
Advantages:

• Sequential data analysis: RNNs are well-suited for

analyzing sequential data, enabling the capture of temporal

dependencies and patterns within medical imaging data,

which can be beneficial in identifying complex fracture

patterns and subtle variations in facial trauma injuries.

• Memory retention: RNNs possess the ability to retain

information from previous inputs, making them effective in

processing and analyzing long sequences of medical imaging

data, thus aiding in the accurate diagnosis of bone fractures in

facial trauma that might require a comprehensive analysis of

multiple images or frames.

• Dynamic temporal modeling: RNNs can dynamically model

temporal changes and variations in medical imaging data,

allowing for a more nuanced understanding of the progression

of fractures in facial trauma over time, thereby enhancing the

diagnostic accuracy and predictive capabilities of the model.

• Contextual understanding: RNNs facilitate the development

of models that can understand the contextual relationship

between different components of medical imaging data,

enabling a more comprehensive analysis of fracture patterns

and their implications within the broader context of facial

trauma diagnosis.

Disadvantages:

• Vanishing gradients: RNNs are susceptible to the issues

of vanishing gradients, which can impede the training

process and hinder the model’s ability to effectively capture

long-term dependencies and subtle patterns in the data,

potentially leading to reduced diagnostic accuracy in complex

fracture cases.

• Training complexity: training RNNs can be computationally

intensive, especially when dealing with large datasets, complex

fracture patterns, and high-resolution medical imaging data,

requiring significant computational resources and time,

which could limit the feasibility of real-time diagnosis in

clinical settings.

• Limited contextual memory: some RNN variants suffer

from limitations in capturing long-range dependencies and

maintaining contextual memory over extended sequences,

potentially leading to difficulties in comprehensively analyzing

and diagnosing intricate fracture patterns and complex facial

trauma cases.

• Sequential processing limitations: RNNs process data

sequentially, which may limit their ability to simultaneously

capture and analyze multiple aspects or features within

medical imaging data, potentially leading to challenges in

accurately identifying and diagnosing complex fracture

patterns and associated trauma injuries.

6.1.3 GANs
Advantages:

• Data augmentation: GANs can be utilized to generate

synthetic medical imaging data, thereby augmenting limited

training datasets and enhancing the robustness of fracture

diagnosis models, especially in cases where obtaining large and

diverse datasets of facial trauma injuries is challenging.

• Image enhancement and restoration: GANs can facilitate

the enhancement and restoration of low-quality or noisy

medical imaging data, improving the overall image quality

and aiding in the accurate identification and diagnosis of

intricate fracture patterns and subtle variations in facial

trauma injuries.

• Unsupervised learning and feature extraction: GANs

enable unsupervised learning, allowing for the extraction

of meaningful features and representations from medical

imaging data without the need for extensive labeled datasets,

thereby facilitating the development of more comprehensive

and accurate fracture diagnosis models.

• Anomaly detection: GANs can be employed for anomaly

detection in medical imaging data, assisting in the

identification of rare or complex fracture patterns and

abnormalities that might be challenging to diagnose using

conventional methods, thereby improving the overall

diagnostic accuracy and precision.
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Disadvantages:

• Training instability: GANs are prone to training instability,

often leading to issues such as mode collapse, vanishing

gradients, or oscillating convergence, which can hinder the

model’s ability to accurately capture and generate realistic

fracture patterns in facial trauma, thereby affecting the

diagnostic performance.

• Computational complexity: training GANs can be

computationally intensive, demanding substantial

computational resources and time, particularly when

dealing with high-resolution medical imaging data and

complex fracture patterns, potentially limiting the feasibility

of real-time diagnosis and clinical deployment.

• Data bias and generalization challenges: GANs might

encounter difficulties in generating diverse and representative

synthetic medical imaging data, leading to potential biases

and limitations in the generalization of the fracture diagnosis

models to different patient populations or trauma scenarios,

thereby affecting the overall diagnostic reliability.

6.1.4 Faster R-CNN
Advantages:

• Accurate object localization: Faster R-CNN is effective in

accurately localizing and identifying the precise locations of

fractures within complexmedical imaging data, facilitating the

accurate diagnosis and assessment of various types of bone

fractures in facial trauma with high precision.

• Real-time detection: Faster R-CNN can operate in real-

time or near real-time, enabling swift and efficient fracture

diagnosis, particularly in time-sensitive clinical scenarios and

emergency situations, thereby facilitating prompt medical

intervention and treatment planning for patients with facial

trauma injuries.

• Robust feature extraction: Faster R-CNN incorporates

robust feature extraction mechanisms, allowing for the

comprehensive analysis of intricate fracture patterns and

subtle variations in medical imaging data, enhancing the

overall diagnostic accuracy and reliability of fracture detection

in facial trauma cases.

• High performance on large datasets: Faster R-CNN

demonstrates high performance on large-scale datasets,

making it well-suited for processing and analyzing extensive

collections of medical imaging data associated with various

types of facial trauma injuries, thereby enhancing the overall

diagnostic capabilities and generalizability of the model.

Disadvantages:

• Computational complexity: implementing Faster R-CNN can

be computationally intensive, especially when dealing with

high-resolution medical imaging data and complex fracture

patterns, demanding significant computational resources and

processing power, which could limit its practicality for

deployment in resource-constrained clinical environments.

• Limited generalization to unseen data: Faster R-CNN might

face challenges in generalizing to unseen or rare fracture

patterns and variations in facial trauma, potentially leading

to reduced diagnostic accuracy and reliability in cases

that deviate significantly from the training dataset, thereby

affecting the model’s overall performance in clinical settings.

• Training data requirements: Faster R-CNN requires a

substantial amount of labeled training data for accurate model

training and validation, posing challenges in cases where

obtaining large and diverse datasets of facial trauma injuries

for training purposes is impractical or resource-prohibitive.

• Interpretability and explainability: Faster R-CNN’s

complex architecture might limit its interpretability and

explainability, making it challenging for clinicians to

understand the underlying decision-making process and

the factors contributing to fracture diagnosis, potentially

affecting the trust and acceptance of the model in

clinical practice.

6.1.5 YOLO models
Advantages:

• Real-time processing: YOLO models enable real-time

processing and detection of fractures in facial trauma,

facilitating rapid and timely diagnosis, particularly in critical

medical scenarios where immediate intervention is crucial for

patient care.

• High accuracy in object detection: YOLOmodels demonstrate

high accuracy in object detection tasks, allowing for

precise identification and localization of fractures within

complex medical imaging data, thereby enhancing the overall

diagnostic precision and reliability.

• Efficient resource utilization: YOLO models optimize

resource utilization, requiring fewer computational resources

compared to other complex deep learning architectures,

which can contribute to faster inference times and improved

efficiency in fracture diagnosis workflows.

• Simplicity and ease of implementation: YOLO models are

relatively straightforward to implement and deploy, making

them accessible to a broader range of healthcare practitioners

and institutions, thereby facilitating their integration into

clinical settings for efficient and accurate fracture diagnosis in

facial trauma cases.

Disadvantages:

• Limited sensitivity to small objects: YOLO models may

demonstrate reduced sensitivity to small or subtle fracture

patterns in facial trauma, potentially leading to missed

detections or inaccuracies in the diagnosis of minor fractures,

which could impact the overall diagnostic reliability of

the model.

• Challenges in handling overlapping objects: YOLO models

might encounter challenges in accurately distinguishing

and delineating overlapping fractures or complex fracture

patterns within medical imaging data, potentially leading to
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misinterpretations or errors in the diagnosis of overlapping

facial trauma injuries.

• Training data requirements: YOLO models require

substantial amounts of labeled training data to achieve

optimal performance, posing challenges in cases where

obtaining diverse and comprehensive datasets of facial trauma

injuries for model training and validation is impractical or

resource-intensive.

• Generalization limitations: YOLO models might face

difficulties in generalizing to unseen or rare fracture patterns

and variations in facial trauma, potentially leading to reduced

diagnostic accuracy and reliability in cases that deviate

significantly from the training dataset, thereby affecting the

model’s overall performance in clinical settings.

6.1.6 U-Net
Advantages:

• Effective image segmentation: U-Net models excel in

image segmentation tasks, enabling precise delineation and

segmentation of fractured bone structures within complex

medical imaging data, thereby enhancing the overall accuracy

and reliability of fracture diagnosis in facial trauma cases.

• Robust feature extraction: U-Net models facilitate robust

feature extraction, allowing for a comprehensive analysis

of intricate fracture patterns and subtle variations in facial

trauma injuries, enhancing the diagnostic capabilities of the

model and aiding in the accurate identification of complex

fracture patterns.

• Residual skip connections: U-Net models utilize residual skip

connections, which enable the seamless integration of low-

level and high-level features, enhancing the model’s ability

to capture both local and global information within medical

imaging data, thereby improving the overall diagnostic

precision and performance.

• Adaptability to limited data: U-Net models can effectively

adapt to limited training data, making them well-suited for

scenarios where obtaining extensive and diverse datasets of

facial trauma injuries for model training and validation is

challenging or resource-prohibitive.

Disadvantages:

• Computational complexity: implementing U-Net models can

be computationally intensive, especially when dealing with

high-resolution medical imaging data and complex fracture

patterns, demanding substantial computational resources and

processing power, which could limit the feasibility of real-time

diagnosis and clinical deployment.

• Limited generalization to unseen data: U-Net models

might encounter challenges in generalizing to unseen or

rare fracture patterns and variations in facial trauma,

potentially leading to reduced diagnostic accuracy and

reliability in cases that deviate significantly from the training

dataset, thereby affecting the model’s overall performance in

clinical settings.

• Risk of overfitting: U-Netmodels are susceptible to overfitting,

particularly when the model is trained on small or imbalanced

datasets, leading to reduced generalizability and potentially

compromising the diagnostic accuracy and reliability of the

model in real-world clinical applications.

• Model interpretability: U-Net models’ complex architecture

may pose challenges in model interpretability and

explainability, making it difficult for clinicians to understand

the underlying decision-making process and factors

contributing to fracture diagnosis, potentially affecting

the trust and acceptance of the model in clinical practice.

6.1.7 ResUNet++
Advantages:

• Highly effective feature extraction: ResUNet++ models

leverage residual connections and U-Net architecture,

enabling highly effective feature extraction and representation

learning, which aids in the precise identification and

segmentation of intricate fracture patterns and bone

structures within medical imaging data.

• Comprehensive image segmentation: ResUNet++ models

excel in comprehensive image segmentation tasks, facilitating

the accurate delineation and segmentation of complex fracture

patterns and subtle variations in facial trauma injuries, thereby

enhancing the overall diagnostic accuracy and reliability of

fracture diagnosis.

• Residual connections for improved performance: ResUNet++

models utilize residual connections to integrate skip

connections and shortcut connections, enhancing the model’s

ability to capture both local and global features within

medical imaging data, leading to improved performance and

robustness in fracture diagnosis.

• Adaptability to limited data: ResUNet++ models can adapt

to limited training data, making them suitable for scenarios

where acquiring extensive and diverse datasets of facial trauma

injuries for model training and validation is challenging or

resource-prohibitive.

Disadvantages:

• Computational complexity: implementing ResUNet++

models can be computationally intensive, particularly

when dealing with high-resolution medical imaging data

and complex fracture patterns, demanding significant

computational resources and processing power, which

could limit the feasibility of real-time diagnosis and clinical

deployment.

• Risk of overfitting: ResUNet++ models are susceptible to

overfitting, especially when trained on small or imbalanced

datasets, which may reduce the generalizability and

compromise the diagnostic accuracy and reliability of

the model in real-world clinical applications.

• Model interpretability: ResUNet++ models’ complex

architecture may pose challenges in model interpretability

and explainability, making it difficult for clinicians to
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understand the underlying decision-making process and

factors contributing to fracture diagnosis, potentially affecting

the trust and acceptance of the model in clinical practice.

• Limited generalization to unseen data: ResUNet++ models

may face challenges in generalizing to unseen or rare

fracture patterns and variations in facial trauma, potentially

leading to reduced diagnostic accuracy and reliability

in cases that significantly deviate from the training

dataset, impacting the model’s overall performance in

clinical settings.

6.1.8 RetinaNet
Advantages:

• Precise object detection: RetinaNet models excel in precise

object detection tasks, enabling accurate identification and

localization of fractures within complex medical imaging

data, thereby enhancing the overall diagnostic precision and

reliability in the context of facial trauma diagnosis.

• Efficient handling of scale variation: RetinaNet models

efficiently handle scale variation in medical imaging

data, allowing for the effective detection of fractures of

varying sizes and complexities within facial trauma injuries,

thereby improving the model’s adaptability to diverse

fracture patterns.

• High accuracy with dense object detection: RetinaNet models

demonstrate high accuracy in dense object detection tasks,

facilitating the comprehensive analysis of intricate fracture

patterns and subtle variations in facial trauma injuries,

leading to improved diagnostic capabilities and robust

fracture detection.

• Effective training with imbalanced data: RetinaNet models are

effective in training with imbalanced datasets, making them

suitable for scenarios where obtaining balanced datasets of

facial trauma injuries for model training and validation is

challenging, thereby enhancing the model’s generalizability

and performance.

Disadvantages:

• Computational complexity: implementing RetinaNet models

can be computationally intensive, particularly when dealing

with high-resolution medical imaging data and complex

fracture patterns, demanding significant computational

resources and processing power, which could limit the

feasibility of real-time diagnosis and clinical deployment.

• Limited generalization to unseen data: RetinaNet models

might face challenges in generalizing to unseen or rare fracture

patterns and variations in facial trauma, potentially leading

to reduced diagnostic accuracy and reliability in cases that

significantly deviate from the training dataset, impacting the

model’s overall performance in clinical settings.

Risk of overfitting with small datasets: RetinaNet models

are susceptible to overfitting, especially when trained on

small or imbalanced datasets, which may reduce the

model’s generalizability and compromise the diagnostic

accuracy and reliability of fracture detection in real-world

clinical applications.

• Model interpretability: RetinaNet models’ complex

architecture may pose challenges in model interpretability

and explainability, making it difficult for clinicians to

understand the underlying decision-making process and

factors contributing to fracture diagnosis, potentially affecting

the trust and acceptance of the model in clinical practice.

6.2 Limitations of current approaches

Despite the advancements in AI for the diagnosis of

bone fractures in facial trauma, several limitations persist

within the current approaches. Addressing the following

limitations requires continued research, collaboration between

AI experts and clinicians, and the development of robust

frameworks for data collection, model training, validation,

and legal implementation, ultimately ensuring the safe and

effective integration of AI in the diagnosis of bone fractures in

facial trauma.

Data limitations and diversity: many AI models are

trained on limited and homogeneous datasets, potentially

leading to biased results and reduced generalizability. The

lack of diverse datasets, comprising various ethnicities,

age groups, and trauma mechanisms, hinders the ability

of AI systems to accurately diagnose fractures in a broader

patient population.

Complex fracture patterns: AI systems may face

challenges in accurately identifying complex fracture patterns,

especially those that involve multiple bone structures or

intricate facial trauma. Current AI models might not fully

capture the nuanced variations in fracture presentations,

leading to potential inaccuracies or missed diagnoses in

complex cases.

Interpretability and explainability: some AI models used in

fracture diagnosis lack transparency in their decision-making

process (see Table 3), making it challenging for clinicians to

understand how the AI arrives at a specific diagnosis. The lack

of interpretability and explainability can undermine trust in AI-

generated results and hinder the integration of AI technology into

clinical workflows.

Legal concerns: the use of AI in fracture diagnosis raises

legal concerns regarding liability in case of misdiagnosis. Ensuring

compliance with regulatory standards remains a critical challenge

for the widespread implementation of AI in facial trauma diagnosis.

Dependency on imaging quality: AI models heavily rely on the

quality of imaging data for accurate fracture detection. Poor image

quality, artifacts, or technical limitations in imaging techniques can

significantly impact the performance of AI algorithms, leading to

potential diagnostic errors or false interpretations.

Validation and clinical integration: adequate validation and

integration of AI systems into clinical practice remain crucial

challenges. Limited clinical validation studies and the absence of

standardized protocols for AI implementation in fracture diagnosis

hinder the widespread adoption of AI technology by healthcare

institutions and professionals.
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6.3 General limitations

In general, standards for training and testing an AI-enabled

system for recognizing fractures in images are still needed

for integrating into routine emergency workflows; applications

of AI to more complex fracture diagnostics with wider age

subgroups; addressing legal regulations; and identification of

feasible implementation in clinical settings (Langerhuizen et al.,

2019; Parpaleix et al., 2023).

Errors occurred in diagnosis of fractures in emergency

departments result in wrong, neglected, or delayed findings

(Graber, 2005). It has been suggested that there are four main

legal causes concerning radiologists, which are errors in (1)

observation and (2) interpretation, failures of (3) suggesting

the next appropriate procedure and (4) a timely and clinically

appropriate communication (Pinto and Brunese, 2010; Pinto et

al., 2018). Spectrum of fractures that are potentially missed

on the reading of images, including various modalities, by

radiologists are not comprehensively addressed in the applications

of AI for image analysis of bone fractures. Recent comparisons

between radiologists, AI-assisted radiologists, and independent AI-

based diagnostic systems for detecting bone fractures in trauma

emergency have shown the potential of AI for leveraging human

performance and productivity (Canoni-Meynet et al., 2022). Such

AI-assisted diagnostics can be very useful for emergent fracture

diagnosis in the late and early hours during which misdiagnosed

fractures are at peak (Hallas and Ellingsen, 2006). However, the

study was limited to a simple case of binary detection and without

an inclusion of fracture variety. Because fracture variability is of

high clinical relevance, there is a need to investigate the value of AI

in identification of dislocated fractures vs. non-dislocated fractures.

Three-dimensional imaging techniques have been increasingly

used in dentistry (Hung e al., 2020). Dental 3D-imaging are useful

for evaluating severe facial injury as it can provides a clear view

of major fracture lines and displaced fragments. Particularly for

maxillofacial trauma, the capability of 3D-imaging enables better

preoperative analysis and surgical planning than conventional

radiography (Kaur and Chopra, 2010). Multi-detector CT (MDCT)

has been reported in the literature as the gold-standard imaging

modality for facial bones (Hooper et al., 2019). However, MDCT

applies a high radiation dose to the patient. This gives rise to the

importance for developing dose reduction and dose optimisation

methods in MDCT (Hooper et al., 2019). At the same time, this

modality also gives rise to the development of AI-based tools for

research into facial trauma, where dental cone beam CT, intraoral,

and facial scans can be reconstructed into 3D visuals to be analyzed

by machine learning for improving diagnosis, enhancing treatment

planning, and providing accurate prediction of treatment outcome

(Hung e al., 2020).

6.4 Data availability

In comparison, AI applications to facial trauma are far less

reported in literature than many other fields of medicine such

as cancerous, neurodegenerative, and cardiovascular diseases. A

main reason is the lack of access to public data to allow AI

researchers further explore applications of advanced models for

image analysis and detection of fractures in facial trauma. Up

to date, almost publications, including open-access articles, have

indicated that data used the studies are not publicly available due

to data protection, or are available from corresponding authors

on reasonable requests. Thus, the need for getting access to

documented image databases of facial trauma in public depositories

is imperative to advance and keep pace of the research into imaging

diagnostics of facial trauma with other areas of medical research.

Here, it is pointed out that The National Maxillofacial Surgery

Unit of Ireland has recently announced its effort in providing

a prospective maxillofacial trauma database to facilitate several

important aspects such as strategic planning, resource allocations,

clinical compliance, auditing, and research (Henry et al., 2022).

6.5 Data imbalance

Addressing imbalanced classes in image-based diagnosis

of fractures in patients with facial trauma is crucial, as the

inherent bias in AI-based solutions can lead to suboptimal

performance and misdiagnoses. Imbalanced classes occur

when one class (e.g., non-fractured) significantly outweighs the

other (e.g., fractured) in the dataset, causing machine learning

models to favor the majority class. Here are some key issues

related to imbalanced classes in this context and techniques to

mitigate them:

Data collection bias: the data used to train AI models may be

biased toward non-fractured cases because they are more prevalent.

This bias can lead to models that are less sensitive to fractures, as

they might not have enough exposure to the minority class. Efforts

should be made to collect a diverse and representative dataset that

includes a sufficient number of fractured cases. This may involve

collaboration withmultiple healthcare institutions to ensure amore

balanced dataset.

Model performance: imbalanced classes can lead to models

with high accuracy but poor sensitivity, meaning they may

perform well on non-fractured cases but miss fractures. Several

techniques can help address this issue, including resampling

methods (oversampling the minority class or undersampling the

majority class), using different evaluation metrics like F1-score or

AUC, and adjusting class weights during model training to give

more importance to the minority class.

Data augmentation: in cases where collecting more data

is challenging, data augmentation techniques can help balance

the dataset. For image-based fracture diagnosis, this might

involve generating synthetic images of fractures by applying

transformations to existing fractured images. Augmentation

techniques such as rotation, translation, scaling, and introducing

random noise can be applied to the minority class to increase its

size and diversity, making the model more robust.

Transfer learning: leveraging pre-trained models trained on

large, diverse datasets can be beneficial. However, these models

may also be biased toward the majority class. Fine-tuning the pre-

trained models on the imbalanced dataset while using techniques

like class-weighting can help adapt them to the specific task of

fracture diagnosis.
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Ensemble methods: combining multiple models or classifiers,

especially those designed to handle imbalanced data, can improve

performance. Ensemble techniques like bagging, boosting, or

stacking can help create a more robust and balanced diagnostic

system by combining the outputs of multiple classifiers.

Active learning: in an iterative process, AI models can

actively query additional data points that are uncertain

or challenging, potentially focusing on underrepresented

fracture cases to improve overall performance. Active

learning strategies can help in selecting the most

informative samples for human review and annotation,

gradually improving the model’s performance in

recognizing fractures.

In general, addressing the issue of imbalanced classes

in image-based fracture diagnosis is essential to ensure that

AI-based solutions are equitable and clinically effective.

It requires a combination of thoughtful data collection,

algorithmic techniques, and model evaluation strategies to

mitigate bias and improve diagnostic accuracy for both

fractured and non-fractured cases. Moreover, continuous

monitoring and updates to the model as more data becomes

available can help maintain its diagnostic performance

over time.

6.6 Pediatric facial trauma

It has been reported that craniofacial trauma is common

in children, where most incidences involved soft tissue and

dentoalveolar damages (Braun et al., 2017). Although being

relatively rare in comparison with the adult population, pediatric

facial trauma can cause significant morbidity and disability.

The diagnosis and treatment of pediatric facial trauma can

be different from adult facial trauma because the former

procedures depend on stages of development and future

growth, which yield different patterns of injury (Braun et al.,

2017).

Studies reviewed in the foregoing sections on the applications

of AI were mostly about fracture detection in adults. Little effort

has been made on developing AI-based methods for detecting and

classifying images of pediatric bone fractures in general and facial

fractures in particular, despite the long-term clinical consequences

of failure to diagnose fractures in children. Shelmerdine et al.

(2022) reviewed the use of AI for radiological pediatric fracture

assessment. The authors pointed out differences of patterns

between pediatric and adult bone-fracture appearances on imaging,

which led to the missing of up to 11% of misdiagnosis of acute

pediatric fractures performed by emergency physicians compared

to specialist pediatric radiologists. Some highlights provided by the

authors are that AI-based tools for imaging diagnostics of facial

trauma in children were developed to mostly address assessments

on plain radiography. The AI methods were constrained with strict

inclusion and exclusion criteria that would make it difficult to apply

to pediatric cases. Opportunities for important future research

suggested by the authors include the development of AI-enabled

fracture assessment for very young children, who are <2 years of

age, and children with genetic bone disorders.

6.7 Features for image classification

Although CNNs are capable of extracting useful features from

images through a series of convolution, nonlinearity, and pooling;

exploration and inclusion of novel features extracted from raw

image data to be used as input into a deep-learning model can

enhance the classification power of the AI method. Alternatively,

image features extracted with deep learning can be further mapped

into a different type of features that are expected to increase the

similarity of images that belong to the same class and dissimilarity

between those that belong to different classes. For examples, the

transformation of raw images into images of pixel recurrence

could enhance the deep learning of complex spatial information in

immunohistochemical (IHC) images for the prognosis of patients

with rectal cancer (Pham et al., 2023a); and the use of wavelet-

image scattering for the second feature extraction of IHC features

obtained from a pretrained CNN could reveal the prognostic power

of a protein marker in rectal cancer (Pham and Sun, 2023).

The fusion of image features extracted frommultiple pretrained

CNNs would be useful for improving the detection of complex

fractures in facial trauma. Pretrained CNNs self-extract features

of images at different layer activations along its network depth.

Activation-based features obtained multiple pretrained CNNs can

be readily adopted for machine learning such as a support vector

machine (SVM) for object classification. Some good reasons for

using image features from pretrained CNNs to train an SVM are

that the feature extraction process performed by a pretrained CNN

is computationally efficient and CNN-based features have been

known to be more effective for SVM-based classification than the

direct use of a pretrained CNN-based classifier (Fan et al., 2021;

Pham et al., 2023b). This practice is particularly useful if the size

of a dataset of facial trauma is too small to enable an effective

adoption of the transfer learning with a pretrained CNN (Fan et al.,

2021; Pham et al., 2023b). It is because the fine-tuning of pretrained

deeper layers does not likely improve the differentiation of class

features when there is not sufficient information to learn from a

small dataset.

6.8 Evidence-based decision

Scarfe (2005) pointed out that there has been no general

agreement of diagnostic imaging selection in maxillofacial

trauma. Complexity and economic tradeoffs between technologies,

healthcare reimbursement, and legal issues interplay contribute to

local selection approaches. The author also reported that while 3D

images are the preferred modality, it may lead to different surgical

approach and determination of clinical diagnostic values. These

discrepancies are the results of different interpretations on the

radiologic information and the nature of the trauma provided by

different image readers. Therefore, the combination of evidence-

based clinical decision making and radiographic selection criteria

for addressing appropriate radiographic modality in facial trauma

is necessary. AI-based clinical decision support systems can offer

potential benefits to this development as its similar applications

have been reported in literature (Giordano et al., 2021; Amann et

al., 2022; Ramgopal et al., 2023 ).
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Generally, evidence-based medicine (EBM) encompasses the

evidence from clinical studies, medical expertise, and the patient’s

values and preferences for clinical decision making (Sackett et al.,

1996). The principles of EBM have led to a systematic approach to

clinical problem solving (Akobeng, 2005). However, it is reported

that EBM has encountered several difficulties in implementation,

known as the “60-30-10 Challenge” (Braithwaite et al., 2020).

Nowak (2021) has recently suggested potential solutions to this

challenge with the use of AI, including its ability to (1) detect

research gaps and improve the allocation of medical research funds,

(2) accelerate the process of evidence synthesis, and (3) automate

the living systematic reviews. Such suggestions are applicable to

evidence-based decision making in facial trauma imaging.

6.9 AI overreliance

It was thought that a human-AI interaction system could

perform better than either a human-based or an AI-based system.

However, several investigations have reported that this is not always

true. It is observed that humans tend to accept outputs or decisions

made by AI or machine-learning algorithms. This problem is

known as AI or machine-learning overreliance. AI overreliance

should be avoided in medical diagnoses such as the case of facial

trauma. Because the way AI processes information is complex and

considered as a black box, explainable AI (Gunning et al., 2019)

aims to interpret predictions made by machine-learning models

and help reduce overreliance on AI.

A recent experimental study (Vasconcelos et al., 2023) has

illustrated that humans can overcome AI overreliance in making

decisions when the accompanying AI explanations become simpler

than the process of making decisions or they are motivated with

monetary rewards for making correct decisions or predictions. But

when facing challenging tasks, the authors found that explainable

AI tools failed to help human users to reduce overreliance on AI

because the complexity of the provided explanations was of the

same level as the tasks themselves. Thus, while explainable AI is

to be improved by the AI research community to elucidate AI

mechanisms for making predictions, resulting in error reduction

with a human-AI interaction, it is important for emergency

radiologists and surgeons to have the knowledge of this current

issue with AI technology.

In the context of AI overreliance, Rubin (2019) pointed out

the role of radiologists in imaging AI. The author suggested

precautionary measures for engagement with imaging AI-based

decision tools: radiologists need to (1) consider the appropriate use

of AI in specific clinical use cases, (2) be able to evaluate the adopted

AI software, and (3) be informed of possible errors as a result of

overreliance on AI tools.

The scientific community has been actively addressing the

challenges of AI overreliance in medical applications to ensure

that the integration of AI technology in healthcare remains safe,

effective, and ethical. Some efforts include:

Developing robust validation protocols: scientists are working

on establishing standardized and rigorous validation protocols to

assess the performance and reliability of AI algorithms in medical

applications (Tsopra et al., 2021). These protocols aim to ensure

that AI systems are thoroughly evaluated before their deployment

in clinical settings, minimizing the risk of relying on flawed or

biased models.

Enhancing interpretability and explainability: researchers are

focusing on improving the interpretability and explainability of

AI models in healthcare (Markus et al., 2021). By developing

techniques that provide insights into the decision-making process

of AI algorithms, scientists aim to foster trust among healthcare

professionals and patients, allowing them to understand how AI-

generated recommendations are generated and making it easier to

identify potential errors or biases.

Promoting ethical AI frameworks: the scientific community

is actively advocating for the integration of ethical frameworks

in the development and implementation of AI technologies in

medicine (Gerke et al., 2020). Initiatives such as the development

of guidelines for responsible AI use and the establishment of ethical

review boards aim to ensure that AI applications prioritize patient

safety, privacy, and data security while promoting transparency and

accountability in the decision-making process.

Fostering collaboration between clinicians and AI experts:

scientists are encouraging collaboration between clinicians and AI

experts to ensure that AI solutions are designed to complement

clinical workflows effectively (Wilson and Daugherty, 2018). By

fostering interdisciplinary partnerships, the scientific community

aims to develop AI technologies that are tailored to address specific

clinical needs, improve diagnostic accuracy, and enhance treatment

efficacy while taking into account the nuances and complexities of

patient care.

Addressing bias and diversity: researchers are actively

addressing issues related to bias and diversity in AI datasets

used for medical applications (Norori et al., 2021). Efforts

to improve the diversity of training data and mitigate biases

within AI models aim to ensure that AI algorithms provide

equitable and inclusive healthcare solutions that cater to

diverse patient populations, thereby reducing disparities in

healthcare delivery.

Overall, these concerted efforts underscore the scientific

community’s commitment to ensuring that AI remains a supportive

tool in healthcare, assisting clinicians in making more informed

decisions while upholding the highest standards of safety,

reliability, and ethical practice.

6.10 Forensic medicine

AI has the potential to revolutionize the field of forensic

medicine and pathology (Piraianu et al., 2023), especially in the

diagnosis of fractures in facial trauma, aiding in the investigation

and determination of the cause of violent deaths. Some potential

applications of AI in this context are as follows.

Automated fracture detection and analysis: AI algorithms can

be trained to automatically detect and analyze fractures in facial

trauma from radiological images such as X-rays, CT scans, and

MRIs. By leveraging deep learning and computer vision techniques,

AI can accurately identify and classify different types of fractures,

including their patterns and locations, which can provide valuable

insights for forensic pathologists and investigators.
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Pattern recognition for injury assessment: AI can be utilized

to recognize specific patterns of facial fractures that may indicate

particular types of violence or trauma. By analyzing a large dataset

of facial trauma cases, AI models can learn to distinguish between

fractures caused by different forces, such as blunt force trauma,

gunshot wounds, or other types of assaults, aiding forensic experts

in understanding the nature and potential source of the injury.

Comparative analysis and database integration: AI can facilitate

the comparison of fracture patterns in facial trauma with a

comprehensive database of known injury types, causes, and

circumstances. By cross-referencing and analyzing a wide range

of forensic data, including historical case records and relevant

medical literature, AI systems can assist in identifying similarities

or connections between current and past cases, potentially helping

to establish patterns or identify potential suspects or weapons

involved in the violence.

Simulation and reconstruction of trauma events: AI-powered

simulations can reconstruct the sequence of events leading to

the facial trauma, providing a visual representation of the force

and impact that caused the fractures. By integrating data from

various sources, including medical imaging, forensic evidence,

and biomechanical principles, AI can help create virtual scenarios

that depict how specific injuries might have occurred, assisting

forensic experts in building more accurate and detailed narratives

surrounding the circumstances of the violent death.

Data-driven forensic decision support systems: AI can

contribute to the development of decision support systems

that assist forensic pathologists and investigators in interpreting

complex forensic data related to facial trauma. These systems

can provide evidence-based insights and recommendations based

on the analysis of extensive datasets, enabling more informed

decision-making processes and potentially expediting the forensic

investigation of violent deaths.

7 Conclusion

Recent developments of AI and its subset of deep learning

for automated fracture detection in facial trauma imaging have

been reviewed. These AI tools can be helpful for recognizing

complex or subtle fractures. AI-enabled technology can help

significantly reducing radiologic reading time in complex cases

to allow specialists perform more essential tasks in an emergency

department (Guermazi et al., 2022). Although further studies are

required for model improvement and validation with randomized

clinical trials with diverse samples of patients, AI-based predictive

software and systems are promising for translation into clinical

practice (Oppenheimer et al., 2023).

The concept of personalized and precision medicine (Hodson,

2016) departs from the conventional one-size-fits-all approach

in medicine that is only effective for the average population of

patients. Precision medicine (Hodson, 2016) is a modern medical

innovation that considers individual differences in molecular

characteristics, environments, and lifestyles of individual patients.

AI has been playing a critical role for making precision medicine

and health care practically achievable (Uddin et al., 2019; Johnson

et al., 2021). Likewise, precision dentistry or dental medicine

(Schwendicke and Krois, 2022; Kaur et al., 2023) is a novel data-

driven approach to oral and dental health that tries to gain insights

into the individual patient’s genetics to deliver precise or targeted

treatment. AI is believed to be central to the reality of precision

dental medicine. AI for maxillofacial imaging is an obvious case

of precision dental medicine, where big data of digital dental

images can be readily analyzed by AI algorithms for precise object

detection and segmentation to localize pathology, and accurate

diagnosis of abnormal conditions (Hung et al., 2023).

This review is expected to be of clinical impact because AI

and its machine-learning algorithms can offer effective and efficient

solutions to challengingmedical imaging problems in facial trauma,

which are currently not well explored, to improve existing clinical

reporting systems and lead to better patient outcomes.
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