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Manual sleep staging (MSS) using polysomnography is a time-consuming

task, requires significant training, and can lead to significant variability among

scorers. STAGER is a software program based on machine learning algorithms

that has been developed by Medibio Limited (Savage, MN, USA) to perform

automatic sleep staging using only EEG signals from polysomnography. This

study aimed to extensively investigate its agreement with MSS performed

during clinical practice and by three additional expert sleep technicians. Forty

consecutive polysomnographic recordings of patients referred to three US

sleep clinics for sleep evaluation were retrospectively collected and analyzed.

Three experienced technicians independently staged the recording using the

electroencephalography, electromyography, and electrooculography signals

according to the American Academy of Sleep Medicine guidelines. The staging

initially performed during clinical practice was also considered. Several agreement

statistics between the automatic sleep staging (ASS) and MSS, among the di�erent

MSSs, and their di�erences were calculated. Bootstrap resampling was used

to calculate 95% confidence intervals and the statistical significance of the

di�erences. STAGER’s ASS was most comparable with, or statistically significantly

better than the MSS, except for a partial reduction in the positive percent

agreement in the wake stage. These promising results indicate that STAGER

software can perform ASS of inpatient polysomnographic recordings accurately

in comparison with MSS.
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1 Introduction

During sleep, our brain moves across a series of changes between different sleep stages

characterized by specific brain and body activity patterns. Sleep staging refers to the process

of mapping these transitions over a night of sleep (Danker-Hopfe et al., 2009). This is of great

importance because sleep patterns, in combination with other features, provide the basis for

diagnosing many sleep-related disorders and can add information crucial to characterizing

several medical and psychiatric conditions associated with deteriorating sleep patterns.
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Overnight polysomnography (PSG) is the primary diagnostic

test used to evaluate patients with sleep problems. It consists of a set

of signals, primarily from electroencephalogram, electrooculogram,

electromyogram, and electrocardiogram data, recorded through

sensors attached to different parts of the body.

The current gold standard for sleep staging is visual

polysomnographic data review by certified sleep technicians

following standardized rules of the American Academy of Sleep

Medicine (AASM) (Ezzati et al., 2004) and based on the original

criteria developed by Rechtshaffen and Kales (Kales et al., 1968).

The standard classification defines five sleep stages following one

another overnight: waking (wake), non-rapid eye movement (N1,

N2, and N3), and rapid eye movement (REM).

Manual sleep staging (MSS) of sleep is a difficult, costly,

and time-consuming process. In clinical practice, the classification

of a full night (6-h recording) requires ∼2–4 hours of visual

scoring. Moreover, variability between independent scorers exists.

The estimated agreement between scorers using AASM criteria

ranges from 80 to 82% (Danker-Hopfe et al., 2009; Rosenberg and

Van Hout, 2013; Younes et al., 2016). Indeed, the opportunity

of automatizing this task would allow for not only substantial

savings in time and costs but also a reduction in the between-scorer

inconsistency (Wang et al., 2015; Sun et al., 2017). Moreover, it

can help facilitate the transfer of sleep investigations from a clinical

setting to the home environment, which will permit monitoring of

the clinical course and therapy effects with long-term and frequent

sleep assessments.

With the advancements in computer science, several supervised

machine learning algorithms based on PSG-recorded signals

have been proposed to perform automatic sleep staging (ASS),

with hundreds of algorithms currently available in the scientific

literature (Boostani et al., 2017; Faust et al., 2019). Some of these

supervised machine learning algorithms rely on the calculations

of some statistical parameters from PSG signals and use them as

inputs. Other supervised machine learning algorithms based on

deep learning (Goodfellow et al., 2016) allow for the direct use of

raw PSG signals as inputs without the need for any prior feature

extraction, thereby permitting sleep staging to be performed in a

more end-to-end fashion. Some of the currently proposed machine

learning algorithms have demonstrated excellent results, at the

level of experienced technicians’ agreement or greater (e.g., Nurma

et al., 2016; Tsinalis et al., 2016; Zhang and Wu, 2017; Dimitriadis

et al., 2018; Li et al., 2018; Patanaik et al., 2018; Stephansen

et al., 2018; Feng et al., 2021; Fu et al., 2021; Perslev et al., 2021;

Vallat and Walker, 2021; Bakker et al., 2023). While most of the

proposed algorithms have been designed to use different signals

as input, e.g., electroencephalography (EEG), electrooculography

(EOG), and electromyography (EMG), some algorithms use EEG

derivations solely as input (e.g., Peter-Derex et al., 2021; Sharma

et al., 2021; Phan and Mikkelsen, 2022). However, most of them

have remained mere prototypes and proofs of concept, and only

a few have been validated and authorized by national regulatory

bodies for their use in clinical practice (e.g., EnsoSleep by EnsoData,

Madison, WI, USA).

We developed STAGER (Medibio Limited, Savage, MN, USA;

CE Mark certification in 2020, Certificate Registration Number:

532495 MR6, Medical Device Directive of the European Union,

Council Directive 93/42/EEC of 14 June 1993, OJ No L 169/1 of

1993-07-12), a software program based on a series of machine

learning algorithms that performs ASS using PSG recordings.

In general, despite the development details of the current ASS

products have usually not been disclosed, they all seem to use

information derived from multiple physiological signals, such as

at EEG, EOG, and EMG, following the information normally

taken into consideration by sleep technicians to accomplish this

task. Instead, STAGER only relies on EEG signals to perform

ASS. We aimed to validate the ASS performed by STAGER by

investigating its level of agreement with both the staging performed

during the clinical practice and an additional staging performed

by three independent long-experienced sleep technicians in a

sample of clinical PSG recordings randomly selected and collected

retrospectively from multiple sleep clinics in Minnesota, US.

Furthermore, this study introduces a novel analytical approach

designed to directly compare the accuracy of STAGER’s ASS

with that of multiple technicians’ MSS, thereby identifying which

method yields greater accuracy in various sleep stages and sleep

macrostructure indexes.

2 Materials and methods

2.1 Data collection

Forty EDF (European Data Format; Kemp et al., 1992) files

were used to test the staging performance of the STAGER software,

which contained the PSG recordings of subjects referred to sleep

clinics for a sleep investigation, as prescribed by their physician.

Of these, 20 files were from the Lakeland Health Services Sleep

Center–Plymouth, 10 from Lakeland Health Services Sleep Center–

St. Cloud, and 10 from Restore Sleep Center–Blaine, all of which

are located in Minnesota, USA. The files were retrospectively

collected among PSG studies consecutively recorded in each

center in July 2019. The total number of forty EDF files was

previously planned according to previous analysis related to the

development of other automatic sleep STAGER software [e.g.,

MICHELE Sleep Scoring System by Younes Sleep Technologies,

FDA 510(k) Number: K112102, https://www.accessdata.fda.gov/

cdrh_docs/pdf11/K112102.pdf; SleepProfiler by Advanced Brain

Monitoring, Inc., FDA 510(k) Number: K153412, https://www.

accessdata.fda.gov/cdrh_docs/pdf15/K153412.pdf]. No data from

these sleep centers have been used in the development of the ASS

functionality of the STAGER software.

The associated clinical sleep staging reports and annotations

made for clinical assessments, including lights-off and lights-on

times, were also collected for each PSG. The only inclusion criteria

were subject of age ≥18 years and completion of a full night’s

PSG study with over 6 hours of recording. No further inclusion

or exclusion criteria were applied. The first forty consecutively

recorded EDF files met the inclusion criteria and they were

included in the analysis.

All EDF and associated files were de-identified by removing

any personally identifiable information and assigned a progressive

identification code before being collected. This study was approved

by Western Institutional Review Board (Puyallup, WA, USA)

(Approval no. 1230523) and conducted in accordance with the

principles of the United States Food and Drug Administration
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Code of Federal Regulations Part 2, Good Clinical Practice

(ICH., 1998), and the Declaration of Helsinki (World Medical

Association., 2009).

2.2 Polysomnography

The EDF files contained the recordings of a full night’s digital

PSG study performed according to the AASM guidelines and

acquired with the SomnoStar 10.2 sleep scoring system by Vyaire

Medical, Inc. Among the several physiological channels recorded

during the PSG, six EEG montages (F4A1, C4A1, O2A1, F3A2,

C3A2, and O1A2; sampling rate, 200Hz) were used by both

STAGER software to perform ASS and the sleep technicians to

perform MSS, both during the clinical practice and additional

sleep staging by the three technicians described below (2.4); in

addition, two electrooculographic (EOG) channels (E1 and E2;

sampling rate, 200Hz), and a single chin electromyographic (EMG)

channel (sampling rate, 500Hz) were also taken into account by

the sleep technicians to perform MSS according to the AASM

standardized rules.

2.3 STAGER software

The STAGER software is a medical software program for

use with a Microsoft Windows operating system that analyzes

previously recorded physiological signals from EDF files as per

AASM guidelines. It initially performs sleep staging at every 30-s

epoch of PSG recordings based on EEG signals. STAGER software

uses input signals from the six EEG montages described above.

The signals of these EEG channels are processed with a series

of machine learning and deep learning algorithms and classified

each 30-s epoch in one of five possible sleep stages: wake, N1,

N2, N3, and REM. These algorithms were developed based on

over a thousand EDF files from clinical PSG recordings. This

represents more than 1 million 30-s epochs that were collected

from multiple sleep centers, predominantly in North America,

with one in Europe. All these PSG recordings pertain to patients

who underwent PSG due to suspected primary or secondary sleep

disorders. We used PSGs from patients aged 18 years or older in

the training sample, with no data from pediatric patients included.

Beyond this age criteria, no other exclusions were made regarding

patient characteristics, ensuring a clinically representative sample

for developing the STAGER’s ASS functionality.

For each epoch, a spectral analysis of the EEG data is conducted,

and the absolute and relative power values of EEG Alpha,

Beta, Delta, Theta, and Sigma frequency bands are calculated,

alongside other metrics and input. This information forms the basis

the machine learning pipeline uses for automatic sleep staging.

Initially, two machine learning algorithms independently perform

an initial sleep staging for each 30-s epoch: one is a Convolutional

Neural Network (CNN), and the other employs Gradient Boosting

techniques. Then, two additional temporal-aware machine learning

algorithms are applied: one is a deep learning model utilizing a

recurrent neural network architecture, and the other is a further

application of Gradient Boosting methods. Enhanced staging

accuracy is achieved by contextualizing each epoch within the

broader scope of the entire sleep recording. Finally, an ensemble

method that integrates the outputs from the different algorithms is

employed to determine the definitive sleep stage for each epoch.

STAGER includes a signal detector that identifies and rejects

the signal of an epoch if a lack of signal is detected in at least

half of the epoch (i.e., the absolute magnitude of the signal is <0.5

µV in at least 15 s). To solve the lack of signal quality, STAGER

software can also perform ASS when at least either the montages

C4A1, F4A1, and O2A1 or C3A1, F3A1, and O1A2 are available,

although reduced accuracy is expected compared to the use of

six EEG channels. Rather than filtering out EEG artifacts, such

as those caused by eye or muscle movements, we exposed the

machine learning algorithm to epochs containing these artifacts

during training. This strategy enables the algorithm to utilize these

artifacts as informative features for sleep staging, thereby enhancing

the robustness and precision of sleep stage classifications.

The STAGER software requires the inclusion of the lights-off

and lights-on times and performs staging of this part of the PSG

recordings only.

For the validation phase, we included only EDF files not

used in the development phase and collected from new sleep

centers that did not have been involved in the development of

the ASS functionality of the STAGER software; in addition, in

the validation phase, no further changes were applied to the sleep

staging algorithms to optimize the performance.

2.4 Technician-based MSS of the PSG
recordings

For each EDF file, the original MSS of the PSG recording

performed during the clinical practice was used for the validation.

In all three sleep clinics, the standard clinical procedure implies that

a technician initially performs theMSS on the night during the PSG

study, and then the senior lead sleep technician reviews and finally

approves the MSS on the following day, according to the AASM

scoring guidelines.

In addition to the MSS conducted during the clinical routine,

three experienced sleep technicians were enrolled in this study.

These technicians have more than 15 years of experience in

professionally annotating sleep studies and have an AASM

certification. They all worked at the Lakeland Health Services Sleep

Center in Plymouth. Each technician received the collected de-

identified EDF files and was asked to independently stage each 30-s

epoch of the PSG recordings assigning one of the five possible stages

described above to each epoch, according to the AASM Manual

for the Scoring of Sleep and Associated Events, Version 2.5 (Berry

et al., 2018). All of them performed the staging using the Polyman

software (Kemp and Roessen, 2007), Version 2.1.7273.58144 for

Windows, which allows both epoch-by-epoch signal visualization

and stage annotation. The three technicians performed their

staging blindly to one another. In addition, since they may have

previously contributed to the staging of some EDF files included in

the validation phase during their clinical practice, the annotations

previously reported, as well as, demographic variables such as

subjects’ age and sex, and other clinical information that could have
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contributed to creating an association with any previous clinical

work were not shared with the technicians.

Finally, the STAGER software was used to perform ASS of the

EDF files. As the program requires inputting the initial lights-off

and final lights-on times before performing AS, these times were

extracted from the annotation files to match those used in the

clinical staging.

In both the MSS and ASS, a non-classified (U) stage was

allowed to be assigned to an epoch if the signals were too corrupted

for them to stage an epoch reliably, as indicated by the scoring

AASM guidelines. The same criteria were valid for the previously

performed routine clinical staging. In every analysis, U stages were

removed, and only those epochs for which a stage was assigned by

all scorings considered in that analysis were considered.

2.5 Statistical analysis

To validate the ASS performed by the STAGER software, we

initially investigated its agreement with both the technicians’ MSSs

and the sleep staging performed during clinical practice for the PSG

studies used in this study. First, we calculated the agreement of the

ASS with the majority vote staging of the three technicians, overall

and grouped by the five possible stages. Among the 30-s epochs,

only those to which at least two of the three technicians assigned

the same stage were used in the analyses and all others were

discarded. A single majority vote stage was finally assigned to those

epochs that were retained and this was used to calculate agreement

with the ASS. This analytical strategy has been commonly used in

validation studies of other medical software products that automate

sleep staging (e.g., MICHELE Sleep Scoring System, SleepProfiler).

A bootstrap resampling approach was applied (10,000 resamples,

with resampling performed for entire EDF files), and the median

of the bootstrap resampling distribution was used as a point

estimate of the overall percent agreement (e.g., the overall accuracy;

OPA), interrater reliability (as measured by Cohen’s k), positive

percent agreements (PPAs), negative percent agreements (NPAs),

and positive predictive values (PPVs) with their respective 95%

confidence intervals (CIs) based on the 2.5th and 97.5th percentiles

of the distribution. Then, by using the same analytical strategy, we

also calculated the agreement of the ASS with the clinical sleep

staging, overall, and grouped by the five possible stages.

However, the strategy above does not allow performing a direct

comparison between the accuracy of the software ASS and of

the technicians’ MSS, i.e., answering the question of whether the

software is more accurate or less accurate than the technicians in

performing sleep staging.

To do this, we investigated the difference between the average

agreements of the MSSs performed by the three technicians and the

average agreements of the MSSs among the technicians. This was

performed by calculating the differences in the OPA and Cohen’s

k values of the ASS and MSSs, as well as the PPAs, NPAs, and

PPVs grouped by the five possible stages. As the agreement of

Technician 1 with Technician 2 is not equal to the agreement of

Technician 2 with Technician 1, the average agreements of the

MSSs among the technicians were based on an average of six

values, two for each pair of technicians with both possible orders.

Instead, only the average agreements of the ASS with theMSSs were

calculated, not considering the agreements of the MSSs with the

ASS. This strategy is closely in line with what Lovchinsky et al.

(2019) recently proposed as an evaluation strategy for machine

learning models when perfect human expert annotations are not

possible. This approach also allows including all staged epochs

in the analysis, circumventing the exclusion of non-consensus

epochs inherent in the majority vote strategy.1 This adjustment

prevents the potential overestimation of agreement between ASS

and majority vote MSS, which could arise from the omission of

the non-consensus epochs that are typically more challenging and

ambiguous to score accurately. A bootstrap resampling approach

was applied by performing a 10,000-resampling analysis of the

EDF files. The median of the bootstrap resampling distribution

was used as a point estimate of the differences in the PPAs, NPAs,

and PPVs, and their respective 95% CIs based on the 2.5th and

97.5th percentiles of the distribution were calculated. A statistically

significant difference was confirmed by both bounds of the CI

being higher or lower than 0 (i.e., both having a positive or

negative sign). Then, we also investigated the difference between

the agreements of the ASS with the clinical staging and the average

agreements of each individual technicians’ MSS with the clinical

staging. These analyses were also performed following the same

bootstrap approach described for the previous analyses.

Finally, we evaluated the agreement between sleep

macrostructure indices derived from the software ASS and

those obtained from the technicians’ MSSs as well as clinical

staging. We also tested the difference in agreement between the

ASS and the MSSs. Specifically, we examined total sleep time

(TST), sleep latency (SL), REM sleep latency (REML), sleep

efficiency (SE), wake after sleep onset (WASO), time in wake, time

in N1 stage, time in N2 stage, time in N3 stage, and time in REM

stage. In line with the previously described analytical methods, we

computed the average intra-class correlation coefficients (ICCs)

between the ASS and the three technicians’ MSSs, as well as the

average ICCs among the three technicians’ MSSs alone. Similarly,

we computed the ICCs between the ASS and the clinical staging,

as well as the average ICCs between each technician’s MSSs and

the clinical staging. We also computed the differences between

1 Recently, the application of the hypnodensity approach has extended to

MSS, providing a representation of the distribution of manual sleep stages as

probabilistic outputs rather than discrete classifications, when sleep staging

performed by multiple scorers is available (Anderer et al., 2023). This method

depicts the level of agreement and uncertainty among sleep technicians

when assigning sleep stages, thereby capturing the inherent variability and

subjectivity of manual scoring. However, considering the unique context of

our study, we opted to not incorporate the hypnodensity approach into our

analysis. The primary reason for this decision was the limited number of

independent scorings available, which could result in an imprecise estimation

of MSS probabilities. In studies where the hypnodensity approach has been

successfully applied (Stephansen et al., 2018; Bakker et al., 2023; Fiorillo

et al., 2023), a minimum of five scorers was utilized to generate reliable MSS

probabilities. Our study, in contrast, included four MSSs, with only three being

fully independent and based on the same scoring procedure. Given this, we

considered the hypnodensity approach was not suitable for the analysis of

the current study.
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these ICCs to determine any significant disparity between the

ICCs of the ASS and of the technicians’ MSSs. To accomplish this,

we employed the same bootstrap resampling method outlined

above. For the ICC calculations, we used the absolute agreement

definition for single measures under a fixed-rate scenario,

corresponding to the ICC(A,1) model as described by McGraw

(1996).

All analyses were performed in the Python programming

language Version 3.7.3 (Python Software Foundation, 2019).

3 Results

The age, sex, body mass index, and apnea–hypopnea index

(AHI) of the recruited subjects as well as the lights-off time,

lights-on time, and duration of the PSG studies are reported in

Table 1. For all 40 subjects randomly sampled from the sleep

centers, the clinical reason that prompted their need for PSG

was suspected OSA. On the basis of the PSG data, 9 (22.5%)

subjects did not have significant sleep apnea (AHI <5), 26 (65%)

had mild sleep apnea (AHI ≥5 but <15), and 5 (12.5%) had

moderate sleep apnea (AHI ≥15 but <30). None of the subjects

had severe sleep apnea (AHI >30). In total, 18 males and 22

females were included in this study, and their ages and body

mass indexes ranged from 26 to 84 years (mean = 49.58 years,

standard deviation = 13.71) and from 23 to 49 kg/m2 (mean

= 34.05 kg/m2, standard deviation = 6.54), respectively. It was

possible to perform ASS in all epochs of all PSG recordings.

The signals of the left EEG montages were detected as missing

in a single epoch, and only the right montages were used to

perform ASS in that epoch. No U stage was assigned by either

STAGER or the three technicians during their MSS, whereas four

U stages were found in the clinical staging. Figure 1 provides a

visual comparison of the hypnograms for two representative PSG

recordings, illustrating the correspondence between the different

staging methods.

3.1 Agreement of the software ASS with
the majority vote of the MSSs performed by
the three technicians

The resulting agreement of the ASS with the majority vote

staging of the three technicians is reported in Table 2. A total

of 36,030 epochs were staged by both STAGER and the three

human raters. Of these, 493 (1.37%) were discarded from this

part of the analyses as a majority vote could not be assigned

to them. This rate is within the range of previously reported

data of studies that used the majority vote approach (e.g.,

MICHELE validation study: 0.95%, https://www.accessdata.fda.

gov/cdrh_docs/pdf11/K112102.pdf: Sleep Profiler validation study:

3.67%, https://www.accessdata.fda.gov/cdrh_docs/pdf15/K153412.

pdf). A total of 8,574 epochs (23.80%) presented partial agreement

between the three technicians (i.e., only two raters assigned the

same stage to the epoch), and 26,963 epochs (74.83%) demonstrated

full agreement between them.

Good OPA of the ASS with the majority vote staging of the

three technicians (OPA= 86.78%, 95% CI= 85.36%−88.14%) and

interrater reliability (Cohen’s k= 0.8205, 95% CI= 0.8025–0.8382)

were observed. The stage-specific PPAs also attained good results,

with an N1 PPA of 54.90%, a wake PPA of 85.11%, an N2 PPA of

89.78%, an N3 PPA of 90.90%, and a REM PPA of 93.69%. Good

results were also observed for stage-specific NPAs, with an N2 NPA

of 91.28%, an N1 NPA of 95.15%, an N3 NPA of 98.11%, a wake

NPA of 99.10%, and a REM NPA of 98.60%. Finally, good stage-

specific PPVs were observed as well, with an N1 PPV of 48.4%, an

N2 PPV of 87.49%, an N3 PPV of 90.69%, a REM PPV of 91.36%,

and a wake PPV of 96.26%.

3.2 Agreement of the software ASS with
the clinical staging

The resulting agreement of the ASS with the clinical staging

is reported in Table 3. A total of 36,112 epochs did not present

TABLE 1 Descriptive statistics of the subjects and polysomnography studies.

Variable Mean Standard deviation Minimum Maximum

Age 49.58 13.71 26 84

BMI 34.05 6.54 23 49

AHI 7.51 5.30 0.7 24

SpO2 < 88% 1.34 2.18 0 10.2

Total arousal index 23.86 13.44 3.8 56.7

Lights-off 22:20:10 00:26:46 20:59:00 23:25:00

Lights-on 05:51:08 00:34:21 03:38:30 06:50:00

Duration 07:30:58 00:37:29 05:59:00 09:03:30

n %

Gender
m 18 45.00%

f 22 55.00%

BMI, body mass index; AHI, apnea–hypopnea index.
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FIGURE 1

Hypnograms from STAGER’s ASS, clinical staging, and technicians’ MSSs of two polysomnography studies. This figure showcases a side-by-side

comparison of hypnograms obtained from STAGER’s ASS, clinical staging, and MSS performed by three expert technicians, including their majority

vote staging for two PSG studies. These particular PSGs were selected based on STAGER’s ASS achieving an OPA with the majority vote staging that is

representative of the median performance across the study (OPA of the left PSG study: 87.99%; OPA of the right PSG study: 88.05%; median OPA of

all studies: 88.02%). The label ’U’ on the majority vote hypnogram signifies epochs where complete disagreement occurred among the three raters.

a U annotation in the clinical annotation file. All these epochs

were also staged by STAGER and used to calculate the agreement

scores. In addition, in these analyses, good OPA of 83.74% (95% CI

= 82.53%−84.97%) and Cohen’s k of 0.7796 (95% CI = 0.7642–

0.7956) were observed, as were good stage-specific PPAs, with an

N1 PPA of 50.98%, a wake PPA of 81.61%, an N2 PPA of 87.03%,

an N3 PPA of 87.32%, and a REM PPA of 90.71%. Good results

were observed for stage-specific NPAs as well, with an N2 NPA

of 89.63%, an N1 NPA of 94.18%, an N3 NPA of 97.70%, a REM

NPA of 98.18%, and a wake NPA of 98.50%. Good stage-specific

PPVs were also observed, with an N1 PPV of 40.69%, an N2 PPV of

84.98%, an N3 PPV of 88.40%, a REM PPV of 89.34%, and a wake

PPV of 93.78%.

3.3 Di�erence between the software ASS
and the technicians’ MSSs in their
agreement with the average technicians’
MSSs

The average agreements of the ASS with the MSSs performed

by the three technicians, the average agreements of the MSSs
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TABLE 2 Agreement of STAGER’s ASS with the majority vote staging of the three technicians.

PPA NPA PPV

WAKE N1 N2 N3 REM Total Median 95% CI Median 95% CI Median 95% CI

M
aj
o
ri
ty
vo
te
s
o
f
th
e
th
re
e
te
ch
n
ic
ia
n
s

Wake 6,478 902 190 10 37 7,617 85.11% 81.27% 88.32% 99.10% 98.74% 99.41% 96.26% 94.41% 97.66%

N1 174 1,501 879 1 176 2,731 54.90% 50.29% 59.64% 95.15% 93.88% 96.22% 48.47% 44.59% 52.53%

N2 59 636 12,888 559 221 14,363 89.78% 87.73% 91.56% 91.28% 89.91% 92.59% 87.49% 85.10% 89.58%

N3 5 0 539 5,412 0 5,956 90.90% 87.25% 93.92% 98.11% 97.19% 98.78% 90.69% 86.47% 93.63%

REM 14 61 239 0 4,556 4,870 93.69% 90.27% 96.16% 98.60% 98.10% 99.00% 91.36% 88.81% 93.63%

Non-consensus 48 201 144 21 79 493

Total 6,778 3,301 14,879 6,003 5,069 36,030

ASS indicates automatic staging; PPA, positive percent agreement; NPA, negative percent agreement; PPV, positive predictive value; 95% CI, 95% confidence interval by bootstrap resampling; REM, rapid eye movement.

TABLE 3 Agreement of STAGER’s ASS with clinical staging.

PPA NPA PPV

Wake N1 N2 N3 REM Total Median 95% CI Median 95% CI Median 95% CI

C
li
n
ic
al
st
ag
in
g

WAKE 6,410 1,067 307 20 56 7,860 81.61% 76.58% 86.05% 98.50% 97.80% 99.04% 93.78% 90.72% 96.02%

N1 316 1,343 808 4 157 2,628 50.98% 43.99% 58.47% 94.18% 92.79% 95.49% 40.69% 33.48% 48.51%

N2 89 797 12,659 677 328 14,550 87.03% 84.87% 89.18% 89.63% 87.64% 91.44% 84.98% 81.61% 87.98%

N3 4 0 770 5,302 0 6,076 87.32% 82.96% 91.23% 97.70% 96.66% 98.54% 88.40% 83.50% 92.58%

REM 18 95 357 0 4528 4,998 90.71% 86.56% 94.06% 98.28% 97.63% 98.81% 89.43% 86.03% 92.32%

Total 6,837 3,302 14,901 6,003 5069 36,112

ASS indicates automatic staging; PPA, positive percent agreement; NPA, negative percent agreement; PPV, positive predictive value; 95% CI, 95% confidence interval by bootstrap resampling; REM, rapid eye movement.
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among the technicians, and their differences are reported in Table 4.

Both the OPA of the ASS with the MSSs and their interrater

reliability were not statistically significantly different from those

among the technicians’ MSSs. The average PPA of the ASS with

the MSSs was significantly better than that among the technicians’

MSSs for N2 (median = 3.90%, 95% CI = 1.79% to 6.01%),

statistically significantly worse for wake (median = −7.04%, 95%

CI = −10.40% to −3.85%), and not significantly different for N1,

N3, and REM. The average NPA of the ASS with the MSSs was

statistically significantly better for wake (median = 1.16%, 95% CI

= 0.64% to 1.67%) but not significantly different for N1, N2, N3,

and REM. The average PPV of the ASS as compared with that of

the MSSs was also statistically significantly better for wake (median

= 3.55%, 95% CI= 1.90% to 5.212%) but not significantly different

for N1, N2, N3, and REM.

3.4 Di�erence between the software ASS
and the technicians’ MSSs in their
agreement with the clinical staging

The average agreements of the ASS with the clinical staging,

the average agreements of the technicians’ MSSs with the clinical

staging, and their differences are reported in Table 5. Both the

OPA of the ASS with the MSSs performed by the three technicians

and their interrater reliability were not statistically significantly

different from those among the technicians’ MSSs. Moreover, the

average PPA of the ASS with the clinical staging was statistically

significantly better than that of the technicians’ MSSs with the

clinical staging for N2 (median= 3.71%, 95%CI= 1.63% to 5.80%),

statistically significantly worse for wake (median = −7.61%, 95%

CI = −11.12% to −4.62%), and not significantly different for N1,

N3, and REM. The average NPA of the ASS with the clinical staging

was statistically significantly better for wake (median= 0.95%, 95%

CI= 0.36% to 1.62%) but not significantly different for N1, N2, N3,

and REM. The average PPV of the ASS as compared with that of

the clinical staging was also statistically significantly better for wake

(median = 2.80%, 95% CI = 0.74% to 4.92%) but not significantly

different for N1, N2, N3, and REM.

3.5 Intra-class correlation of sleep
macrostructure indices across ASS, MSS,
and clinical staging

Table 6 summarizes the average ICCs for the comparison of

the ASS with the technicians’ MSSs, the average ICCs among the

technicians’ MSSs, and the differences between these ICCs for

each sleep macrostructure index studied. With the exception of

time in N1 stage, the ASS consistently exhibited good-to-excellent

agreement (values <0.5, between 0.5 and 0.75, between 0.75 and

0.9, and >0.90 being indicative of poor, moderate, good, and

excellent reliability, respectively, as per Koo and Li, 2016) with the

technicians’ MSSs (median ICC range: 0.845–0.9684), as did the

agreements among the technicians’ MSSs themselves (median ICC

range: 0.8288–0.9676). Instead, both the average ICC of the time

in N1 stage for the comparison of the ASS with the technicians’

MSSs (median ICC: 0.6755) and the average ICC among the

technicians’ MSSs (median ICC: 0.7039) indicated a moderate level

of agreement. For none of the indices was the difference in ICCs

between the ASS and the technicians’ MSSs statistically significant,

with CI bounds not surpassing the threshold for significance (i.e.,

lower bound of the CI above 0, and upper bound of the CI below 0).

Similarly, Table 7 reports the ICCs for the ASS vs. clinical

staging, the average ICC for the technicians’ MSSs vs.

clinical staging, and the ICC differences for each of the sleep

macrostructure indices analyzed. In these analyses as well, with

the exception of time in N1 stage, the ASS (median ICC range:

0.7649–0.9594) and the technicians’ MSSs (median ICC range:

0.8134–0.9719) both demonstrated good-to-excellent agreement

with clinical staging. Instead, both the time in N1 stage ICC for

the comparison of the ASS with the clinical staging (median ICC:

0.4236) and the average ICC between the technicians’ MSSs and

the clinical staging (median ICC: 0.3867) indicated a poor level

of agreement. Only the differences in the ICCs related to time in

the REM stage reached statistical significance (median = −0.0361,

95% CI = −0.076 to −0.011), indicating a significantly lower

ICC between STAGER’s ASS and the clinical staging compared

to the average ICC between the three technicians and the clinical

staging (with both lower bounds of the CI below 0), despite both

ICCs showed an excellent level of agreement (median ASS-clinical

staging ICC: 0.9354; median average technicians’ MSS-clinical

staging ICC: 0.947). Moreover, although not significant and still

indicative of a good level of agreement (median ICC: 0.7649), the

ICC for sleep latency in the ASS vs. clinical staging was more than

0.1 lower than the average ICC for the technicians’ MSSs vs. clinical

staging (median ICC: 0.8738).

4 Discussion

The main aim of this study was to investigate the accuracy

of the ASS that the STAGER software performs through a series

of machine learning algorithms. This software is capable of

performing ASS based on EEG signals only. To provide sound

evidence of its staging performance when applied in the clinical

setting, we used a sample of 40 clinical PSG recordings from three

sleep clinics and calculated several agreement statistics of STAGER’s

ASS with both the manual staging performed during the clinical

practice and an additional staging performed by experienced sleep

technicians. All MSSs were performed using EEG, EOG, EMG

signals, according to AAMS guidelines.

We decided to use PSG recordings of patients because (1)

evidence has shown that sleep disorders may have disruptive effects

on PSG signals and (2) the accuracies of both ASS andMSS in sleep

patients are expected to be limited compared with what is achieved

in healthy subjects (Boostani et al., 2017). Moreover, we performed

an extensive investigation of the agreement of the ASS with two

distinctMSSs combined withmultiple analytical strategies, in terms

of both direct AS–MSS agreement and the difference between

agreements. Furthermore, given that one of the central issues in

sleep staging is the lack of a perfect reference, with MSS by expert

technicians being the current gold standard for sleep staging even

if it has an expected interrater agreement of only 80–82% (Danker-

Hopfe et al., 2009; Rosenberg and Van Hout, 2013; Younes et al.,
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TABLE 4 Di�erences between STAGER’s ASS and technicians’ MSSs.

Positive percent agreement Negative percent agreement Positive predictive value

Median 95% CI Median 95% CI Median 95% CI

A
ve
ra
ge

ag
re
em

en
t
o
f
ST

A
G
E
R

w
it
h
th
e
th
re
e
te
ch
n
ic
ia
n
s

WAKE 83.02% 79.04% 86.33% 98.49% 97.92% 98.94% 93.61% 90.99% 95.67%

N1 47.11% 42.45% 51.77% 94.55% 93.21% 95.67% 45.50% 42.19% 48.77%

N2 87.34% 85.24% 89.20% 88.56% 87.16% 89.92% 83.07% 80.79% 85.16%

N3 87.07% 83.60% 90.17% 97.75% 96.87% 98.42% 88.83% 84.95% 91.56%

REM 91.60% 88.26% 94.18% 98.14% 97.58% 98.61% 88.55% 85.75% 91.08%

Overall 83.30% 81.95% 84.67%

Cohen’s K 0.7747 0.7577 0.7921

A
ve
ra
ge

ag
re
em

en
t
am

o
n
g

th
e
th
re
e
te
ch
n
ic
ia
n
s

WAKE 90.08% 87.23% 92.33% 97.33% 96.65% 97.89% 90.08% 87.23% 92.33%

N1 47.86% 44.82% 50.86% 94.97% 94.27% 95.60% 47.86% 44.82% 50.86%

N2 83.44% 81.57% 85.08% 89.25% 88.16% 90.30% 83.44% 81.57% 85.08%

N3 85.89% 83.61% 87.85% 97.04% 96.44% 97.56% 85.89% 83.61% 87.85%

REM 89.54% 87.40% 91.19% 98.31% 97.93% 98.62% 89.54% 87.40% 91.19%

Overall 82.77% 81.31% 84.19%

Cohen’s K 0.7686 0.7492 0.7873

D
iff
er
en
ce

WAKE −7.04% −10.40% −3.85%∗− 1.16% 0.64% 1.67%∗+ 3.55% 1.90% 5.22%∗+

N1 −0.85% −5.67% 4.63% −0.43% −1.33% 0.38% −2.35% −5.42% 0.58%

N2 3.90% 1.79% 6.01%∗+
−0.70% −2.04% 0.68% −0.38% −1.95% 1.23%

N3 1.25% −1.87% 4.01% 0.72% −0.23% 1.52% 2.90% −0.82% 6.12%

REM 2.12% −0.67% 4.27% −0.17% −0.68% 0.31% −0.96% −3.57% 1.53%

Overall 0.53% −0.55% 1.60%

Cohen’s K 0.0062 −0.0081 0.0204

95% CI indicates 95% confidence interval by bootstrap resampling; REM, rapid eye movement; ∗+ , statistical significance with α = 0.05, with the average agreements of the automatic staging

(AS) performed by STAGER with the manual stagings (MSSs) performed by the three technicians being higher than the average agreements of the MSSs among the three technicians; ∗-,

statistical significance with α = 0.05, with the average agreements of the ASS performed by STAGER with the MSSs performed by the three technicians being lower than the average agreements

of the MSSs among the three technicians.

2016), the use of two MSSs (the majority vote of three independent

technicians and the staging performed in clinical practice) aimed to

increase the strength of our results.

4.1 Agreement of the ASS with the MSSs

The ASS resulted in a particularly high agreement with the

majority vote of the three independent raters (OPA= 86.78%), and

a high, albeit partially reduced, agreement with the clinical staging

(OPA = 83.74%). This outcome was expected, as the analysis with

the clinical staging also included epochs on which the three raters

had a full disagreement (i.e., those that were the most difficult

to stage).

However, these results do not provide direct evidence of the

accuracy of ASS in comparisonwith that ofMSS. For this reason, we

performed additional analytical strategies beyond the commonly

usedmajority vote that aimed to allow for amore direct comparison

between ASS and MSS. The ASS performed by the STAGER

software was either comparable with or better than the MSSs

performed by three technicians in all agreement statistics except for

the PPA of the wake stage, which was partially reduced. Specifically,

the ASS of N1, N3, and REM showed comparable results with those

of the MSSs of the same stages. By contrast, for the N2 stage, the

ASS resulted in a significantly better PPA and comparable NPA and

PPV. Finally, taking into consideration the wake stage, its NPA and

PPV under the ASS were significantly better than those under the

MSSs, whereas its PPAwas the sole agreement statistic for which the

ASS was not comparable with or better, but statistically significantly

worse, than the MSSs.

The use of EEG signals only as input information for the

ASS system may be, at least in part, the reason for the reduced

performance of the wake stage in PPA, especially considering that

most of the non-agreements in the staging of wake were toward

the N1 stage. The similarity in the EEG signal patterns of the wake

and N1 stages, whose transition is characterized by a progressive

shift from alpha to theta waves, may make these two stages difficult

to distinguish, especially with a lack of additional eye and muscle

movement information. Future versions of the staging system

might include additional signals, such as EOG and EMG signals, to

improve the PPA of the wake stage while maintaining the excellent

staging performance accomplished in the other stages.

A notable observation from our study is the lower agreement

rate for the N1 stage, which is consistent with what is generally
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TABLE 5 Di�erences across STAGER’s AS, technicians’ MSSs, and clinical staging.

Positive percent agreement Negative percent agreement Positive predictive value

Median 95% CI Median 95% CI Median 95% CI

A
gr
ee
m
en
t
o
f
ST

A
G
E
R
w
it
h

th
e
cl
in
ic
al
st
ag
in
g

WAKE 81.73% 76.67% 86.16% 98.50% 97.80% 99.04% 93.72% 90.63% 95.99%

N1 50.98% 43.99% 58.47% 94.17% 92.77% 95.48% 40.70% 33.49% 48.52%

N2 87.03% 84.88% 89.19% 89.69% 87.68% 91.51% 85.11% 81.74% 88.09%

N3 87.32% 82.96% 91.23% 97.69% 96.66% 98.54% 87.32% 82.96% 91.23%

REM 90.71% 86.56% 94.06% 98.28% 97.62% 98.81% 89.45% 86.05% 92.32%

Overall 83.77% 82.56% 85.00%

Cohen’s K 0.7800 0.7646 0.7959

A
ve
ra
ge

ag
re
em

en
t
o
f
th
e
th
re
e

te
ch
n
ic
ia
n
s
w
it
h
th
e
cl
in
ic
al
st
ag
in
g

WAKE 89.42% 85.62% 92.56% 97.54% 96.69% 98.22% 90.89% 87.92% 93.29%

N1 50.04% 45.76% 54.19% 94.45% 93.48% 95.35% 41.40% 34.31% 48.80%

N2 83.32% 81.40% 85.11% 90.50% 88.82% 92.13% 85.68% 82.88% 88.33%

N3 86.49% 82.88% 90.15% 97.06% 96.27% 97.75% 85.88% 81.97% 89.37%

REM 90.64% 88.09% 92.60% 98.78% 98.40% 99.10% 92.42% 90.38% 94.22%

Overall 83.72% 82.67% 84.77%

Cohen’s K 0.7802 0.7659 0.7941

D
iff
er
en
ce

WAKE −7.61% −11.20% −4.62%∗− 0.95% 0.36% 1.62%∗+ 2.80% 0.74% 4.92%∗+

N1 1.02% −5.50% 7.99% −0.28% −1.21% 0.53% −0.61% −4.30% 2.88%

N2 3.71% 1.63% 5.80%∗+
−0.83% −2.22% 0.51% −0.59% −2.24% 0.98%

N3 0.81% −2.97% 4.26% 0.62% −0.20% 1.40% 2.52% −0.74% 5.74%

REM 0.12% −2.84% 2.62% −0.50% −1.02% −0.04% −2.98% −5.68% −0.47%

Overall 0.07% −1.03% 1.05%

Cohen’s K 0.0000 −0.0148 0.0133

ASS indicates automatic staging; MSS, manual staging; 95% CI, 95% confidence interval by bootstrap resampling; REM, rapid eye movement; ∗+ , statistical significance with α = 0.05, with the

agreement of the ASS performed by STAGER with the clinical staging being higher than the average agreements of the three technicians’ MSSs with the clinical staging; ∗-, statistical significance

with α = 0.05, with the agreement of the ASS performed by STAGER with the clinical staging being lower than the average agreements of the three technicians’ MSSs with the clinical staging.

observed in manual sleep stage scoring by trained technicians

(Danker-Hopfe et al., 2009). For example, the average positive

percent agreement for the N1 stage among the three technicians

was 47.86%, which is not statistically different from the 47.11%

average positive percent agreement observed between the ASS

model and the technicians. This underscores the challenge in N1

stage classification that is commonly encountered, both in ASS by

automated systems and in MSS by technicians.

Complementing the analysis on categorical agreement,

the assessment of sleep macrostructure indices through ICCs

reinforced the reliability of STAGER’s ASS. The consistently

good-to-excellent ICC values between the ASS and both the

technicians’ MSSs and the clinical staging (as reported in Tables 6,

7) underscore the precision of the ASS in quantifying sleep

parameters. In line with the limited agreement observed for the

N1 stage in the categorical agreement analysis, only the ICCs

related to the time in N1 stage resulted of poor-to-moderate

in magnitude. Moreover, the predominance of non-statistically

significant differences in the ICCs when comparing the ASS with

the technicians’ MSSs indicates that the software’s accuracy in

determining sleep macrostructure indices is comparable with

that of the technicians. Even for the time in REM and the

sleep latency ICCs, for which the results may suggest a reduced

agreement of STAGER’s ASS with the clinical staging with respect

to the technicians’s MSS agreement with the clinical staging,

STAGER’s ASS ICCs were respectively excellent and good in

magnitude (Koo and Li, 2016). Overall, these results align with

those observed in the analysis of categorical agreements for each

sleep stage.

Various machine learning-based algorithms that conduct ASS

exclusively using EEG have been presented in scientific papers

(Phan and Mikkelsen, 2022). However, directly comparing the

performance of STAGER with these algorithms is challenging

due to the distinct datasets and methodologies employed in our

study. Some of these algorithms also demonstrated a high level of

agreement with human scorers testing on truly independent data,

[e.g., Vallat andWalker, 2021, in which the algorithms proposed by

Stephansen et al. (2018) and Perslev et al. (2021) are also further

tested]. This implies the use of PSG studies collected in clinical

settings different from those used in any phase of their algorithm’s

development. Nevertheless, what distinguishes our study is its focus

on investigating the performance of an ASS tool across different

types of MMS and novel analytical strategies. This highlights the

present strengths and limitations of ASS performed by STAGER,
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TABLE 6 Di�erences in the intra-class correlation coe�cients of sleep macrostructure indices between STAGER’s ASS and technicians’ MSSs.

Average ICC between STAGER
and the three technicians

Average ICC between the
three technicians

Di�erence

Median 95% CI Median 95% CI Median 95% CI

Total sleep time 0.9684 0.9318 0.9845 0.9676 0.9154 0.9872 0.0016 −0.0146 0.0245

Sleep latency 0.8487 0.6662 0.9443 0.8731 0.7418 0.9485 −0.0226 −0.1386 0.0427

REM latency 0.9639 0.9053 0.9927 0.9541 0.8656 0.9992 0.0097 −0.013 0.0486

Sleep efficiency 0.9577 0.8955 0.9808 0.9568 0.8806 0.983 0.0016 −0.0234 0.0313

WASO 0.845 0.7497 0.9016 0.8288 0.7574 0.8981 0.0165 −0.0918 0.0909

Time in wake 0.9552 0.8885 0.9796 0.9526 0.8709 0.9813 0.0031 −0.022 0.0358

Time in N1 0.6755 0.5712 0.747 0.7039 0.5901 0.792 −0.0302 −0.123 0.0621

Time in N2 0.8705 0.7616 0.9298 0.8845 0.7888 0.9388 −0.0133 −0.061 0.0209

Time in N3 0.8521 0.738 0.9163 0.842 0.7405 0.9037 0.0116 −0.074 0.074

Time in REM 0.9489 0.9031 0.974 0.9669 0.9379 0.9826 −0.0171 −0.057 0.0084

ICC, intra-class correlation; 95% CI, 95% confidence interval by bootstrap resampling; REM, rapid eye movement; WASO, wake after sleep onset.

TABLE 7 Di�erences in the intra-class correlation coe�cients of sleep macrostructure indices across STAGER’s AS, technicians’ MSSs, and clinical

staging.

ICC between STAGER and
the clinical staging

Average ICC between the
three technicians and the

clinical staging

Di�erence

Median 95% CI Median 95% CI Median 95% CI

Total sleep time 0.9594 0.9167 0.9809 0.9681 0.9333 0.9846 −0.0079 −0.0338 0.0092

Sleep latency 0.7649 0.4755 0.9272 0.8738 0.7608 0.9309 −0.1098 −0.3451 0.0283

REM latency 0.8126 0.4768 0.9931 0.8134 0.4806 0.9937 −0.0029 −0.0479 0.0415

Sleep efficiency 0.9472 0.8819 0.9761 0.9588 0.9091 0.9801 −0.0105 −0.0495 0.0112

WASO 0.795 0.5975 0.8976 0.8303 0.7298 0.89 −0.0344 −0.1845 0.0559

Time in wake 0.9434 0.8739 0.974 0.9546 0.9009 0.9776 −0.0102 −0.051 0.013

Time in N1 0.4236 0.0428 0.6537 0.3867 0.1095 0.5985 0.0283 −0.168 0.1917

Time in N2 0.8274 0.7226 0.8948 0.843 0.7604 0.8949 −0.0157 −0.084 0.043

Time in N3 0.8505 0.7019 0.9292 0.8312 0.7178 0.8942 0.0193 −0.058 0.0817

Time in REM 0.9354 0.883 0.9652 0.9719 0.947 0.9839 −0.0361 −0.076 −0.011∗−

ICC, intra-class correlation; 95% CI, 95% confidence interval by bootstrap resampling; REM, rapid eye movement; WASO, wake after sleep onset. ∗− , statistical significance with α = 0.05, with

the ICC between the ASS performed by STAGER and the clinical staging being lower than the average ICC between the three technicians’ and the clinical staging.

paving the way for more informed adoption, and pinpoints areas

for improvement in subsequent versions.

4.2 Limitations

We used a random sampling approach to select the PSG

recordings included in the study. However, all the selected PSG

recordings referred to subjects who underwent PSG for suspected

OSA. None of these subjects was found to have severe OSA

(AHI >30), other sleep disorders (e.g., restless leg syndrome

and REM sleep behavior disorder), or other disorders potentially

affecting the performance of systems that base ASS on EEG signals

(e.g., epilepsy). Future investigations should focus on testing the

performance of STAGER’s ASS in patients with these attributes

as well. In addition, future studies are needed on the ASS model

performance in healthy control subjects who have not been referred

to a sleep clinic for a suspected sleep disorder. Moreover, even if we

used data from three sleep centers and three independent raters,

it is worth highlighting that the three sleep centers were managed

by the same organization and that the three independent raters all

worked for some of these sleep centers. Evidence has shown that

technicians working in the same clinic tend to agree more than

technicians working for different institutions do (Norman et al.,

2000). Indeed, in our analysis, we observed a between-technician

agreement for the N3 sleep stage that exceeded the levels reported

in certain studies (e.g., 67.4% in Rosenberg and Van Hout, 2013).

However, this was not universally the case, as other studies have

also reported high N3 agreement between raters from different
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institutions (e.g., Cesari et al., 2021). Moreover, the 74.83% rate of

full consensus among the three raters observed in our study is larger

than that observed in other studies (e.g., 58.6% in Bakker et al.,

2023). However, this potentially increased interrater agreement

may have also resulted in a reduced AS–MSS agreement and not

necessarily in favor of our results.

Finally, to avoid the risk that raters may associate PSG

recordings, we did not provide them with any additional

information beyond the PSG signals, including lights-off and lights-

on times. Because of this, raters missed ending the staging of the

PSG recordings exactly at the same epoch; therefore, some epochs

at the end of the recordings were not considered in the analyses.

However, the number ofmissed epochs was limited (n= 86, 0.24%),

and there is no reason to expect an a priori difference in the AS–

MSS agreement in these late epochs compared with the preceding

ones that we were able to consider.

4.3 Conclusions and future directions

The burden associated with the MSS process makes the

availability of good ASS applications particularly relevant in both

research and clinical practice. MSS requires significant training and

experience before sleep technicians can achieve good staging ability.

Moreover, MSS can take evenmore than 2 hours per PSG recording

and is a repetitive task that can be affected by tiredness, distraction,

and time pressure. Because of this high demand for manual work,

the costs associated with PSG are significant and the reliability of

staging cannot always be guaranteed.

By contrast, automatizing sleep staging can lead to several

advantages. First, ASS applications allow for a significant reduction

of the staging time. For example, the current version of the

STAGER software, which runs on Windows 10, takes 5minutes on

average to stage an entire PSG recording and has been proven to

be able to complete ASS of a full PSG recording in <2minutes

on a professional-grade laptop and other operating systems. If

we consider that, beyond speed, ASS software may also tirelessly

process PSG recordings without interruption, the widespread use

of ASS applications may allow for significant cost reductions in

sleep investigations. First, however, sound evidence of ASS’s safety

and accuracy should be established and authorization from national

regulatory bodies, as expected for any other medical device and

software, should be obtained for it to be safely implemented in

clinical practice. All other ASS applications currently available

are intended to be used as a supporting tool for clinicians—that

is, not to perform fully autonomous sleep staging but instead to

provide an initial ASS that has to be later manually reviewed and

approved by trained technicians. The more ASS systems are proven

to achieve a performance comparable with that by human raters,

especially in epochs with unusual or unexpected signal patterns,

the fewer human revisions will be needed and the more joint

machine–humanworkwill be expected to lead to improved scoring,

especially considering that ASS systems and human raters may be

prone to errors in different scenarios.

Another, and usually less highlighted, advantage of ASS systems

is that they can perform self-consistent scoring—that is, they always

lead to identical results while processing the same PSG recording.

By contrast, MSS is not self-consistent: different scorers are

expected to show disagreement in the scoring, and even the same

scorer may provide a different scoring to the same PSG recording

if asked to repeat the scoring at different times. This affects not

only clinical results but also research studies, thereby introducing

variability both within and between study results. Therefore, using

the same ASS system may help make the results among different

PSG recordings, sleep clinics, and research studies more consistent

and thus more directly comparable with one another.

In conclusion, this study has performed an extensive evaluation

of the STAGER software’s ASS system. Its ASS was, for the most

part, comparable with or even better than the MSSs performed

by human raters, with the sole exception of a partial reduction in

the PPA for the wake stage. These promising results indicate that

the use of STAGER may help reduce the burden usually associated

with full MSS of an inpatient PSG recording. Further studies will

be performed to investigate specific moderators of the system’s

accuracy. Moreover, the next version of the STAGER ASS system

will focus in particular on improving the PPA of the wake stage and

on achieving ASS with a different set of signals that maymore easily

be collected with devices used in the home environment.
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