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Healthcare is a topic of significant concern within the academic and business

sectors. The COVID-19 pandemic has had a considerable e�ect on the health

of people worldwide. The rapid increase in cases adversely a�ects a nation’s

economy, public health, and residents’ social and personal well-being. Improving

the precision of COVID-19 infection forecasts can aid in making informed

decisions regarding interventions, given the pandemic’s harmful impact on

numerous aspects of human life, such as health and the economy. This study

aims to predict the number of confirmed COVID-19 cases in Saudi Arabia using

Bayesian optimization (BOA) and deep learning (DL) methods. Two methods

were assessed for their e�cacy in predicting the occurrence of positive cases

of COVID-19. The research employed data from confirmed COVID-19 cases

in Saudi Arabia (SA), the United Kingdom (UK), and Tunisia (TU) from 2020 to

2021. The findings from the BOA model indicate that accurately predicting the

number of COVID-19 positive cases is di�cult due to the BOA projections

needing to align with the assumptions. Thus, a DL approach was utilized to

enhance the precision of COVID-19 positive case prediction in South Africa.

The DQN model performed better than the BOA model when assessing RMSE

and MAPE values. The model operates on a local server infrastructure, where

the trained policy is transmitted solely to DQN. DQN formulated a reward

function to amplify the e�ciency of the DQN algorithm. By examining the rate

of change and duration of sleep in the test data, this function can enhance

the DQN model’s training. Based on simulation findings, it can decrease the

DQN work cycle by roughly 28% and diminish data overhead by more than 50%

on average.
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1 Introduction

1.1 Overview and research context

COVID-19 has impacted people globally since its discovery

(Yoshikura, 2022). It has strained healthcare systems and

economies, leading multiple countries to implement extensive

measures to mitigate the pandemic’s effects (Reshi, 2020). While

these interventions vary by country, typical strategies involve

social distancing, border closures, school closures, and prohibiting

public gatherings (Khetarpaul, 2021). The techniques utilized by 11

European nations have effectively decreased the dissemination of

COVID-19 (Clay-Wililams et al., 2020). With the pandemic’s wide-

ranging impact and no existing cure, it is crucial to evaluate the

number of probable cases (McFee, 2020).

Several methods, including recurrent neural networks (RNNs),

gated recurrent units (GRUs), long short-term memory (LSTM)

networks, graph neural networks (GNNs), and others, have

been utilized to forecast infectious diseases (Li and Sun, 2022).

Therefore, computational and computational intelligence models

could be employed to predict COVID-19 situations. Prior studies

have established that prediction models based on neural networks

(NNs) can provide accurate forecasts (Yu et al., 2021). Therefore,

neural networks possess considerable potential for investigating

the epidemiology of viruses. Neural networks (NNs) have been

utilized to forecast essential factors such as the prevalence of

cases, mortality rates, immunization rates, extreme poverty levels,

accessibility of hand-washing facilities, weekly hospitalizations,

weekly hospitalizations per million people, ICU patients per

million people, hospitalized patients per million people, and the

concentration of patients in ICUs. The research by Haque et al.

(2022) provide a comprehensive review into the prediction models

that have been introduced. It investigates how well neural networks

(NNs), long short-term memory (LSTM) models, and fully

Abbreviations: RNNs, recurrent neural networks; GRUs, gated recurrent units;

NN, neural network; ConvLSTM, convolutional LSTM; BiLSTM, bidirectional

LSTM; DTT, Day Three Test; GP, Gaussian probability; TT, training test; RoC,

rate of change; ECDC, European Center for Disease Prevention and Control;

g, represents the function derived from the model; xt+1, signifies the COVID-

19 cases; δ, the confirmed cases from the past; G, Bayesian optimization

function; z, the value function; wi and wj, represent the ith and jth samples;

I(w+, wt), sample estimate correlation and mutual influence; Se, agent state:

the set of possible states; Ae, agent: the set of possible actions; Ee, agent

environment;w, the normalized level of the TT quantity; Sei+1, state evaluated

using the target network; T, period time; Ĵt and Jt, timing the estimated

amount at timestep t; Ts, timestep at time T; LSTM, long short-termmemory;

GNNs, graph neural networks; ANFIS, adaptive neurological fuzzy inference

system; TS, time Series; DOT, Day One test; DST, Sixth Day -Test; MDP,

Markov decision process; RL, reinforcement Q-learning; DLA, deep learning

activation parameter; BOA, Bayesian optimization algorithm; ζ , denotes a

random error conforming to a normal distribution; M, number of confirmed

days; S, represents a search (w); g(w), the pre-distribution function; g(w+),

posterior distribution; z(w+), training set; Pe, probability of transitioning from

the current state; Re, denotes the immediate reward; sa, The set to the next

stage; Dr, The rate of change of the examined values; k, represents the dataset

size; Re(i), the outcome of the maximum Q; L, hyper-ideal parameters.

connected transformer models can predict the spread of COVID-

19. The forecast models also incorporated the latest data on

vaccination rates per million, total vaccination figures per hundred,

and the most recent vaccination data (Shrestha et al., 2021).

Various factors can influence the manifestation and transmission

of diseases. For example, disease symptoms can exhibit differences

based on geographic region or country. Furthermore, a high

urban population density and effective transportation networks can

hasten the disease’s spread (Imdad et al., 2021).

The accessibility of publicly available medical imaging datasets

has resulted into a significant rise in the employment of artificial

intelligence (AI) models for medical diagnosis, specifically in

radiology (Nair, 2021). The ability to independently classify

and generalize incoming data is a crucial determinant of such

AI models’ practical applicability and value. The successful

deployment of trainedAImodels in various contexts fundamentally

hinges on their generalizability. Ensuring their use remains

pertinent within the intended context is crucial (Eche et al., 2021).

When AI models are trained on patient groups and disease traits

that are very similar to those in the training dataset, they are better

at making diagnoses.

1.2 Literature review and contributions

Several forecasting methods have been evaluated. Taimoor et al.

(2022) employed an adaptive neurological fuzzy inference system

(ANFIS) to accurately forecast the number of confirmed COVID-

19 cases in China. Li et al. (2021) proposed a mathematical and

numerical logistic model to estimate the number of COVID-

19 cases in Mexico. Furthermore, fuzzy and fractal fuzzy logic

usage was applied to gauge the frequency of COVID-19 cases

in 10 countries, as detailed in Castillo et al. (2022). Another

study recommended using artificial neural networks and fuzzy

clustering to create an innovative prediction method (Azadeh

et al., 2011). Employing fuzzy aggregation boosted the precision of

predicting COVID-19 transmission pathways in 12 Mexican states.

While long short-term memory (LSTM) has shown effectiveness

in forecasting COVID-19 infections, additional deep-learning

techniques that address sequential processing difficulties remain

unexplored (Borges and Nascimento, 2022).

Valente and Laurini (2021) used LSTM-based models,

including ConvLSTM, BiLSTM, and M-LSTM, to examine

COVID-19 transmission. Garg et al. (2022) trained Recurrent

Neural Networks (RNNs), Long Short-Term Memory (LSTM)

models, Bidirectional LSTMs (Bi-LSTMs), and Gated Recurrent

Units (GRUs) using daily COVID-19 data. These models provided

accurate new-situation forecasts. The RNN, Stacking, Bi-LSTM,

and Gyrus LSTM models offered accurate estimates for the

quantity of COVID-19 incidences and fatalities anticipated in the

subsequent month. The investigation by Md Saleh et al. (2022)

employed the LSTM model to scrutinize regularly publicized

cases at national and regional levels in Spain. Dairi et al.

(2021) presented the integration of Bayesian optimization, long

short-term memory (LSTM), and convolutional neural network

(CNN) that demonstrated commendable efficiency in predicting

epidemics. A study employing LSTM-based methodology has
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demonstrated the potential to anticipate occurrences of COVID-19

cases and fatalities by utilizing statistical models that incorporate

autoregressive integrated moving average (ARIMA), support

vector regression (SVR), and deep learning algorithms, including

LSTM and Bi-LSTM (Quilodrán-Casas et al., 2022).

To guarantee that all predictive models are fit for research

comparisons, it is essential to ensure prediction accuracy, as MAE,

RMSE values, and predicted errors depend on the study’s size

(Saha et al., 2022). The Bi-LSTM algorithm exhibited exceptional

performance concerning mean absolute error (MAE) and root

mean squared error (RMSE), obtaining values of 0.0070 and

0.0077, respectively, the lowest among all algorithms. Zarzycki and

Ławryńczuk (2022) explain that the architecture relies entirely on

the network to use an LSTM layer. Jiang et al. (2022) proposed the

incorporation of hourly weather measurements as data references

in the LSTM architecture. In their 2022 study, Kistenev et al. used

unbalanced microcomputed tomography (Micro-CT) imaging,

supervised deep learning, and adaptive self-degradation. The

ARIMA method has been utilized in recent research (Chyon

et al., 2022; Garg et al., 2022; Zarzycki and Ławryńczuk, 2022).

The implementation of artificial neural networks (ANN) and

long short-term memory (LSTM) techniques has improved the

precision of time-series prediction studies for COVID-19 (Box,

2018). Implementing approaches based on fuzzy logic has also

received support (Li et al., 2021). Aslan et al. (2022), Chyon et al.

(2022), and Garg et al. (2022) serve as examples of how the

use of advanced deep learning algorithms has improved COVID-

19 prediction. Due to their sequential processing requirements,

numerous deep learning models can predict COVID-19 time

series data. Machine learning and deep learning are particularly

well-suited for time series prediction since they can expose

nonlinear patterns. Despite the potential demonstrated by attention

mechanisms and convolutional neural networks, they have not

been employed in the resources used for forecasting COVID-19.

Using large databases, Sulthana et al. (2021) and Ma et al. (2022)

developed deep-learning algorithms to predict COVID-19 cases.

Anticipating COVID-19 infections is crucial to comprehending

disease transmission and making informed decisions about

preventive measures (Greco et al., 2021). Technical terms are

explained when first used to ensure clear communication and better

understanding, and objective language is employed throughout the

paper. The study compared the prediction capabilities of regression

TABLE 1 Factors addressed in various COVID-19 methods.

Types/methods Conventional COVID
method

Advance COVID method E�ciency References

ANFIS ✓ ✓ ◦ Yoshikura, 2022

✓ ✓ ◦ Taimoor et al., 2022

◦ ✓ ◦ Sulthana et al., 2021

◦ ✓ ✓ Greco et al., 2021

✓ ◦ ◦ Ma et al., 2022

◦ ✓ ✓ Kistenev et al., 2022

◦ ◦ ◦ Dairi et al., 2021

Deep-learning ✓ ◦ ◦ Yoshikura, 2022

◦ ◦ ◦ Valente and Laurini, 2021

◦ ◦ ✓ Quilodrán-Casas et al., 2022

✓ ✓ ✓ Zarzycki and Ławryńczuk, 2022

✓ ✓ ◦ Li et al., 2021

Mathematics ✓ ◦ ◦ Yoshikura, 2022

◦ ✓ ◦ Borges and Nascimento, 2022

✓ ✓ ✓ Castillo et al., 2022

◦ ✓ Chyon et al., 2022

Machine learning ✓ ◦ ◦ Yoshikura, 2022

◦ ✓ Taimoor et al., 2022

◦ ✓ ✓ Sulthana et al., 2021

◦ ✓ Greco et al., 2021

◦ ✓ ◦ Quilodrán-Casas et al., 2022

◦ ✓ ✓ Zarzycki and Ławryńczuk, 2022

◦ ✓ ◦ Li et al., 2021

This study ✓ ✓ ✓
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models and statistical machine-learning models. The dataset used

in the research encompassed the total number of COVID-19

cases in Saudi Arabia. The study offered predictions for 1, 3,

and 6 days ahead. The efficacy of BOA and DL predictions was

evaluated utilizing COVID-19 case datasets from Al-Madinah Al-

Munawarah, Riyadh, and Jeddah, localities with elevated COVID-

19 incidence.

The study employed a stacked learning model and Gaussian

processes (GP) for ensemble learning and the meta-learning

model (a resilient model). We used the percentage improvement

index, mean absolute errors (MAEs), and symmetric MAEs

to determine how accurate each model’s predictions were for

missing data from the original sample. Our research analyzed

various forecasting techniques for the overall number of verified

COVID-19 cases in Saudi Arabia. We utilized cutting-edge

machine learning models and BOA to offer crucial insights for

informed decision-making regarding epidemiological management

and healthcare system policies. The study looked at multi-day

forecasting models that made predictions for 1, 3, and 6

days. This allowed the prediction models to be tested in

various situations, which improved COVID-19 response plans.

The improved strategies proposed for tackling COVID-19

have been demonstrated to be more systematically efficient

than conventional and mathematical methods (as shown in

Table 1).

1.3 Paper organization

The paper is structured as follows: The model formulation

and methodology in Section 2. The methodology presents the

fundamental concept of the suggested technique. The prediction

method steps are outlined in Section 3, while the achieved

findings are given and reviewed in Section 4. Section 5 provides

the conclusion.

FIGURE 1

Predicted COVID-19 forecasting model using DQN approach.

TABLE 2 Model layer descriptions.

Layers (Li)/phases (Pi) L1 L2 L3 L4 L5 L6

Split Extraction Extraneous data ∗ ∗ ∗ ∗

Test ∗ ∗ Training test ∗ ∗ ∗

Step learners ∗ ∗ ∗ Hybrid model ∗ ∗

Forecasting Forecasting ∗

Performance ∗ ∗ ∗ ∗ ∗ Performance

The symbol ∗ means not cited.
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TABLE 3 Sleep time of training test (TT).

Fixed action (Ae) Sleep time—TT

0 850 s

1 410 s

2 230 s

3 60 s

2 Methodology

2.1 Methods and models

Deep learning can effectively process complex and diverse input

and output changes. Deep learning can effectively process complex

and various input and output changes. It enables the prediction of

intricate, interdependent, noisy, and multi-stage results.

The AI-driven COVID-19 prediction model displayed in

Figure 1 was utilized in this study. Thismodel comprises six distinct

layers, each with a specific function and progressing through

phases as outlined in Table 2. COVID-19 datasets were employed

in predictive research, covering training and testing phases. The

CNNs and Multi-Head Attention-LSTMs (MHA-LSTMs) were

used to anticipate the total number of COVID-19 cases and deaths.

Furthermore, Recurrent Neural Networks (RNNs) and Long Short-

Term Memory (LSTM) models were examined, utilizing three

unique activation functions.

The proposed prediction system is organized into four

tiers, each carrying out specific tasks based on predetermined

standards (Figure 1). Data collection occurred during level 1,

including a training test and a test set. Step 2 involved acquiring

knowledge, while levels 3 and 4 predicted and evaluated the

system’s effectiveness.

The COVID-19 data was utilized in predicting time series

(TS) as it includes daily new case statistics. Table 3 features

the TS analysis of COVID-19 assumptions and the modeling

techniques employed across countries, studies, and data periods.

The development of TS forecasts for COVID-19 involved different

methods like statistical analysis, machine learning, deep learning,

and fuzzy logic.

Initially, the raw data was separated into training and testing

data sets. The training dataset contained the most samples, while

the testing dataset consisted of the six most recent observations.

Following this, calculations were performed on the training data to

determine the mean and standard deviation.

A recursive approach was used to forecast COVID-19 cases

with a lead time of several days. The model initially predicted the

number of cases for the following day. The forecast for the next day

was determined through an iterative process in which the expected

value obtained from the model was reinserted into the same model.

This methodology was repeated until the intended outcome was

achieved. The training approach utilized in this research can be

outlined as follows (see Equation 1) (Su et al., 2022):

{
x(t + 1) = g {xt , .....xt+1−σ } + ξ

ξ ∈ M(D = 0, δ2)
(1)

BOA algorithm concept

1 Input BOA values

2 For t E IN. t = 1,2, 3.......

3 Optimize the z acquisition function over the

g(w+) function to obtain the value of J(t).

4 Sample Identification: Objective Function

Representation:

5 From the function g(w+), the increment and

subsequent update of the data (J(t)1 : t−1 = {xn, yn}i=1
n=1)

6 End For

7 End

Algorithm 1. BOA algorithm.

In this equation, g represents the function derived from the

model used during the learning phase, xt+1 signifies the COVID-

19 cases forecasted 1 day, δ is the number of confirmed cases from

the past (δ = 5), and ζ denotes a random error conforming to a

normal distribution with a mean (D = 0) and variance (σ 2).

The study explored instances looking ahead up to M days,

specifically up to 1, 2, and 6 days. These selected time frames are

detailed as follows:

a. Day One Test (DOT).

b. Day Three Test (DTT).

c. Sixth day -Test (DST).

The following xt+1 structures were evaluated as follows (see

Equation 2) (Yu et al., 2021):

xt+k =





g {xt , xt−1.....xt−σ+1} − − > k = 1

g
{
x
t+k−1

, xt+1, xt , .....xt+k−σ

}
−− > k ∈ [2, σ ]

g
{
x
t+k−1

, ....xt+k−σ

}
−− > k ∈ [σ + 1,M]

(2)

3 Prediction method steps

3.1 Bayesian optimization

The above-mentioned equation utilized BOA (Bayesian

definition in Supplementary Appendix 1), which employed

the pre-distribution function g(w) and sample information to

calculate the suffix. The resulting suffix then determines the

optimal parameter value for the task (Aslan et al., 2022). The

acquisition function is a mathematical expression that represents

the criteria for BOA (z). The value function (z), also referred to as

an acquisition function, acts as the deciding factor for choosing the

subsequent sample point that maximizes the utility function (see

Equation 3) (Fanelli et al., 2021):

wt
+ = argmax

w∈S
z(w| J(t)1 : t−1)

J(t)1 : t−1 =
{
xn, yn

}t=1

n=1

(3)

Algorithm 1 represents BOA, indicating the training dataset of

the t–1 factor for function g. The algorithm can be divided into

two parts: the post-distribution update (steps 4 and 5) and the

maximization of the Acquisition Function (Step 3) (Garg et al.,

2022).
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3.1.1 Gaussian process
A Gaussian process (GP) was created using a stochastic

GP and Bayesian learning theory, expanding our understanding

of the concept of a Gaussian probability distribution. Unlike

the probability distribution, the random process establishes the

properties of the functions (Aslan et al., 2022). The GP consisted of

random variables that adhered to a Gaussian distribution. Only the

average and covariance functions of these variables could determine

their characteristics. A Gaussian process with a linear kernel was

employed in this study and named accordingly (Taimoor et al.,

2022). When a Gaussian stochastic method comprises more than

two variables, any finite subset of random variables conforms to a

Gaussian distribution (see Equation 4) (Taimoor et al., 2022):

∣∣∣∣∣
g(w+) ≈ E(h(w+), I(w+,wt))

I(w+,wt) = Exp
[
− 1

2

∥∥wi − wj

∥∥2
] (4)

FIGURE 2

DQN-based management approach.
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Here, wi and wj represent the ith and jth samples, respectively.

They converge to 1 when the two samples are identical, and

to 0 otherwise. When the two sampling points are close, they

exhibit a strong correlation and mutual influence, while they

have a weaker influence when they are distant from each other.

The posterior distribution of g(w+) is defined as follows (see

Equation 5). Commencing with the training set, z(w+) is observed,

and g(w+) is drawn from a multivariate normal distribution (Garg

et al., 2022).

I(w+,wt) =




I(w1,w1) I(w1,w2) .... I(w1,wt)

I(w2,w1) I(w2,w1) .... I(w2,wt)

... ... ... ....

I(wn,w1) I(wn,w1) .... I(wn,wt)


 (5)

The elements I(w+, wt) were computed as outlined in

Equation 3. I(w+, wt) represented the sample estimate while

excluding the noise, specifically the diagonal component. BOA

successfully determined the optimal value with only a few samples,

eliminating the need for expressing the function as required by

typical optimization methods. BOA was particularly well-suited

for hyperparameter adjustments. In this section, hyperparameters

for the machine learning models (MHA, LSTM, and CNN:

Supplementary Appendixes 2, 3) were optimized using BOA. The

random forest (RF) served as a conventional method for predicting

clustering performance (Supplementary Appendix 2).

3.2 Deep learning approach

3.2.1 Problem formulation using a Markov
decision process

The Markov Decision Process (MDP) outlines environments

for Reinforcement Q-Learning (RL), dealing effectively with

uncertain outcomes. The MDP for an agent in a specific domain

is shown as a tuple (Se, Ae, Pe, Re), where Se is the set of possible

problem states, Ae is the set of possible actions, Pe is the chance of

going from state sa to state s’ through an action (a, Ae), and Re is

the immediate reward that the agent gets by doing an action in state

s and going from state sa to state s
′
(see Equation 6) (Azadeh et al.,

2011).

Agent (Ae): this representation thus encompasses the agent

(Ae). The proposed approach’s energy conditions and the

environmental light intensity were considered input training test

(TT) data by this program. The policies established by the DQN

were updated, and BN sleep time was used as an example of the

optimal approach.

FIGURE 3

Proposed forecasting models.
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Environment (Ee): anything unrelated to the agent, such as

other approaches, events, and wireless channels, fell under the

environment (Ee).

State (Se): the deep learning model proposed in this study

adjusts its mode and activity by collecting data and utilizing or

acquiring energy. This article describes the methodology for each

input training test as follows:

d. Training Test (TT)

e. Day One Test (DOT)

f. Day Three Test (DTT)

g. Sixth day-Test (DST)

h. Time (t)

i. The Rate of Change (RoC) of the TT detected data.

Re(w) = w ∗

∣∣∣∣1− w

(
Ae

3

)∣∣∣∣ + (1− w) ∗

(
1−

∣∣∣∣D
r −

(
Ae

3

)∣∣∣∣
)
(6)

Action (Ae): the duration of sleep for an approach labeled

“active” was determined for each state based on Equation 6, which

remained constant. The work cycle depended on the recipient’s

1 Input parameters

2 Insert : γ ∈ [01]

3 Initialize: Memory capacity (Mc)

4 Initialize: backup Memory (Mb)

5 Initialize : Target action (Ae) value (θ)

6 Initialize : State (Se)

7 Initialize and Loop: Episode (ζ)

8 For: t < ζ

9 Select action (Ae): Random Action

10 Else

11 Action (Ae): γ max Q̄(Se(i+ 1), a, θ̄): otherwise

12 End

13 Consult Environment during t = T

14 Check reward (Re) at T time

15 Write memory for transition (Se, Ae, Re, Senext)

in Mc

16 Compare memory Mc and Mb

17 if length Mc > minibatch

18 Write memory for transition (Se, Ae, Re, Senext)

in Mb

19 End

20 Compute zi during period T

21 If t > T

22 zi =

{
Re(i)−− > step(i)+ 1

Re(i)+ γ maxQ(Se(i+ 1), a, θ)

23 Else

Compute: L(θ) = 1
n

k∑
i=1

(
zi − Qθ (S

e,Ae)
)2

24 endif

25 All TT steps reset

26 End

Algorithm 2. Proposed forecasting approach.

sleep duration, between 1 and 900 seconds. Four suggested

measures are displayed in Table 2.

State transition [Se (sa , s′)]: was characterized by multiple

stages within a 24-h episode. Transmitting a state necessitated a

short time interval, resulting in elevated communication overhead

and energy usage. Applying extended time intervals would

erroneously alter the duration of sleep and the frequency of

measurements. Studies have demonstrated that a time interval

of 15min achieved a satisfactory balance between the quality of

service and the amount of communication required. Consequently,

the time interval was established to be 15min. The proposed

approach entailed regular reporting of state changes to the base

stations every 15min. The agent was tasked with determining

sleep duration during the training phase and transmitting a

behavioral policy.

Reward (Re): the sleep duration for the training assessment

was modified under the time of the total evaluation (Re). Previous

studies exclusively examined the magnitude of the assessment data

component. However, if the rate of change in the training test data

was low, the number of transmissions decreased, or the duration of

the training test sleep period was extended, two perpendicular goals

were considered: rate of change and sleep time. Equation 8 used the

reward function to achieve this goal.

In this context, “w” denotes the standardized level of the TT

quantity that ranges from 0 to 1. The action index pertains to the

specific index linked with the action performed, i.e., the chosen

duration of sleep, as explained in Table 3. “Dr” indicates the rate of

change of the analyzed values in the preceding phase. The reward

function is based on the rate of change in the data of the suggested

technique, sleep duration, and TT level.

3.2.2 DQN structure
The DQN architecture comprised a primary and a secondary

network with corresponding functionalities. The primary network

was responsible for assessing the Q-value of probable state actions

(Q-value prediction) and calculating the Q-value of each state.

Following the stabilization of the primary network, adjustments

were made to the target network’s features. Following the

stabilization of the primary grid, the parameters of the secondary

network were modified to calculate the Q-value for the target

network—the optimal Q-value for the specific condition.

Figure 2 illustrates the functionality of DQN as a reinforcement

learning algorithm, enabling the agent to operate as such. As a

reinforcement learning algorithm, DQN allows the agent to gain

knowledge by repeatedly testing different behaviors in various

states and discerning the most favorable ones while interacting

with the environment. Throughout each stage of the episode, the

agent acted in Se states Se (sa , s′), incorporating the continuous

values of the feature vector that demonstrate the agent’s state, such

as the level of TT charge, the intensity of environmental light on

various days of the week, and the rate at which TT values changed.

The agent procured a multitude of experiences (Se, Ae, Pe, Re),

encompassing sensory experiences (Se), action experiences (Ae),

perceptual experiences (PE), and reflective experiences (Re). The

epsilon-greedy policy was employed to choose actions, similar to

the Q-learning approach. Nevertheless, instead of using a Q-array,
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the central neural network evaluated the Q-values of the actions

(refer to Equation 7) (Aslan et al., 2022).





L(θ) = 1
n

k∑
i=1

(
zi − Qθ (S

e,Ae)
)2

zi =

{
Re(i)−− > step(i)+ 1

Re(i)+ γ maxQ(Se(i+ 1), a, θ)

−− > otherwise (7)

Here, k signifies the dataset size, and Q(si, ai) indicates the

estimated Q-value from the primary network for action ai in state

Se (si). The zi was determined using Equation 7 was regarded as

Re(i) if the following statement was final. If Re(i) was unknown, zi
was calculated using the target network to estimate the Q-values

of potential actions in the state Se (i + 1). Se
i+1 was assessed

in this state via the target network, which led to the reward

Re(i) evaluation as the product of the maximum Q value and the

discount factor. This indicates that the reward factor Re(i) results

from multiplying the maximum Q value by the discount factor.

During each time step, the primary neural network’s parameters

were updated using gradient descent, with target network updates

occurring only at each TT time step. As a result, the primary

network’s parameters were replicated onto the target network,

with multiple iterations completed to achieve the optimal Q-

value.

3.3 The proposed approach

This study employed three approaches, namely MHA, LSTM,

and CNN, to predict the cumulative number of cases. The

proposed method utilized BOA to select hyperparameter settings,

as illustrated in Figure 3. Furthermore, Figure 5 depicts the

precise identification of hyper-optimal parameters using the BO

optimizer. BOA relied more heavily on classification methods

and demonstrated superior accuracy in identifying hyper-ideal

parameters than RF. BOA has significantly improved matrix

analysis. The Dynamic Link Aggregation (DLA) is enabled when

the test condition (L < δ) is met. Algorithm 2 outlines the DQN

technique for adjusting the duty cycle of TT collection.

The algorithm’s hyperparameters were first retrieved to create

a replay memory using M bits. Subsequently, the primary network

parameters were established, with identical settings replicated for

the target network. The neural network underwent several Time-

Triggered (TT) training rounds, with improved TT sleep time

during specific episodes. The NN was trained using a dataset

spanning 120 days. Afterward, the algorithm began a series of

attacks, each lasting 20 h. The variable initialization is linked to

the number of steps (t) assigned. During each episode, the agent

initially selected an action based on a greedy strategy. If a randomly

distributed value within the range of 0 to 1 were below a particular

threshold, the agent would randomly explore its immediate vicinity.

Alternatively, the primary neural network received the current state

and produced the Q values for all possible actions. The one with

the highest Q value was then selected. After the time interval T,

FIGURE 4

Daily confirmed deaths for COVID-19 cases in Saudi Arabia, Tunisia, and the United Kingdom: (A) the number of new COVID-19 cases each day; (B)

number of new COVID-19 cases and deaths per day.
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TABLE 4 Hyperparameters for both DQN and BOA algorithm.

Hyper-parameter Value

BOA model

CNN-kernel-size (2,3,4,5,6) -cnn-layer 1

CNN-stride= (1,2) -cnn-layer 1

CNN-neurons (32,64,128,256) -cnn-layer 1

LSTM-act fun()=(ReLU Linear Tanh)

LSTM- rate: (0.1,0.2,0.3,0.4,0. N): Dropout–cnn-layer 1

LSTM-neurons (32,64,128,256)

MHA-activation function (ReLU Linear)- -cnn-layer

DQN model

Q-learning rate 0.01

Initial rate 0.859

Main exploration rate 0.019

Total hidden layers 3

Neurons in layer 9

Training stage (TT) 120 days

Previous time (tp) 10 min

Episode periods 20 h

Memory type Mc/Mb 500/250

Minibatch 30

Target 280

TT reported on its current condition and slumber duration. The

reward tuple (Se, Ae, Pe, Re) is stored in the replay memory based

on the current state, next state, and action. The neural network

learning commenced when the data length in the replay memory

exceeded the minibatch size. Initially, a k-minibatch was randomly

selected from the response memory. To calculate the cost function

in Equations 8, 9, the value of the goal zi was obtained, as per

Equation 9.

3.4 Performance analysis

To assess the efficacy of the proposed method for forecasting

COVID-19 in time-series data, three crucial metrics (Root

Mean Square Error, Mean Absolute Error, and Mean

Absolute Percentage Error) were calculated. The equations

for computing SMAPE, MAPE, and RMSE were obtained

from Equations 8–10, correspondingly explained by Jiang et al.

(2022) and Kistenev et al. (2022). The model’s effectiveness

was assessed through out-of-sample predictions from the test

set (TS).

SMAPE =
1

ξ

ξ∑

j=1




∣∣̂Jt − Jt
∣∣

|Ĵt−Jt|
2

2


 ∗ 100 (8)

TABLE 5 Model performance based on di�erent datasets.

States MHA LSTM CNN DQN approach

Models performance relative to SMAPE

TU 0.054 0.061 0.062 1.0901

KSA 0.0539 0.0582 0.0993 0.0092

UK 0.354 0.530 0.358 0.5976

Models performance relative to MAPE

TU 0.3687 0.4936 0.35431 0.5268

KSA 0.3985 0.568 0.4679 0.5677

UK 0.0582 0.05768 0.0524 1.1689

Models performance relative to RMSE

TU 240.91 370.465 211.2 87 314.715

KSA 245.791 391.4357 213.715 314.576

UK 153.9443 198.238 119.917 199.285

MAPE =
1

ξ

ξ∑

j=1

[∣∣̂Jt − Jt
∣∣

|Jt|

]
∗ 100 (9)

RMSE =

√√√√√ 1

ξ

ξ∑

j=1

∣∣Jt − Ĵt
∣∣ ∗ 100 (10)

where Ĵt and terms of timing the estimated and measured amount

at timestep t.

4 Simulation results and analysis

Using sophisticated algorithms is crucial for improving the

accuracy of COVID-19 predictions. This can mitigate the virus’s

impact on the public’s well-being, the economy, and essential

resources. This research demonstrates the process of predicting

coronaviruses using the Deep Learning (DL) technique. The

COVID-19 life cycle and transmission investigation in Saudi Arabia

used online datasets and a DL methodology to compute the

Root Mean Square Error (RMSE) for each country’s training and

testing data. The algorithm’s efficacy was evaluated through trials

conducted using Kaggle-collected data. The experiment assessed

the effectiveness of three algorithms: BOA, and LSTM. The most

suitable model was chosen based on the prediction error rate,

quantified using the Root Mean Square Error (RMSE). The BOA

model is regarded as the most effective for forecasting COVID-

19 confirmed cases among the three models currently employed

in Saudi Arabia. Subsequently, the LSTM model predicts the total

number of reported and recovered cases worldwide.

4.1 Dataset description

The European Center for Disease Prevention and Control

(ECDC) collected and analyzed the datasets used in this study.

Figure 4 illustrates the daily mortality rate and the cumulative

number of confirmed infections in SA, TU, and the UK. The
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FIGURE 5

Actual (ACT) and Predicted (Pred) COVID-19 cases: (A) Tunisia cases, (B) UK cases, (C) KSA cases using Dataset-1.

analysis started on April 10, 2020, and ended on June 10, 2020, over

120 days. The dataset consisted of 900 entries and had a file size of

4.8 megabytes. The dataset was split into training and evaluation

sets, with around 79% allocated for training and the remaining

20% used for assessing the model parameters. This method was

employed in previous studies by Box (2018), Azamifard et al.

(2020), Kutlu and Camgözlü (2021), Shrestha et al. (2021), Sulthana

et al. (2021), Vadyala et al. (2021), Valente and Laurini (2021), Aslan

et al. (2022), Garg et al. (2022), Ghimire et al. (2022), Ma et al.

(2022), and Shahidzadeh et al. (2022).

After completing the instruction phase, testing was carried

out. Figure 4 illustrates the daily number of confirmed COVID-

19 cases in SA, TU, and UK. Figures 4A, B provide daily mortality

data for the corresponding regions. The suggested predictive

model was implemented and assessed to predict the number

of COVID-19 cases and fatalities in these three nations. The

initial RNN model was unsatisfactory and thus replaced with

an LSTM-based forecasting model. The efficacy of LSTM cells

in managing information leads to improved predictions. This

technique implements an LSTM model with dropout and Dense

layers. The activation phase of the model utilized a corrected linear

activation function and a fixed random seed, leading to enhanced

accuracy of gradient points.

Table 4 concisely overviews the hyperparameters employed in

the DQN and BOAmodels. The predictions of the DQN technique

were assessed using Dataset 1, taking into account data from the

preceding 120 days as a benchmark. The preliminary test findings

served as the basis for developing the DQNmethodology.

Table 5 provides a thorough statistical summary in addition

to the introduction of the suggested models for Datasets 1 and

2. Figure 5 demonstrates the strategy’s efficacy by juxtaposing

each nation’s projected and actual instances. Figure 6A indicates

that the deep learning and standard models produce disparate

predictions for confirmed instances in TU. Nevertheless, the

model’s predictions are consistent with the actual data. Figure 5C

exhibits the average number of cases in UK.

In contrast, Figure 5B illustrates the anticipated values for SA,

where both the deep learning and measurement models yield

coherent outcomes. Within the context of TU, the conventional

model exhibits slightly better performance than the deep learning

model. However, on the whole, the deep learning model accurately

predicts the values for the three scenarios, showing a solid

agreement with the actual values. The DQN technique shows

a slight superiority over the deep learning model in accurately

predicting TU and SA. Figure 5A displays the anticipated values

for TU. After scrutinizing the data, it became evident that the best
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FIGURE 6

Daily confirmed COVID-19 cases and associated deaths for both KSA: (A) KSA Total cases, (B) Jeddah Province cases, (C) El-Madina Province cases,

(D) Riyadh Province cases using Dataset-2.

deep learning model outperformed the DQN technique for most

countries. The DQN technique regularly makes accurate linear

predictions of verified cases for all regions. The model’s improved

predictive performance can be attributed to the deep learning

system’s capacity to discern linear and nonlinear data patterns.

The suggested model exhibited its dependability in forecasting

COVID-19 time series data.

The univariate and multivariate time series prediction models

were trained using data obtained from the official website of the SA

government. The Ministry of Health (MOH) provides this website

as an online platform for COVID-19 statistics. The number of

new cases was normalized using the highest recorded daily count

of new patients. The data spanned from April 10, 2020, to June

10, 2020, and included four separate projection timeframes. The

parameter computations in Saudi Arabia incorporated data from

three prominent cities: Jeddah, Al-Medina, Munawara, and Riyadh.

Saudi Arabia has received the DQN approach from all countries

(Figure 6).

4.2 Performance measures for compared
models

Considering the context of SA, UK, and TU, the Multi-

Head Attention (MHA) method exhibited better performance

than the DQN approach, particularly regarding the SMAPE

metric. Table 4 summarizes the proposed method’s precision on

dataset 1, illustrated in Figure 2. The performance of Long Short-

Term Memory (LSTM) was comparable to that of MHA. DQN

outperformed LSTM in certain countries, while the opposite was

the case in others. Neither theMHAnor the CNNmodels employed

the DQNmethodology. Table 4 arranges the average SMAPE values

from the three countries according to rank. The three deep learning

models significantly decreased average SMAPEs compared to the

DQNmodel (0.8).

Regarding SMAPE performance, the MHA and CNN models

outperformed the DQN approach. Table 5 presents each model’s

average percentage of mistakes and identifies the country with

the highest ranking. The deep learning models topped the DQN

approach model in three countries. Regarding the Mean Absolute

Percentage Error (MAPE), theMHAmethod performed superior to

the DQN approach in all three nations. Furthermore, the CNN and

LSTM methods surpassed the DQN approach in three out of the

four countries. By calculating the mean absolute percentage error

(MAPE) scores across all countries, it was determined that deep

learning techniques outperformed the DQNmethodology.

MHA exhibited the best performance in terms of RMSE

among the MAPE indicators. Table 4 shows that both CNN and

MHA outperformed the DQN methodology in all three countries

studied. The RMSE of the DQN approach exceeded that of the

LSTMmethod.

Nonetheless, the DQN method enabled the acquisition of

accurate COVID-19 predictions. A summary of the performance

of each suggested approach is provided in Table 5, indicating

the reduction of SMAPE, MAPE, and RMSE averages. The

contribution of DQN to sequential data assimilation greatly

influenced the overall accuracy of these algorithms.

The best model for predicting COVID-19 cases, spanning

several days in three areas of SA, is shown in Figure 7. It shows

the Mean Absolute Error (MAE) and Symmetric Mean Absolute

Percentage Error (SMAPE). The tested models understood the
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FIGURE 7

COVID-19 combined the total number of reported cases with the number of expected cases. (A) Predicated verse observed cumulative confirmed

cases of COVID-19 in Riyadh, (B) Predicated verse observed cumulative confirmed cases of COVID-19 in El-Madina, (C) Predicated verse observed

cumulative confirmed cases of COVID-19 in Jeddah, and (D) Predicated verse observed cumulative confirmed cases of COVID-19 in Saudi Arabia.

data patterns and precisely anticipated the observed values. The

evaluations confirmed the models’ strong execution during the

training period. Unfortunately, it was hard for the MHA, LSTM,

and CNN models to accurately represent the wide range of initial

observations shown in Figures 7A–C. These mathematical models’

intricacies in comprehending the underlying patterns were brought

to the forefront when interpreting smaller datasets for each state.

In the evaluation, the deep learning model consistently

outperforms the DQN strategy concerning the number of deaths

and cases. The DQN technique produced consistent linear

estimates for death rates and confirmed cases in all counties. In

contrast, the superior deep learning models displayed exceptional

performance across various domains by accurately capturing

linear and nonlinear patterns. Figure 8 exemplifies the deep

learning model’s ability to identify these patterns precisely, thereby

enhancing the overall efficiency of the model. As a result,

the proposed model proficiently predicted the COVID-19 time

series data.
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FIGURE 8

Actual and expected cases and deaths in Saudi Arabia during the preceding 120 days: (A) testing cluster—Jeddah, (B) testing cluster—Riyadh, (C)

testing cluster—Madinah, (D) testing cluster Saudi Arabia.

4.3 Performance measures for compared
DQN and ARIMA models

A machine learning model was used to identify non-linear

relationships between the training and test data across three-time

intervals. As a result, the residual values were included as the

only inputs to the hybrid (ARIMA-mathematical) model. The daily

time series of detections was also included as inputs to the DQN

model in the ARIMA mathematical model. Figure 9 displays the

DQN predictions for the ARIMA fit of the three training tests

over three periods. The graph for each period indicates that the

ARIMA residuals for the 1-day and three-day tests exhibit frequent

fluctuations, while the change for the 6-day test is minimal. The

difference in the 6-day test is negligible. The similarity between

the projected values and the ARIMA residuals demonstrates

the effectiveness of the DQN technique. Predicting the effective

reduction of non-linear fluctuations caused by human activities is

possible. For example, the data collected over 12 days shows distinct

peaks in the DQN model. However, the DQN model must provide

more accurate results than the previous ARIMA mathematical

model (Figure 9). In contrast, the ARIMA mathematical model

systematically reflects the general pattern of the ARIMA residual.

The ARIMA mathematical models struggle to accurately capture

rapid and substantial changes due to the predominant influence of

human actions, as shown in Table 6.

5 Conclusion

This study used Bayesian optimization algorithm (BOA),

long short-term memory (LSTM), convolutional neural network

(CNN), multi-head attention (MHA), and deep Q-network (DQN)

learning methods to guess how many confirmed COVID-19

cases there will be in Saudi Arabia’s three most common cities:

Jeddah, Riyadh, and Al-Medina Al-Munawara. The performance

of the models was assessed utilizing MAPE, MAE, and SMAPE

metrics, and stability was evaluated based on out-of-sample error

through box plots on the test set. The results suggested that

the BOA models precisely predicted COVID-19 case rates in

the selected states by understanding the temporal connections

within the epidemiological data. The DQN strategy proved

especially advantageous for assignments requiring Dynamic Time

Warping (DTT) and Dialogue State Tracking (DST). The obtained

results proved that the tested models (LSTM, CNN, and MHA)

consistently displayed the highest accuracy, with only minor

variations in performance across different scenarios. Indeed, the

results proved that is essential to exercise caution when interpreting

these forecasts, as the data might exhibit atypical variations, and

other extraneous factors unrelated to COVID-19 can affect the

daily case reports. Combining BOA learning with deep learning

algorithms, data enhancement methods on small data sets, and

copula functions to calibrate hyperparameters are all possible

directions for further research.

The Obtained results proved that the proposed model

for the COVID-19 outbreak in SA. The model classifies the

population as susceptible, exposed and asymptomatic, infected,

and recovered individuals. Firstly, we examine the essential

properties of the proposed model, including its positivity

and boundedness. Subsequently, we determine the fundamental

reproductive number of the model. Our research demonstrates

the existence of two distinct equilibrium points in the model:

the disease-free equilibrium points and the endemic equilibrium

point. The stability of the disease-free equilibrium point can

be established when the fundamental reproduction number is

less than one, implying the complete eradication of the disease

from the population. Further, it becomes evident that the model
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FIGURE 9

Comparison of DQN modeling results for ARIMA and mathematical residuals.

TABLE 6 Errors of three training tests data using ARIMA/mathematical

models.

Models MAPE SMAPE RMSE Days

DQN 0.1238 0.72425 14.95145 One Day Test

ARINA 0.9876 0.95123 16.75321 Three Days Test

Mathematical 0.2314 0.85213 17.74102 Six Days Test

follows a transcortical bifurcation at the disease-free equilibrium

point. This occurs when the bifurcation parameter, representing

the disease transmission rate of the infected class, attains a

critical value. Our investigation is based on the data collected

in Italy between February 15th, 2020, and July 14th, 2020.

In the early stages of the outbreak, the virus spread rapidly

due to widespread disregard for safety measures among the

general population.

Moreover, a significant number of individuals who had

contracted the virus arrived in Italy from other countries.

Before March 9th, 2020, the disease had already spread

extensively throughout the population. The effects of

the illness are slowly decreasing due to compliance with

measures such as adhering to lockdown, observing home

quarantine, regularly washing one’s hands, and wearing

face masks.

Handling COVID-19 remains challenging, particularly in

countries that have previously contained the virus. Our study

presents a refined approach to running a non-linear compartmental

model that accurately captures the essential dynamic features

of COVID-19 while considering limitations. The control design

employs a discrete-time iteration of the epidemic model. The

system can handle complex situations and logical relationships

between model variables and predetermined interventions. A

state monitor calculates unobserved variables associated with the

current number of patients admitted to the hospital. The work

involves numerical simulations of five control scenarios with

distinct cost functions and limits. One strategy is to use an output

feedback system that includes unclear parameters. The limitations

mentioned refer to government measures and tactics to mitigate

or exacerbate the issue, depending on the cost function associated

with other policy objectives. The findings highlight the need for

prompt intervention, careful monitoring of vulnerable groups, and

further research to determine strict regulatory measures’ exact costs

and effects.
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