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Learning to play against any
mixture of opponents

Max Olan Smith1*, Thomas Anthony2 and Michael P. Wellman1

1Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI, United States,
2DeepMind, London, United Kingdom

Intuitively, experience playing against one mixture of opponents in a given

domain should be relevant for a di�erent mixture in the same domain. If the

mixture changes, ideally we would not have to train from scratch, but rather

could transfer what we have learned to construct a policy to play against the

new mixture. We propose a transfer learning method, Q-Mixing, that starts by

learning Q-values against each pure-strategy opponent. Then a Q-value for any

distribution of opponent strategies is approximated by appropriately averaging

the separately learned Q-values. From these components, we construct policies

against all opponent mixtures without any further training. We empirically validate

Q-Mixing in two environments: a simple grid-world soccer environment, and

a social dilemma game. Our experiments find that Q-Mixing can successfully

transfer knowledge across any mixture of opponents. Next, we consider the use

of observations during play to update the believed distribution of opponents. We

introduce an opponent policy classifier—trained reusing Q-learning data—and use

the classifier results to refine the mixing of Q-values. Q-Mixing augmented with

the opponent policy classifier performs better, with higher variance, than training

directly against a mixed-strategy opponent.

KEYWORDS

reinforcement learning (RL), transfer learning (TL), deep reinforcement learning (deepRL),

value-based reinforcement learning, multi-agent learning

1. Introduction

Reinforcement learning (RL) agents commonly interact in environments with other

agents, whose behavior may be uncertain. For any particular probabilistic belief over the

behavior of another agent (henceforth, opponent), we can learn to play with respect to that

opponent distribution (henceforth, mixture), for example by training in simulation against

opponents sampled from the mixture. If the mixture changes, ideally we would not have to

train from scratch, but rather could transfer what we have learned to construct a policy to

play against the new mixture.

Traditional RL algorithms include no mechanism to explicitly prepare for variability

in opponent mixtures. Instead, current solutions either learn a new behavior or update a

previously learned behavior. In lieu of that, researchers designed methods for learning a

single behavior successfully across a set of strategies (Wang and Sandholm, 2003), or quickly

adapting in response to new strategies (Jaderberg et al., 2019). In this work, we explicitly

tackle the unique problem of responding to new opponent mixtures without requiring

further simulations for learning.

We propose a new algorithm, Q-Mixing, that effectively transfers learning across

opponent mixtures. The algorithm is designed within a population-based learning regime

(Lanctot et al., 2017; Jaderberg et al., 2019), where training is conducted against a known

distribution of opponent policies. Q-Mixing initially learns value-based best responses

(BR), represented as Q-functions, with respect to each of the opponent’s pure strategies.

It then transfers this knowledge against any given opponent mixture by weighting the BR
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FIGURE 1

Q-Mixing concept. BR to each of the pure strategies π−i are learned

separately. The Q-value for a given opponent mixed strategy σ−i is

then derived by combining these components.

Q-functions according to the probability that the opponent plays

each of their pure strategies. The idea is illustrated in Figure 1.

This calculation is an approximation of the Q-values against the

mixed-strategy opponent, with error due to misrepresenting the

future belief of the opponent by the current belief. The result is an

approximate BR policy against any mixture, constructed without

additional training.

This situation is common in game-theoretic approaches

to multiagent RL such as Policy-Space Response Oracles

(PSRO; Lanctot et al., 2017) where a population of

agents is trained and reused. PSRO iteratively solves

a game by adding policies to each agent’s strategy set

that are best-responses to a mixture of the opponent’s

current strategy set. Knowledge of the opponent’s mixture

is available during training, but is currently unused.

Smith et al. (2021) showed that PSRO’s best-response

calculation can use knowledge of the opponent’s mixture in

combination with Q-Mixing to reduce PSRO’s cumulative

training time.

We experimentally validate our algorithm on: (1) a simple

grid-world soccer game, and (2) a sequential social dilemma

game. Our experiments show that Q-Mixing is effective in

transferring learned responses across opponent mixtures. We

also address two potential issues with combining Q-functions

according to a given mixture. The first is that the agent receives

information during play that provides evidence about the

identity of the opponent’s pure strategy. We address this by

introducing an opponent classifier to predict which opponent

we are playing for a particular observation and reweighting

the Q-values to focus on the likely opponents. The second

issue is that the complexity of the policy produced by Q-

Mixing grows linearly with the support of the opponent’s

mixture. This can make simulation and decision making

computationally expensive. We propose and show that policy

distillation (Rusu et al., 2015) can compress a Q-Mixing policy

while maintaining performance.

Key contributions:

1. Theoretically relate (in an idealized setting) the Q-value for an

opponent mixture to Q-values for mixture components.

2. A new transfer learning algorithm, Q-Mixing, that uses this

relationship to construct approximate policies against any given

opponent mixture, without additional training.

3. Augmenting this algorithm with runtime opponent

classification, to account for observations that may inform

predictions of opponent policy during play.

4. Demonstrate that policy distillation can reduce Q-Mixing’s

complexity (in both memory and computation).

2. Preliminaries

At any time t ∈ T , an agent receives the environment’s state

st ∈ S , or an observation ot ∈ O, a partial state. Even if

an environment’s state is fully observable, the inclusion of other

agents with uncertain behavior makes the overall system partially

observable. From said observation, the agent takes an action at ∈ A

receiving a reward rt ∈ R. The agent’s policy describes its behavior

given each observation π :O→ 1(A). Actions are received by the

environment, and a next observation is determined following the

environment’s transition dynamics p :O ×A→ O.

The agent’s goal is to maximize its reward over time; called the

return: Gt =
∑∞

l γ lrt+l, where γ is the discount factor weighting

the importance of immediate rewards. Return is used to define the

state- and action-values respectively:

V(ot) = Eπ

[

∞
∑

l=0

γ lr(ot+l, at+l)

]

,

Q(ot , at) = r(ot , at)+ γEot+1∈O

[

V(ot+1)
]

.

For multiagent settings, we index the agents and distinguish

the agent-specific components with subscripts. Agent i’s policy is

πi :Oi → 1(Ai), and the opponent’s policy1 is the negated index,

π−i :O−i → 1(A−i). Boldface elements are joint across the agents

(e.g., joint-action a).

Agent i has a strategy set 5i comprising the possible policies it

can employ. Agent i may choose a single policy from 5i to play as

a pure strategy, or randomize with a mixed strategy σi ∈ 1(5i).

Note that the pure strategies πi may themselves choose actions

stochastically. For a mixed strategy, we denote the probability the

agent plays a particular policy πi as σi(πi). A best response (BR) to

an opponent’s strategy σ−i is a policy with maximum return against

σ−i and may not be unique.

Agent i’s prior belief about its opponent is represented by an

opponent mixed-strategy, σ 0
−i ≡ σ−i. The opponent plays the

mixture by sampling a policy according to σ−i at the start of the

episode. Then agents are locked into the sampled policy’s behavior

for the entire duration of the episode. The agent’s updated belief at

time t about the opponent policy faced is denoted σ t
−i.

We introduce the term Strategy Response Value (SRV) to refer

to the observation-value against an opponent’s strategy.

Definition 1 (Strategic Response Value). An agent’s πi strategic

response value is its expected return given an observation, when

1 Our methods are defined here for environments with two agents.

Extension to greater numbers while maintaining computational tractability

is a topic for future work.
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playing πi against a specified opponent strategy:

Vπi (o
t
i | σ

t
−i) = Eσ t−i





∑

a

π(ai | o
t
i )

∑

o′i ,ri

p(o′i, ri | o
t
i , a)δ





where δ ≡ ri + γVπi (o
′
i | σ

t+1
−i ). Let the optimal SRV be

V∗i (o
t
i | σ

t
−i) = max

πi
Vπi (o

t
i | σ

t
−i).

From the SRV, we define the Strategic Response Q-Value (SRQV)

for a particular opponent strategy.

Definition 2 (Strategic Response Q-Value). An agent’s πi strategic

response Q-value is its expected return for an action given an

observation, when playing πi against a specified opponent strategy:

Qπi (o
t
i , a

t
i | σ

t
−i) = Eσ t−i

[

rti
]

+ γEot+1i

[

Vπi (o
t+1
i | σ t+1

−i )
]

,

where rti ≡ ri(o
t
i , a

t
i , a

t
−i). Let the optimal SRQV be

Q∗i (o
t
i , a

t
i | σ

t
−i) = max

πi
Qπi (o

t
i , a

t
i | σ

t
−i).

3. Q-Mixing

Our goal is to transfer the Q-learning effort across different

opponent mixtures. We consider the scenario where we first learn

against each of the opponent’s pure strategies. From this, we

construct a Q-function for a given distribution of opponents from

the policies trained against each opponent’s pure strategy.

3.1. Single-state setting

Let us first consider a simplified setting with a single state. This

is essentially a problem of bandit learning, where our opponent’s

strategy will set the reward of each arm for an episode. Intuitively,

our expected reward against a mixture of opponents is proportional

to the payoff against each opponent weighted by their respective

likelihood.

As shown in Theorem 3, weighting the component SRQV by

the opponent’s distribution supports a BR to that mixture. We call

this relationship Q-Mixing-Prior and define it in Theorem 3.

Theorem 3 (Single-State Q-Mixing). Let Q∗i (· | π−i), π−i ∈

5−i, denote the optimal strategic responseQ-value against opponent

policy π−i. Then for any opponent mixture σ−i ∈ 1(5−i), the

optimal strategic response Q-value is given by

Q∗i (ai | σ−i) =
∑

π−i∈5−i

σ−i(π−i)Q
∗
i (ai | π−i).

Proof: The definition of Q-value is as follows (Sutton and Barto,

2018):

Q∗i (ai) =
∑

ri

p(ri | ai) · ri.

In a multiagent system, the dynamics model p suppresses the

complexity introduced by the other agents. We can unpack the

dynamics model to account for the other agents as follows:

p(ri | ai) =
∑

π−i

∑

a−i

π−i(a−i) · p(ri | a).

We can then unpack the strategic response value as follows:

Q∗i (ai | π−i) =
∑

a−i

π−i(a−i)
∑

ri

p(ri | a) · ri.

Now we can rearrange the expanded Q-value to explicitly

account for the opponent’s strategy. The independence assumption

enables the following re-writing by letting us treat the opponent’s

mixed strategy as a constant condition:

Q∗i (ai | σ−i) =
∑

ri

∑

π−i

σ−i(π−i)
∑

a−i

π−i(a−i)p(ri | a) · ri

=
∑

π−i

σ−i(π−i)
∑

a−i

π−i(a−i)
∑

ri

p(ri | a) · ri

=
∑

π−i

σ−i(π−i)Q
∗
i (ai | π−i).

While this setting facilitates exact mixing of Q-values, its

applicability to general games is limited. In the following

subsections, we will explore how we can trade-off exactness in the

mixing of Q-values in order to broaden its use to a larger classes

of games.

3.2. Leveraging information from the past

Next, we consider the RL setting where both agents are

able to influence an evolving observation distribution. As a

result of the joint effect of agents’ actions on observations, the

agents have an opportunity to gather information about their

opponent during an episode. Methods in this setting need to

(1) use information from the past to update its belief about the

opponent, and (2) grapple with uncertainty about the future.

To bring Q-Mixing into this setting we need to quantify the

agent’s current belief about their opponent and their future

uncertainty.

During a run with an opponent’s pure strategy drawn

from a distribution, the actual observations experienced

generally depend on the identity of this pure strategy. Let

ψi :O
0 : t
i → 1(5−i) represent the agent’s current belief about

the opponent’s policy using the observations during play as

evidence. From this prediction, we propose an approximate

version of Q-Mixing that accounts for past information. The

approximation works by first predicting the relative likelihood

of each opponent given the current observation. Then it weights

the Q-value-based BRs against each opponent by their relative

likelihood.

Figure 2 provides an illustration of the benefits and limitations

of this new prediction-based Q-Mixing. At any given timestep t

during the episode, the information available to an agent about

the opponents may be insufficient to identify perfectly their policy.

In the figure, the yellow area above a timestep represents the
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FIGURE 2

Opponent uncertainty over time. The yellow area represents

uncertainty reduction as a result of updating belief about the

distribution of the opponent. The blue area represents

approximation error incurred by Q-Mixing.

uncertainty reduction from an updated prediction of the opponent

σ t
−i compared to the baseline prediction of the prior σ 0

−i. Upon

perception of the next observation t + 1, the agent may collect

additional evidence informing the identity of the opponent further

reducing the uncertainty. Crucially, this definition of Q-Mixing

does not consider updating the opponent distribution from new

information in the future (blue area in Figure 2).

Let the previously defined ψ be the opponent policy classifier

(OPC), which predicts the opponent’s policy. In this work, we

consider a simplified version of this function, that operates only

on the agent’s current observation ψi :Oi → 1(5−i). We then

augment Q-Mixing to weight the importance of each BR as follows:

Qπi (oi, ai | σ−i) =
∑

π−i

ψi(π−i | oi, σ−i)Qπi (oi, ai | π−i).

We refer to this quantity as Q-Mixing, or Q-Mixing-X, where X

describesψ (e.g.,Q-Mixing-Prior definesψ as the prior uncertainty

of the opponent σ 0
−i). By continually updating the opponent

distribution during play, the adjusted Q-Mixing result better

responds to the actual opponent.

An interpretation of Q-Mixing with an OPC is as a

decomposition of the problem of learning a best-response to a

mixed-strategy opponent. Instead of directly attempting to solve

this problem, the problem is broken down into the sub-problems

of opponent policy identification and response. Focusing response

learning on only an individidual opponent policy removes specious

experiences caused from misattributing its origin to the wrong

opponent policy. An easier reinforcement learning problem is

thereby established that reduces the required simulation cost.

An ancillary benefit of the opponent classifier is that poorly

estimated Q-values tend to have their impact minimized. For

example, if an observation occurs only against the second pure

strategy, then the Q-value against the first pure strategy would not

be trained well, and thus could distort the policy from Q-Mixing.

These poorly trained cases correspond to unlikely opponents and

Input: O,A,T ,R, ǫ, γ

V0(o | σ−i)←
∑

π−i
σ−i(π−i)Q(o, a | π−i)

do

Qt(o, a | σ−i)←
∑

π−i
ψ(π−i | o, σ−i)

∑

o′ , r T (o′, r |

o, a,π−i)
[

r + γVt−1(o
′ | σ−i)

]

Vt(o | σ−i)← maxa Qt(o, a | σ−i)

πt(o | σ−i)←a Qt(o, a | σ−i)

while ∃o∈O |Vt(o)− Vt−1(o)| > ǫ

Output: Vt , Qt , πt

Algorithm 1. Value iteration: Q-Mixing.

get reduced weighting in the version of Q-Mixing augmented by

the classifier.

3.3. Accounting for future uncertainty

To account for future uncertainty, Q-Mixing must be able to

update its successor observation values given future observations.

This can be done by expanding the Q-value into its components:

expected reward under the current belief in the opponent’s policy,

and our expected next observation value. By updating the second

term to recursively reference an updated opponent belief we

can account for changing beliefs in the future. The extended

formulation, Q-Mixing-Value-Iteration (QMVI), is given by:

Q∗i (o
t
i , a

t
i | σ−i) =

∑

π−i∈5−i

ψi(π−i | o
t
i , σ−i) · ri(o

t
i , a

t
i | π−i)

+γEot+1i

[

V∗(ot+1i | σ−i)
]

.

If we assume that we have access to both a dynamics model

and the observation distribution dependent on the opponent, then

we can directly solve for this quantity through Value Iteration

(Algorithm 1). These requirements are quite strong, essentially

requiring perfect knowledge of the system with regards to all

opponents. The additional step of Value Iteration also carries

a computational burden, as it requires iterating over the full

observation and action spaces. Though these costs may render

QMVI infeasible in practice, we provide Algorithm 1 as a way to

ensure correctness in Q-values.

4. Experiments

4.1. Grid-world soccer

We first evaluate Q-Mixing on a simple grid-world soccer

environment (Littman, 1994; Greenwald and Hall, 2003). This

environment has small state and action spaces, allowing for

inexpensive simulation. With this environment we pose the

following questions:

1. Can QMVI obtain Q-values for mixed-strategy opponents?

2. Can Q-Mixing transfer Q-values across all of the opponent’s

mixed strategies?
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FIGURE 3

Grid-world soccer environment. Player 1’s goal is the shaded left

region (blue), and player 2’s goal is the shaded right region (orange).

Player 1 possesses the ball, denoted by the circle in the same game

cell as the player’s numeral.

The soccer environment is composed of a soccer field, two

players, one ball, and two goals. The player’s objective is to acquire

the ball and score a goal while preventing the opponent from

scoring on their own goal. The scorer receives +1 reward, and the

defender receives−1 reward. The state of the environment consists

of the entire field including the locations of the players and ball.

This is represented as a 5 × 4 matrix with six possible values in

each cell, referring to the occupancy of the cell. The players may

move in any of the four cardinal directions or stay in place. Actions

taken by the players are executed in a random order, and if the

player possessing the ball moves last then the first player may take

possession of the ball by colliding with them. An illustration of the

soccer environment can be seen in Figure 3.

In our experiments, we learn policies for Player 1 using Double

DQN (van Hasselt et al., 2016). The state space is raveled into a

vector of length 120 that is then fed into a deep neural network.

The network has two fully-connected hidden layers of size 50 with

ReLU activation functions and an output layer over the actions with

size 5. Player 2 plays a strategy over five policies, each using the

same shape neural networks as Player 1, generated using the double

oracle (DO) algorithm (McMahan et al., 2003). These policies are

frozen for the duration of the experiments. Further details of the

environment and experiments are in the Appendix.

4.1.1. Empirical verification of Q-Mixing
We now turn to our first question: whether QMVI can obtain

Q-values for mixed-strategy opponents. To answer this, we run

the QMVI algorithm against a fixed opponent mixed strategy

(Algorithm 1). We construct dynamics models for each opponent

by considering the opponent’s policy and the multiagent dynamics

model as a single entity. Then we may approximate the relative

observation-occupancy distribution by rolling out 30 episodes

against each policy and estimating the distribution.

In our experiment, an optimal policy was reached in 14

iterations. The resulting policy best-responded to each individual

opponent and the mixture. This empirically validates our

first hypothesis.

4.1.2. Coverage of opponent strategy space
Our second question is whether Q-Mixing can produce high-

quality responses for any opponent mixture. Our evaluation of

FIGURE 4

Q-Mixing’s coverage of the opponent’s strategy space in the soccer

game. The strategies are sorted per-BR-method by the BR’s return.

Shaded region represents a 95% confidence interval over five

random seeds (df = 4, t = 2.776). BR(Mixture) is trained against the

uniform mixture opponent. The two methods use the same number

of experiences.

this question employs the same five opponent pure strategies as

the previous experiment. We first trained a baseline, BR(Uniform)

or BR(σ−i), directly against the uniform mixed-strategy opponent.

DQN’s hyperparameters were tuned against a held-out set of

evaluation opponent policies. The same hyperparameters were then

used to train against each of the opponent’s pure strategies, with the

simulation budget split equally. The Q-values trained respectively

are used as the components for Q-Mixing, and an OPC is also

trained from their replay buffers. The OPC has the same neural

network architecture as the policies, but modifies the last layer to

predict over the size of the opponent’s strategy set.

We evaluate each method against all opponent mixtures

truncated to the tenths place [e.g., (0.1, 0.6, 0.1, 0.2, 0.0)],

resulting in 860 strategy distributions. This is meant to serve

as a representative coverage of the entire opponent’s mixed-

strategy space. For each one of these mixed-strategies, we simulate

the performance of each method against that mixture for thirty

episodes. We then collect the average payoff against each opponent

mixture and sort the averages in descending order.

Figure 4 shows Q-Mixing’s performance across the opponent

mixed-strategy space. Learning in this domain is fairly easy, so both

methods are expected to win against almost every mixed-strategy

opponent. Nevertheless, Q-Mixing generalizes across strategies

better, albeit with slightly higher variance. While the improvement

of Q-Mixing is incremental, we interpret this first evaluation as

validating the promise of Q-Mixing for coverage across mixtures.

4.2. Sequential social dilemma game

In this section, we evaluate the performance of Q-Mixing

in a more complex setting, in the domain of sequential social

dilemmas (SSD). These dilemmas present each agent with

difficult strategic decision where they must balance collective-
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and self-interest throughout repeated interactions. Like our

grid-world soccer example, our SSD Gathering game has two

players, but unlike the soccer game it is general sum. Most

importantly, the game exhibits imperfect observation, that is,

the environment is only partially observable and the players

have private information. We investigated the following research

questions on this environment:

1. Can Q-Mixing work with Q-values based on observations from

a complex environment?

2. Can the use of an opponent policy classifier that updates the

opponent distribution improve performance?

3. Can policy distillation be used to compress a Q-Mixing based

policy, while preserving performance?

The Gathering game is a gridworld instantiation of a tragedy-

of-the-commons game (Perolat et al., 2017). In this game, the

players compete to harvest apples from an orchard; however, the

regrowth rate of the apples is proportional to the number of nearby

apples. Limited resources puts the players at odds, because they

must work together to maintain the orchard’s health while selfishly

amassing apples. In addition to picking apples, the players may tag

all players in a beam in front of them removing them from the

game for a short fixed duration. Moreover, the agents face partial

observation as they are only able to see a small window in front of

them and do not know the full state of the game.

A visualization of the environment and more details are

included in Appendix. The policies used in this environment are

implemented as deep neural networks with two hidden layers with

50 units and ReLU activations. Agents can choose to move in the

four cardinal directions, turn left or right, tag the other player, or

perform no action. The policies are trained using the Double DQN

algorithm (van Hasselt et al., 2016), and the opponent’s parameters

are always kept fixed (no training updates are performed) for the

duration of the experiments.

All statistical results below are reported with a 95% confidence

interval based on the Student’s t-distribution (df = 4, t =

2.776). To generate this interval, we perform almost the entire

experimental process, as described in each experiment’s subsection,

entirely across five random seeds. For each seed we do not

resample hyperparameters nor generate new opponents. A final

result is produced for each random seed, often resulting in a

sample of payoffs for a variety of player profiles. Then the sample

statistics from each random seed are utilized to construct the

confidence interval.

4.2.1. Empirical verification of Q-Mixing
We experimentally evaluate Q-Mixing-Prior on the Gathering

game, allowing us to confirm our algorithm’s robustness to

complex environments. First, a set of three opponent policies

are generated through DO. A BR is trained against each

of the independent pure-strategies. A baseline BR(σ−i), or

BR(Uniform), is trained directly against the uniform mixture

of the same opponents. We evaluate Q-Mixing-Prior’s

ability to transfer strategic knowledge by first simulating its

performance against the mixed-strategy opponent. Then we

compare this performance to the performance that BR(σ−i)’s

FIGURE 5

Learning curve of BR(σ−i) compared to the performance of

Q-Mixing-Prior on the Gathering game. Shaded region represents a

95% confidence interval over five random seeds (df = 4, t = 2.776).

strategy that was learned by training directly against the

mixed-strategy.

The training curves for BR(σ−i) is presented in Figure 5. From

this graph we can see that Q-Mixing-Prior is able to achieve

performance stronger than BR(σ−i) through transfer learning. This

is possible because the pure-strategy BR are able to learn stronger

policies from specialization compared to the mixed-strategy BR.

For example, when playing only against π0
−i the best-response

BR(π0
−i) achieves a return of 227.93±21.01 while BR(σ−i) achieves

207.98 ± 15.92. This verifies our hypothesis that Q-Mixing is able

to transfer knowledge under partial observation.

4.2.2. Opponent classification
Our next research question is: can the use of an OPC

that updates the opponent distribution in Q-Mixing improve its

performance? During play against an opponent sampled from the

mixed-strategy, the player is able to gather evidence about which

opponent they are playing. We hypothesize that leveraging this

evidence to weight the importance of the respective BR’s Q-values

will improve Q-Mixing’s performance.

To verify this hypothesis, we train an OPC using the replay

buffers associated with each BR policy. These are the same buffers

that were used to train the BRs, and cost no additional compute to

collect. The replay buffers are concatenated and labeled with their

source policy and constitute our classification dataset. From this

data, our classifier must produce a distribution over opponent pure

strategies given an observation. The OPC is implemented with a

deep neural network two hidden layers with 50 units and ReLU

activations. This is the same neural network architecture used by

the policies. To train this classifier we take each experience from

the pure-strategy BR replay buffers and assign them each a class

label for each respective pure-strategy. The classifier is then trained

to predict this label using a cross-entropy loss.

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2023.804682
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Smith et al. 10.3389/frai.2023.804682

FIGURE 6

Q-Mixing with an OPC’s coverage of the opponent’s strategy space

on the Gathering game. Each strategy is a mixture over the three

opponent’s truncated to the tenths place. The strategies are sorted

by the respective BR’s performance. Shaded regions represent a 95%

confidence interval over five random seeds (df = 4, t = 2.776).

We evaluate Q-Mixing-OPC by testing the performance on a

representative coverage of the mixed-strategy opponents illustrated

in Figure 6. We found that the Q-Mixing-OPC policy performed

stronger against the full opponent strategy coverage supporting

our hypothesis that an OPC can identify the opponent’s pure-

strategy and enable Q-Mixing to chose the correct BR policy.

However, our method has a much larger variance, which can be

explained by the OPC’s misclassification of the opponent resulting

in poorly chosen actions throughout the episode. This first result in

opponent classification suggests further investigation into stronger

classification methods is a fruitful direction for future research.

4.2.3. Policy distillation
In Q-Mixing we need to compute Q-values for each of

the opponent’s pure strategies. This can be a limiting factor in

parametric policies, like deep neural networks, where our policy’s

complexity grows linearly in the size of the support of the

opponent’s mixture. This can become unwieldy in both memory

and computation. To remedy these issues, we propose using policy

distillation to compress a Q-Mixing policy into a smaller parametric

space (Hinton et al., 2014).

In the policy distillation framework, a larger neural network

referred to as the teacher is used as a training target for a smaller

neural network called the student. In our experiment, the Q-Mixing

policy is the teacher to a student neural network that is the size of

a single best-response policy. The student is trained in a supervised

learning framework, where the dataset is the concatenated replay

buffers from training pure-strategy best-responses. This is the same

dataset that was used in opponent classifying, which was notably

generated without running any additional simulations. A batch of

data is sampled from the replay-buffer and the student predicts

QS the teacher’s QT Q-values for each action. The student is then

FIGURE 7

Policy distillation simulation performance over training on the

Gathering game. The teacher Q-Mixing-Prior is used as a learning

target for a smaller student network. Shaded region represents a

95% confidence interval over five random seeds (df = 4, t = 2.776).

trained to minimize the KL-divergence between the predicted Q-

values and the teacher’s true Q-values. There is a small wrinkle,

the policies produce Q-values, and KL-divergence is a metric over

probability distributions. To make this loss function compatible,

the Q-values are transformed into a probability distribution by

softmax with temperature τ . The temperature parameter allows

us to control the softness of the maximum operator. A high

temperature produces actions that have a near-uniform probability,

and as the temperature is lowered the distribution concentrates

weight on the highest Q-Values (Sutton and Barto, 2018). The

benefit of a higher temperature is that more information can be

passed from the teacher to the student about each state. Additional

training details are described in the Supplementary material.

The learning curve of the student is reported in Figure 7. We

found that the student policy was able to recover the performance of

Q-Mixing-Prior, albeit with slightly higher variance. This study did

not include any effort to optimize the student’s performance, thus

further improvements with the samemethodology may be possible.

This result confirms our hypothesis that policy distillation is able to

effectively compress a policy derived by Q-Mixing.

5. Related work

5.1. Multiagent learning

The most relevant line of work in multiagent learning studies

the interplay between centralized learning and decentralized

execution (Tan, 1993; Kraemer and Banerjee, 2016). In this regime,

agents are able to train with additional information about the other

agents that would not be available during evaluation (e.g., the

other agent’s state Rashid et al., 2018, actions Claus and Boutilier,

1998, or a coordination signal Greenwald and Hall, 2003). The

key question then becomes: how to create a policy that can be

evaluated without additional information? A popular approach is
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to decompose the joint-action value into independent Q-values for

each agent (Guestrin et al., 2001; He et al., 2016; Rashid et al., 2018;

Sunehag et al., 2018; Mahajan et al., 2019). An alternative approach

is to learn a centralized critic, which can train independent agent

policies (Gupta et al., 2017; Lowe et al., 2017; Foerster J. N. et al.,

2018). Some work has proposed constructing meta-data about the

agent’s current policies as a way to reduce the learning instability

present in environments where other agents’ policies are changing

(Foerster et al., 2017; Omidshafiei et al., 2017).

A set of assumptions that can be made is that all players have

fixed strategy sets. Under these assumptions, agents could maintain

more sophisticated beliefs about their opponent (Zheng et al.,

2018) and extend this to recursive-reasoning procedures (Yang

et al., 2019). These lines of work focus more on other-player

policy identification and are a promising future direction for

improving the quality of the OPC. One more potential extension

of the OPC is to consider alternative objectives. Instead of

focusing exclusively on predicting the opponent, in safety-

critical situations an agent will want to consider an objective

that accounts for inaccurate prediction of their opponent. The

Restricted Nash Response Johanson et al. (2007) encapsulates this

measure by balancing maximal performance if the prediction is

correct balanced with reasonable performance if the prediction is

inaccurate. While both of these directions of work focus around

opponent-policy prediction, they do so under a largely different

problem statement. Most notably, these works do not consider

varying the distribution of the opponent policies, and as such

extending these works to fit this new problem statement would

constitute its own study.

Instead of building or using complete models of opponents, one

may use an implicit representation of their opponents. By choosing

to build an explicit model of their opponent they circumvent

needing a large amount of data to reconstruct the opponent policy.

An additional benefit is that there are less likely to be errors in the

model that need to be overcome, because a perfect reconstruction

of a complex policy is no longer necessary. He et al. (2016)

proposes DRON which uses a learned latent action prediction of

the opponent as conditioning information to the policy (in a similar

nature to the opponent-actions in the joint-action value area).

They also show another version DRON which uses a Mixture-

of-Experts (Jacobs et al., 1991) operation to marginalize over the

possible opponent behaviors. More formally, they compute the

marginal
∑

a−i
π−i(a−i|si)Qi(si, ai, a−i), which is over the action-

space and utilized to condition the expected Q-value. Q-Mixing is

built off a similar style of marginalization; however, it marginalizes

over the policy-space of the opponent instead of the action-space.

Moreover, Q-Mixing depends on independent BR Q-values against

each opponent-policy, where DRON learns a single Q-network.

Bard et al. (2013) proposes implicitly modeling opponents through

the payoffs received from playing against a portfolio of the agent’s

policies.

Most multiagent learning work focuses on the simultaneous

learning of many agents, where there is not a distribution over a

static set of opponent policies. This difference in methods can have

strong influences on the final learned policies. For example, when

a policy is trained concurrently with another particular opponent-

policy they may overfit to each other’s behavior. As a result, the final

learned policy may be unable to coordinate or play well against

any other opponent policy (Bard et al., 2020). Another potential

problem is that each agent now faces a dynamic learning problem,

where they must learn a moving target (the other agent’s policy;

Tesauro, 2003; Foerster J. et al., 2018).

5.2. Multi-task learning

Multiagent learning is analogous to multi-task learning. In

this reconstruction, each strategy/policy is analogous to solving

a different task. And the opponent’s strategy would be the

distribution over tasks. Similar analogies to tasks can be made with

objectives, goals, contexts, etc. (Kaelbling, 1993; Ruder, 2017).

The multi-task community has roughly separated learnable

knowledge into two categories (Snel and Whiteson, 2014). Task

relevant knowledge pertains to a particular task (Jong and Stone,

2005; Walsh et al., 2006); meanwhile, domain relevant knowledge is

common across all tasks (Caruana, 1997; Foster and Dayan, 2002;

Konidaris and Barto, 2006). Work has been done that bridges the

gap between these settings; for example, knowledge about a task

could be a curriculum to utilize over tasks (Czarnecki et al., 2018).

In task relevant learning, a leading method is to identify state

information that is irrelevant to decision making, and abstract it

away (Jong and Stone, 2005; Walsh et al., 2006). Our work falls into

the same task relevant category, where we are interested in learning

responses to particular opponent policies. What differentiates our

work from the previous work is that we learnQ-values for each task

independently, and do not ignore any information.

Progressively growing neural networks is another similar line of

work (Rusu et al., 2016), focused on a stream of new tasks. Schwarz

et al. (2018) also found that network growth could be handled with

policy distillation.

5.3. Transfer learning

Transfer learning is the study of reusing knowledge to learn

new tasks/domains/policies. Within transfer learning, we look at

either how knowledge is transferred, or what kind of knowledge

is transferred. Previous work on how to transfer knowledge has

tended to follow one of two main directions (Pan and Yang, 2010;

Lampinen andGanguli, 2019). The representation transfer direction

considers how to abstract away general characteristics about the

task that are likely to apply to later problems. Ammar et al. (2015)

present an algorithm where an agent collects a shared general set

of knowledge that can be used for each particular task. The second

direction directly transfers parameters across tasks; appropriately

called parameter transfer. Taylor et al. (2005) show how policies can

be reused by creating a projection across different tasks’ state and

action spaces.

In the literature, transferring knowledge about the opponent’s

strategy is considered intra-agent transfer (Silva and Costa, 2019).

The focus of this area is on adapting to other agents. One line of

work in this area focuses on ad hoc teamwork, where an agent

must learn to quickly interact with new teammates (Barrett and

Stone, 2015; Bard et al., 2020). The main approach relies on already

having a set of policies available, and learning to select which
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policy will work best with the new team (Barrett and Stone, 2015).

Another work proposes learning features that are independent of

the game, which can either be qualities general to all games or

strategies (Banerjee and Stone, 2007). Our study differs from these

in its focus on the opponent’s policies as the source of information

to transfer.

6. Conclusions

This paper introduces Q-Mixing, an algorithm for transferring

knowledge across distributions of opponents. We show how

Q-Mixing relies on the theoretical relationship between an

agent’s action-values, and the strategy employed by the other

agents. A first empirical confirmation of the approach is

demonstrated using a simple grid-world soccer environment.

In this environment, we show how experience against pure

strategies can transfer to construction of policies against mixed-

strategy opponents. Moreover, we show that this transfer

is able to cover the space of mixed strategies with no

additional computation.

Next, we tested our algorithm’s robustness on a sequential

social dilemma. In this environment, we show the benefit of

introducing an opponent policy classifier, which uses the agent’s

observations to update its belief about the opponent’s policy.

This updated belief is then used to revise the weighting of the

respective SRQVs.

Finally, we address the concern that a Q-Mixing policy

may become too large or computationally expensive to use. To

ease this concern we demonstrate that policy distillation can

be used to compress a Q-Mixing policy into a much smaller

parameter space.
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