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Distributed learning is a promising alternative to central learning for machine

learning (ML) model training, overcoming data-sharing problems in healthcare.

Previous studies exploring federated learning (FL) or the traveling model (TM)

setup for medical image-based disease classification often relied on large

databases with a limited number of centers or simulated artificial centers,

raising doubts about real-world applicability. This study develops and evaluates

a convolution neural network (CNN) for Parkinson’s disease classification using

data acquired by 83 diverse real centers around the world, mostly contributing

small training samples. Our approach specifically makes use of the TM setup,

which has proven e�ective in scenarios with limited data availability but has

never been used for image-based disease classification. Our findings reveal that

TM is e�ective for training CNN models, even in complex real-world scenarios

with variable data distributions. After su�cient training cycles, the TM-trained

CNN matches or slightly surpasses the performance of the centrally trained

counterpart (AUROC of 83% vs. 80%). Our study highlights, for the first time, the

e�ectiveness of TM in 3D medical image classification, especially in scenarios

with limited training samples and heterogeneous distributed data. These insights

are relevant for situationswhereMLmodels are supposed to be trained using data

from small or remote medical centers, and rare diseases with sparse cases. The

simplicity of this approach enables a broad application to many deep learning

tasks, enhancing its clinical utility across various contexts and medical facilities.
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1 Introduction

Distributed learning, and especially its federated learning (FL)

implementation, has emerged as a viable and promising alternative

to central learning for training of machine learning (ML) models

to address various patient privacy regulations and administrative

barriers (Tuladhar et al., 2022). It provides a practical solution for

accessing extensive and diverse datasets by facilitating ML model

training in distributed environments. In the standard FL setup, each

center receives a copy of a global model from a central server and

local training takes place at each center for a pre-defined number

of epochs using the data locally available. After local training,

the learned model parameters are sent back to the server. Using

an aggregation function, the server combines these parameters to

update the global model, which is then sent back to the centers for

additional training and model refinement. This iterative process is

usually repeated overmultiple rounds to improve the globalmodel’s

performance (McMahan et al., 2016).

Prior studies that explored this standard FL setup for disease

classification tasks based on medical images often employed large

databases with a limited number of participating centers where the

data were acquired, and/or used such data to generate artificial

centers to simulate diverse data contributions. Artificial centers

with imbalanced contributions are typically generated using the

Dirichlet distribution, resulting in an overall distribution that

exhibits exponential decay. This means that many centers will

contribute many datasets (i.e., many medical images) while a few

centers will contribute a small number of datasets. For instance,

Yan et al. (2021) used a COVID-19 database consisting of 15,282

chest X-ray images and five artificially generated centers. Cetinkaya

et al. (2021) employed a COVID-19 database containing 28,833

chest X-ray images and 20 artificial centers based on the Dirichlet

distribution. Liu et al. (2023) evaluated their FL approach for

COVID-19 (5,908 chest X-rays) and skin lesion detection (10,015

images) tasks by artificially creating centers (8, 9, 10, 11, 12 centers

for COVID-19 and 3, 4, 5, 6, 7 centers for skin lesion detection)

using the Dirichlet distribution. Additionally, Wicaksana et al.

(2023) developed a FL model for skin lesion and intracranial

hemorrhage classification using 23,247 dermatoscopy images and

67,969 brain CT images, respectively, with six centers for skin lesion

detection and two artificial centers for intracranial hemorrhage

classification. Jiang et al. (2022) developed and evaluated a FL

model for breast cancer classification using 450,000 histology

images from five centers, while Adnan et al. (2022) simulated data

distributions across 4, 8, 16, and 32 centers for histopathology

classification using 30,070 images. Li et al. (2020) evaluated their

FL approach using 370 resting-state fMRI data from four centers.

Lastly, Zhou et al. (2022) created 20 artificial centers for diabetic

retinopathy classification using a FL system trained with a total of

3,662 images.

Although all the studies mentioned above offered important

technical advancements and insights, their scope was inherently

limited by the number of (real) centers participating in the

distributed learning setup. Moreover, even though artificial centers

with dissimilar contributions were simulated by sampling from a

Dirichlet distribution, most of the centers still contributed a large

number of datasets. However, such conditions may not effectively

represent real-world scenarios for 3D imaging data where some

centers may only have access to a very few datasets and the

disease of interest may present differently across centers, raising

concerns about the performance of FL with genuinely diverse

and skewed data distributions that arise from the limited data

available at medical facilities (Ng et al., 2021; Tuladhar et al.,

2022).

The traveling model (TM) paradigm, also known as Cyclical

Weight Transfer (CWT) (Chang et al., 2018; Balachandar et al.,

2020), is an alternative approach to the standard FL setup for

distributed learning. In an initial analysis by Souza et al. (2022b),

TM has been shown to outperform FL for cases where limited

datasets are available at each participating center. Although their

examination is based on empirical evidence, the results suggest that

TM holds promise as a potential alternative to FL in these particular

scenarios. Briefly described, in the TM setup, a single model

undergoes sequential training across various centers following a

predetermined travel sequence that dictates the order of center

visits. The model is initialized at a central server or the first center

and undergoes training with the available data at that center.

Subsequently, the updated model travels to the next center, where

it continues training with the locally available data. This process

continues until the final center is reached, completing one training

cycle. Similar to FL, multiple cycles can be performed to improve

the global model’s performance. However, unlike in the standard

FL setup, there is no need for an aggregation function as the same

model is continuously improved by traveling from center to center.

The benefit of the TM for small local datasets stems from the

iterative training of a single model, addressing the challenge of local

models yielding suboptimal parameters due to overfitting, which

often occurs when trainingMLmodels with very small sample sizes.

Furthermore, this approach overcomes the challenge of aggregating

multiple models without marginalizing centers with fewer datasets.

However, in contrast to FL, the TM paradigm has seen limited

exploration so far, with only one study specifically focusing on

small sample sizes available in each center (Souza et al., 2022b).

Moreover, the TM has not been used and evaluated for training

convolution neural networks (CNNs) for disease classification

using real distributed 3D imaging data where some centers provide

only very few training samples. Instead, similar to FL studies, TM

investigations (Chang et al., 2018; Balachandar et al., 2020; Souza

et al., 2022b) often make use of large databases with simulated

centers, prompting concerns regarding their genuine applicability

to real-world scenarios.

Therefore, this work aims to develop and evaluate a Parkinson’s

disease (PD) classifier utilizing the TM approach. This traveling

model classifier is developed and evaluated using a large database

comprising 1,817 three-dimensional T1-weighted brain magnetic

resonance imaging (MRI) scans acquired in 83 different real

centers around the world. Each of these centers contributes distinct

and unique information, encompassing biological (e.g., sex, age,

and target labels) and non-biological (e.g., scanner types and the

number of participants per center) factors. Ourmajor contributions

include: (1) the development and evaluation of a TM approach for

training 3D CNNs for a disease classification purpose using 3D

datasets, and (2) the first work to make use of a real-world data

distribution with many centers providing only very few training
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samples, acquired using a wide selection of MRI scanners and

acquisition protocols.

2 Materials and methods

In this study, we developed and trained a CNN model for

PD classification from T1-weighted brain MRI data using a TM

approach and analyzed its performance using the largest multi-

center PD database described in the literature.

2.1 Dataset

All analyses conducted in this study utilized a distinct

multi-center PD database, comprising 1,817 T1-weighted MRI

scans acquired in 83 different healthcare centers around the

world1 ,2 ,3 (Acharya et al., 2007; Jack et al., 2008; Hanganu et al.,

2014; Sudlow et al., 2015; Badea et al., 2017; Wei et al., 2018;

Duchesne et al., 2019; LaMontagne et al., 2019; Lang et al., 2019;

Talai et al., 2021; Thibeau-Sutre et al., 2022). Each center received

ethics approval from their local ethics board and received written

informed consent from all the participants under the declaration

of Helsinki. This database is exceptionally diverse, encompassing

variations in participant demographics, center contributions,

scanner vendors (Siemens, GE, and Phillips), scanner types (23

scanners were utilized), andmagnetic field strengths (1.5T or 3.0T).

Table 1 provides an overview of the database demographics.

Whenever possible, datasets from each center were divided into

80% for training and 20% for testing, resulting in 1,410 MRI scans

for training and 407 MRI scans for testing. For centers providing a

very small number of samples (e.g., <25 samples), the data were

split into training and testing sets aiming to achieve an overall

balanced representation in terms of sex and age, as shown in

Table 2. All datasets were pre-processed as described in Souza et al.

(2023), which included skull-stripping, resampling to an isotropic

resolution of 1 mm, bias field correction, affine image registration

to the PD25-T1-MPRAGE-1mm brain atlas (Xiao et al., 2017), and

cropping to reduce irrelevant background information.

2.2 Parkinson’s disease model

In this study, we utilized a state-of-the-art simple fully

convolutional network (SFCN) (see Figure 1A), which achieved

a high, state-of-the-art accuracy (78.8%) differentiating healthy

participants and patients with PD using multi-center T1-weighted

MRI scans in a centralized approach (Camacho et al., 2023), as

the basis for all experiments. A grid search was conducted to

optimize this centralized model on the data available for this work,

considering various parameters such as learning rate, dropout layer,

and learning rate decay. The best model was selected based on

early stopping criteria, with a patience of 10 epochs, considering the

lowest testing loss. The chosen model utilized the Adam optimizer

1 https://www.ppmi-info.org/

2 https://www.mcgill.ca/neuro/open-science

3 https://openneuro.org/datasets/ds000245/versions/00001

with an initial learning rate of 0.001 and employed an exponential

decay rate every epoch. The training was performed using a shuffled

batch size of 5 and a dropout layer before the flattening layer, with

a dropout rate of 20%.

2.3 Traveling model pipeline

In this study, we implemented the first CNN model for PD

classification from T1-weighted brain MRI data using a TM

approach. Moreover, we explored six distinct configurations of

the CNN trained using the TM approach. These configurations

encompassed random and fixed traveling sequences, with

variations in the number of local training epochs (one, two, and

five) prior to moving to the next center. The fixed traveling order

involves visiting every center in a consistent sequence throughout

each cycle, which is defined, using a random seed equal to 42, once

in the beginning. In contrast to that, the random order introduces

cycle-to-cycle variability, using a different seed (i.e., adding 1 to the

initial seed of 42 after each cycle), in the sequence visited by the

model, practically emulating the batch shuffling process used in the

centralized approach (see Figure 1B).

The performance of the traveling models was assessed for up

to 30 cycles, ensuring consistency with the total number of epochs

used to train the centralized model, where each epoch corresponds

to a full cycle in the traveling setup. With respect to the optimizer

and dropout layer, the only difference between the traveling models

and the centralized model is the initial learning rate, which was

set to 0.0001. This value was chosen after conducting a grid search

and taking into account that several centers have fewer than five

samples (4, 3, 2, or 1) available for local training, necessitating a

smaller learning step. As a result, the traveling model experiments

utilized a batch size of 5 or equal to the number of samples available

at a local center, if this number was smaller than 5. Each sample

in the batch corresponds to a unique participant T1-weighted MRI

scan. Although the training was conducted on a single computer

equipped with an NVIDIA GeForce RTX 3090 GPU, the training

procedure adhered to the TM concept by fetching data from a single

center at any given time. Nevertheless, the outcomes outlined in

this study are expected to remain consistent and unaffected by the

specific physical implementation (such as computer network and

data transfer protocols) as long as each center employs the identical

hardware and software configuration utilized in our training. Our

code is available at https://github.com/RaissaSouza/pd-travelling-

model.

2.4 Evaluation metrics

For quantitative evaluation of our results, we measured the

Area Under the Receiver Operating Characteristic Curve (AUC

ROC), which provides a single scalar value thatmeasures the overall

threshold-independent performance of a binary classification

model. More precisely, the AUC ROC score measures the model’s

capability to distinguish between positive (PD) and negative

(healthy participants) classes across all possible thresholds. A

higher AUC ROC score indicates a better predictive performance.
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TABLE 1 Database demographics.

Parkinson’s disease Healthy participants

Centers
or study

Number
of centers*

Sex (M/F) Age
(<60/60+)

Sex
(M/F)

Age
(<60/60+)

Total
amount
of data

Scanner
vendor∗

ADNI 42 – – 96/177 18/255 564 Siemens,

GE,

and Philips

BIOCOG 1 25/20 0/45 28/21 0/49 94 Siemens

C-BIG 1 36/30 16/50 1/9 3/7 76 Siemens

HAMBURG 1 52/22 23/51 24/15 13/26 113 Siemens

CCNA 6 37/20 8/47 – – 57 GE

JAPAN 1 13/17 4/26 7/8 4/11 45 Siemens

NEUROCON 1 16/10 4 /22 4/12 6/10 42 Siemens

OASIS 1 – – 17/10 5/22 27 Siemens

PD MCI

CALGARY

1 53/26 0/79 20/22 0/42 121 GE

PDMCI PLS 1 26/15 15/26 10 /11 7/14 62 Siemens

PPMI 24 228/136 147/237 108/58 132/217 530 Siemens,

GE,

and Philips

SALD 1 – – 78/0 34/44 78 Siemens

TAOWU 1 8/9 1/16 12/8 3/17 37 Siemens

UKBB 1 28/20 4/44 119/78 37/160 245 Siemens

∗Per center and scanner type detailed information can be found in Supplementary Table 1.

TABLE 2 Database split distribution.

Participant
characteristics

Total
(train/test)

Number of males
(train/test)

Number of females
(train/test)

Parkinson’s disease 680/187 418/124 262/63

Healthy participants 730/220 400/120 330/100

3 Results

The results of this study show (see Figure 2) that the random

traveling order consistently outperformed the fixed traveling order

across all experimental setups. As seen in Figures 2A, B, models

trained for one and two local epochs employing the random

traveling order achieved AUC ROC results comparable to the

centralized model (80.57%) when trained for 24 cycles or more. In

contrast, Figure 2C reveals that models trained for five local epochs

exhibited inferior performance compared to the centralized model,

regardless of the traveling order (detailed metrics per cycle and

training scheme are presented in Supplementary Table 2).

Our results demonstrate that increasing the number of

cycles improves the performance of the models for every setup

investigated. Furthermore, our findings highlight that an increase

in the number of local training epochs leads to greater instability

(i.e., AUC ROC numbers vary between cycles) in the training

process for the random traveling order, while conversely, it results

in a smoother (i.e., less variability between cycles) trend for the

fixed traveling order. Moreover, the model trained for a single local

epoch and random traveling order displayed a more stable learning

process when compared to the models that employed two and five

local epochs and random traveling order. Additionally, Figure 2A

shows a comparable level of stability in the training process for

models trained with both fixed and random traveling orders for a

single epoch.

4 Discussion

The main finding of this work is that the traveling model is

suitable and leads to good results when used for training CNN

models for disease classification using 3D imaging data distributed

across many medical centers and limited data availability at

single centers. Most notably, when trained for an appropriate

number of cycles, the model trained in this distributed way

achieves comparable or slightly superior performance compared

to a standard model that was trained in centralized fashion.

Moreover, the effectiveness of the traveling CNN model extends

beyond scenarios where centers contribute limited samples,
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FIGURE 1

(A) Simple fully convolutional neural network (CNN) architecture. (B) Order of the training set. The left side illustrates that when trained in a fixed

order, all centers are visited in a consistent sequence. In contrast, the right side shows that the sequence varies for each cycle when trained in a

random order.

as previously shown in Souza et al. (2022b) using tabulated

data. It also performs exceptionally well in this real-world

data context characterized by diverse forms of imaging data

distribution imbalances, including variations in target labels,

scanner types, and demographics, as evident in this unique

and realistic PD database. Importantly, our findings affirm

the practical applicability of the traveling model paradigm

for image-based classification systems in real-world contexts,

enhancing its reliability for clinical deployment across multiple

medical facilities.

Our findings reveal that employing a random traveling order

and a single local epoch constitutes the optimal configuration for

PD classification using this particular database. This setup exhibits

greater stability in performance as a function of cycles compared

to scenarios involving two or five local epochs, suggesting that an

excessive amount of local training could potentially lead to model

overfitting to the data provided by individual centers. Souza et al.

(2022b) reported similar findings in their analysis of the effects of

local training per cycle. However, it is important to note that their

study differed from ours as they utilized simulated artificial centers,

identical data distribution, and tabular data, while we used image

data acquired in 83 real-world centers with non-identical data

distribution, and full 3D images instead of tabulated data. Similar

outcomes were also demonstrated in Souza et al. (2022a,c), where
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FIGURE 2

Area Under the Receiver Operating Characteristic Curve (AUROC) for experiments with random and fixed traveling order. The blue dotted line

represents the results for the fixed traveling order, the red solid line represents the results for the random traveling order, and the black dashed line

represents the best result for the centralized model AUROC after complete training. (A) Models trained for one local epoch. (B) Models trained for

two local epochs. (C) Models trained for five local epochs.

brain age prediction and brain tumor segmentation were examined.

Nevertheless, noteworthy distinctions should be emphasized. In

one instance, contributions from centers were simulated using

tabular data, while in the other case, a CNN for segmentation

was utilized, which has access to numerous positive and negative

cases (voxels) within a single image. As a result, this study provides

novel and highly relevant contributions to the field, showcasing the

suitability of the travelingmodels approach for image-based disease

classification tasks using data acquired in 83 real-world centers.

The observed smoother performance trend of the fixed

traveling order could be attributed to several factors. One potential

explanation is that the model might memorize the sequence of

centers and exploit it as a shortcut. Another possibility is that the

model consistently encounters the same center toward the end

of each cycle leading to overfitting. In contrast, using a random

order helps mitigate (at least partially) the memorization of the

center order or the last center’s local samples by emulating the

batch shuffling process employed in centralized training. Another

perspective is that this smoother performance trend might relate

to the phenomenon of catastrophic forgetting (French, 1999;

Kirkpatrick et al., 2017), where the model loses knowledge of

previously learned patterns from initial centers and becomes overly

specialized toward later-center data. Lastly, the smoothness could

imply that the model’s weight updates become minimal in later

cycles, leading to diminishing improvements. On the other hand,

the increased instability seen in the random traveling order suggests

more pronounced weight updates across cycles, likely contributing

to the observed performance variability.

In essence, our study highlights the efficacy of the traveling

model for 3Dmedical image classification applications, particularly

when dealing with limited training samples. These insights

carry important implications for scenarios in which small

centers or remote medical facilities are meant to contribute

data, cases involving rare diseases (Taruscio et al., 2018) with

limited case numbers even at major centers, and situations

where centers predominantly serve pediatric patients, with

considerable developmental differences (Rahimzadeh et al., 2018).

The simplicity of our approachmakes it versatile and applicable to a

wide array of deep learning tasks and databases, thereby enhancing

its clinical utility across diverse contexts.

It is essential to highlight some of the limitations of this work.

First, our work made exclusively use of a single established PD

classifier model. Thus, it remains to be shown that the results

hold true if different deep learning models or disease models are

considered. Nevertheless, it is worth highlighting that the multi-

center database utilized in this study is notably extensive and

encompasses a considerably larger number of centers compared

to datasets employed in numerous other federated learning and

traveling model analyses thus far, which makes it likely that the

results are generalizable. Second, our study solely employed T1-

weighted MRI sequences, thereby leaving out the exploration of

alternative image modalities. Third, this work only simulated the

network for the traveling model pipeline using the multi-center

database. Therefore, future work investigating how to create such

a distributed computer network in practice and how to define

transfer protocols to send themodel to different locations to train in

distinct computers is necessary. Nevertheless, the results presented

in this work should hold true if every center trains the model using

the same hard- and software that we used. Lastly, the establishment

of a metric to investigate catastrophic forgetting is necessary to

determine the underlying cause of the varying stability observed in

our model’s training process.

5 Conclusion

This work explored and systematically investigated the

applicability of the traveling CNN model paradigm for distributed

training of a PD classifier using data acquired in 83 real centers

around the world, exhibiting considerable heterogeneity in the data

distribution per center, with the majority of centers contributing

only a limited number of imaging samples. To the best of our

knowledge, this is the first work making use of a large database

of 3D images from real centers with limited local data to train an

image-based disease classifier in a distributed way. Moreover, this

is the first description of a novel distributed learning approach,

specifically designed and evaluated for PD classification. Our results

demonstrated that the traveling CNN model can achieve results

similar to central learning. Thus, the traveling model provides a

new opportunity to apply machine learning models to diverse and
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skewed data distributions as a result of limited data availability at

medical facilities.
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