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Cross-validated tree-based
models for multi-target learning

Yehuda Nissenbaum and Amichai Painsky*

Department of Industrial Engineering, Tel Aviv University, Tel Aviv, Israel

Multi-target learning (MTL) is a popular machine learning technique which

considers simultaneous prediction of multiple targets. MTL schemes utilize

a variety of methods, from traditional linear models to more contemporary

deep neural networks. In this work we introduce a novel, highly interpretable,

tree-based MTL scheme which exploits the correlation between the targets to

obtain improved prediction accuracy. Our suggested scheme applies cross-

validated splitting criterion to identify correlated targets at every node of the

tree. This allows us to benefit from the correlation among the targets while

avoiding overfitting. We demonstrate the performance of our proposed scheme

in a variety of synthetic and real-world experiments, showing a significant

improvement over alternative methods. An implementation of the proposed

method is publicly available at the first author’s webpage.

KEYWORDS

classification and regression trees, multi-target learning, tree-based models, gradient
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1 Introduction

Multi-target learning (MTL) is a supervised learning paradigm that aims to construct

a predictive model to multiple response variables from a common set of features. This

paradigm is also known as multi-variate (Brown and Zidek, 1980; Breiman and Friedman,

1997) or multi-output learning (Liu et al., 2009; Yao et al., 2020), and has been an active

research area for over four decades (Izenman, 1975). MTL applies to a wide range of

fields due to its fundamental nature. For example, Ghosn and Bengio (1996) used artificial

neural networks (ANNs) to predict stocks investment profits over time. They considered

3,636 assets from Canadian large-capitalization stocks and from the Canadian treasury. A

series of experiments showed a major improvement by allowing different levels of shared

parameters among the targets. Other notable examples include chemometrics (Burnham

et al., 1999), ecological modeling (Kocev et al., 2009), text classification (Schapire and

Singer, 2000), and bioinformatics (Ji et al., 2008).

There are two main approaches for MTL. The first is typically referred to as problem

transformation methods or local methods. It transforms the MTL problem into a series

of single-target models, and single-output schemes are applied. The second approach

is mostly known as algorithm adaptation or global methods. These methods train a

single model simultaneously for all the targets. None of these approaches can universally

outperform the other. Indeed, both have certain merits and limitations, as demonstrated in

the following sections. The interested reader is referred to Adıyeke and Baydoğan (2020)

for a thorough discussion.

Decision trees are among the most popular supervised learning schemes (Wu et al.,

2008). Decision trees hold many favorable properties. They are simple to understand and

interpret, able to handle numerical and categorical features and have the ability to capture

non-linear and non-additive relationships. Training a decision tree typically requires

recursive partitioning of the feature space into a set of rectangles. Several popular decision
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tree implementations were proposed over the years. For example,

ID3 (Quinlan, 1986), CART (Li et al., 1984), C4.5/C5.0 (Quinlan,

2004, 2014) to name a few.

MTL has been utilizes to a variety of predictive models. In

the context of decision-tree methods, there are two major MTL

approaches. The first is to construct a single tree for each response

variable (Kocev et al., 2009). The second is to train a joint tree for all

response variables all together (De’Ath, 2002). A hybrid approach,

which combines the two, is also considered in the literature (Santos

et al., 2021; Alves and Cerri, 2022). In this work we introduce

a new hybrid tree-based MTL framework. Specifically, we train

decision trees that share some levels for all the targets, while

allowing other levels to be target specific. Our proposed framework

is motivated by the observation that both single and joint trees

hold unique advantages in different scenarios. Single trees are

advantageous in cases where the correlation between response

variables are weak or non-existent, as they allow the flexibility to

train more tailored models for each response variable. On the other

hand, training a joint tree for all response variables can account

for the relationship between the targets, if such exists. In this

work we propose a hybrid approach that selects the appropriate

method at each node by utilizing a cross-validation (CV) score.

Specifically, the proposed approach determines whether to create

a separate tree for each response variable or to build a joint tree

for all response variables at each node based on its CV score. By

combining the advantages of both schemes, our method adapts

to the unique properties of the problem, resulting in improved

predictive performance. Overall, our proposed hybrid approach

offers a more flexible and effective solution compared to traditional

methods. Our experiments demonstrate favorable performance

compared to existing methods on various synthetic and real-world

datasets. An implementation of the proposed method is publicly

available.1

2 Related work

In this section we first overview existing multi-target

algorithms. Next, we present the CART algorithm and describe

the building process of the tree. Then, we introduce the ALOOF

method, a novel approach to variable selection, which we adapt

in our proposed framework. Finally, we discuss currently known

multi-target tree-based algorithms.

2.1 Multi target learning

The MTL framework considers n independent observations

from p features and d targets. Specifically, we denote the ith

observation as (xi, yi) where xi =
(

xi1, xi2 . . . xip
)

and yi =
(

yi1, yi2 . . . yid
)

. Notice that all d targets share the same set

of features. As mentioned above, current MTL methods are

typically either local or global, where each approach holds its own

advantages and caveats.

1 https://github.com/a4566201/-Cross-validated-Tree-Based-Models-

for-Multi-target-Learning

2.1.1 Local MTL methods
2.1.1.1 The single target scheme

The most basic local approach is the baseline single target (ST)

scheme (Spyromitros-Xioufis et al., 2016). Here, d separate models

are learned for each target independently. Specifically, for response

variable r, ST considers a training set Tr =
{

xi, yir
}n

i=1
where xi is

the original feature vector xi =
(

xi1, xi2 . . . xip
)

.

2.1.1.2 Stacked single target

Stacked Single Target (SST) (Spyromitros-Xioufis et al., 2016)

is an MTL scheme for regression tasks, inspired by the multi-label

classificationmethod Stacked Binary Relevance (SBR) (Godbole and

Sarawagi, 2004). The SST training process consists of two stages.

First, d single models are separately trained for each response

variable, as in ST. Then, d meta-models, one for each response

variable, are trained in the second stage. Each meta-model is

trained on a transformed training set T′r =
{

x′i, yir
}n

i=1
, where

x′i =
(

xi1, . . . , xip, ŷi1, . . . , ŷid
)

is the original feature vector xi,

augmented with the predictions from the first stage.

2.1.1.3 Regressor and classifier chains

Regressor Chains (RC) (Spyromitros-Xioufis et al., 2016) and

Classifier Chains (CC) (Read et al., 2011) train dmodels, similar in

spirit to SST. Here, we first set a (random) order among the targets.

Then, each target is trained on the predictions of the previous

targets in the drawn order. For example, assume that d = 2 and

the drawn order of targets is (y2, y1). Then, the training set for

the first response variable y2 is T′2 =
{

x′i, yi2
}n

i=1
, where x′i is the

original features vector. Next, we proceed to y1. The transformed

training set for this target is T′1 =
{

x′i, yi1
}n

i=1
where now x′i =

(xi1, . . . , xip, ŷi2) is the original feature vector, augmented with the

ŷi2 from the previous step.

2.1.2 Global MTL methods
Michelucci and Venturini (2019) proposed an MTL neural

network architecture, consisting of common (joint) and individual

hidden layers (see Figure 1). The common hidden layers consider

all response variables simultaneously, as they strive to capture the

dependencies among them. The outputs of these layers are used as

inputs for the following individual layers. These, on the other hand,

focus on the unique properties of each separate response and allow

introduce flexibility to their proposed scheme.

Evgeniou and Pontil (2004) presented a different MTL method

using a regularization approach. They focused on support vector

machines (SVM) and extended this notion to the MTL setup. In

SVM, the objective is to find a hyper-plane wTx − b = 0 with

the largest distance to the nearest training data points of each

class. Under the assumption that all targets’ weight vectors w are

“close to each other”, they defined the weight of the rth target wr

as wr = w0 + vr where w0 is the mean of the w’s over all targets

and vr corresponds to the deviation from the mean. The objective

function is similar to the single target scheme, with a summation

of the parameters across all the targets. It contains two positive

regularization parameters, for the two terms. The regularization

parameters impose constraints and control the variability among

the models.
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FIGURE 1

An example of a MTL network architecture with two targets (tasks).

Curds and Whey (C&W) is a procedure proposed by

Breiman and Friedman (1997), for multiple linear regression

with multivariate responses. C&W utilizes elements of canonical

correlation and shrinkage estimation to enhance the prediction

accuracy for each response variable. Specifically, C&W applies

simple least squares regressions and then utilizes the correlations

between the responses and features to shrink the predicted values

from those regressions.

2.2 Classification and regression trees

As mentioned above, the focus of our work is the design of a

decision tree-based MTL framework. For this purpose, we briefly

review the popular Classification and Regression Tree (CART)

algorithm. Consider n observations {xi, yi}
n
i=1 consisting of p

features, where xi =
(

xi1, xi2 . . . xip
)

and yi is a real (regression)

or categorical (classification) scalar. During the training phase

of the tree, CART performs recursive binary partitioning of the

feature space. For each feature j we consider a collection of possible

split points Sj. Every split point s ∈ Sj corresponds to a binary

partition of the n observation into two disjoint sets L(s) and R(s).

For numerical/ordinal features the two sets define (without loss of

generality) L(s) = {X|Xj < s} and R(s) = {X|Xj ≥ s}. Notice that

in this case, |Sj| < n as only unique values are considered along

the sorted values. For categorical features the two sets are define

as L(s) = {X|Xj ∈ QjL} and R(s) = {X|Xj ∈ QjR} where Qj is

the set of categories of variable j and QjL, QjR are sub-sets such

that QjL ∪ QjR = Qj and QjL ∩ QjR = ∅. Here, there is a total

of |Sj| = 2|Qj|−1 − 1 possible binary splits. However, it is easy to

show that one can order the categories by the corresponding mean

of their response variables, and only consider the splits along this

ordered list (Li et al., 1984). This leads to a total of |Qj|−1 candidate

splits. For every split s ∈ Sj, CART evaluates a loss criterion. In

regression trees the popular choice is the squared loss,

L(s) = 6i∈L(s)

(

yi − ȳL
)2
+6i∈R(s)

(

yi − ȳR
)2

(1)

where ȳL and ȳR are the mean over the sets L(s) and R(s),

respectively. For a two-class classification tree it utilizes the Gini

index loss criterion (Equation 2),

L(s) = nLp̂L(1− p̂L)+ nRp̂R(1− p̂R) (2)

where nL, p̂L, nR, and p̂R are the number of observations and

the observed proportions of each of the classes in L(s) and

R(s), respectively. Ultimately, CART seeks (j∗, s∗) that solve the

minimization problem

min
j∈{1,...,p}

s∈Sj

L(s). (3)

Since CART is a recursive algorithm, it requires a stopping criterion

to terminate the growth of the tree. Common criteria include a

maximum depth, a minimum number of samples required for a

split, a minimum number of samples at each leaf and a minimum

decrease in loss. It is well-known that large trees tend to overfit

the data (high variance and low bias) while smaller trees might not

capture the all relationships between the features (high bias and low

variance). A popular solution is by cross-validated pruning of the

tree (Li et al., 1984).

2.3 Cross-validated trees

Large cardinally categorical features introduce a major

statistical concern during the tree training process. Specifically,

notice that CART tends to select variables with large |Q|, and

consequently suffer from over-fitting. For example, consider a

simple index feature. Here, Equation (3) would favor this feature

over the alternatives, as it allows maximal flexibility in minimizing

the objective. Recently, Painsky and Rosset (2016) introduced

the Adaptive Leave-one-out Feature Selection scheme (ALOOF) to

overcome this caveat. ALOOF suggests a new approach for variable

selection as it ranks the features by estimating their generalization

error. That is, the best-split is chosen based on its leave-one-

out cross-validation performance (as opposed to the in-sample

performance presented in Equation 3). As a result, ALOOF makes

a “fair” comparison among the features, which does not favor

features according to their cardinality.

2.4 Decision tree based MTL

One of the first MTL methods that consider decision trees was

proposed by De’Ath (2002). In this work, the author introduced

the concept of multivariate regression trees (MRTs). MRTs extend

classical univariate regression trees (Li et al., 1984) to a multi-

target setup. This requires redefining the loss criterion, as appears

in Equation (1). Specifically,

L(s) =

d
∑

r=1

∑

i∈L(s)

(

yir − ȳLr
)2
+

∑

i∈R(s)

(

yir − ȳRr
)2
, (4)

where ȳLr and ȳRr are the means of the sets L(s) and R(s) for

the rth target. The training process of De’Ath (2002) is similar to

standard CART, under the loss criterion above. Finally, each leaf of

the tree stores d output values, which correspond to the mean of
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each response variable. A similar MTL extension to classification

trees were also considered. Kocev et al. (2009) compared MRT

with standard CART. Their results showed that MRT typically

outperforms CART, despite no statistical significance in their

results.

Piccart et al. (2008) suggested using a subset of response

variables (denoted support targets) to predict a given “main” target.

Notice that this goal is different than the classical MTL framework,

which models on all targets. They proposed a local method, called

Empirical Asymmetric Selective Transfer (EAST). This model is

based on the assumption that among the targets, some may be

related while others are not. They argued that the related targets

may increase the predictive accuracy, as opposed to the rest of

the targets. To find the best support (related) targets for a given

response variable j, EAST measures the increase in predictive

performance that a candidate target yields using CV. The best

candidate target is then added to the current support set. The

algorithm returns the best support set that was found.

Basgalupp et al. (2021) presented a closely relatedmethod. They

suggested alternative partitions of the response variables to disjoint

sets. To find the best partitions they applied both an exhaustive

search strategy, and a strategy based on a genetic algorithm. After

finding the optimal subsets, the partition is treated as a separate

prediction problem. They used decision trees and random forests

as base models.

Amulti-objective classifier called a BloomyDecision Tree (BDT)

was presented by Suzuki et al. (2001). The building tree process is

similar to a classical CART decision tree. It recursively partitions

the feature space based on an attribute selection function. The

criterion they used for selecting the splitting point is the sum of

gain ratios for each class. In the BDT, a flower node that predicts a

subset of class dimensions is added to the tree. In order to select

those class dimensions, at each internal node and for each class

dimension, the algorithm employed pre-pruning based on Cramer’s

V (Weber, 1977). Unlike leaf nodes, flower nodes also appear in

the internal nodes of the tree. Consequently, the number of class

dimensions gradually decreases and we are able to circumvent the

“fragmentation problem” (Salzberg, 1994).

Appice and Džeroski (2007) proposed an algorithm named

Multi-target Stepwise Model Tree Induction (MTSMOTI). This

method applies to regression problems, where leaves are associated

with multiple linear models. At each step of tree construction,

MTSMOTI either partitions the current training set (split node)

or introduces a set of linear models. Here, each linear model

corresponds to a response variable. The internal nodes contribute

to capture global effects, while straight-line regressions with leaves

capture only local effects.

The idea of combining local and global tree-based methods

is also not new in the literature. Santos et al. (2021) introduce

predictive bi-clustering trees (PBCT) for MTL. Their approach

generalizes classical decision trees, where each node corresponds

to bi-clustering of the data. That is, instead of splitting the data

with respect to a feature (as in classical DT), the data is clustered

with respect to both the features and the targets. This allows

an exploitation of target correlations during the tree-building

process. Unfortunately, such an approach is highly prone to

overfitting, since bi-clustering introducesmany degrees of freedom,

compared to classical tree splitting. In addition, bi-clustering

typically does not perform well in cases where the data is too

imbalanced, enerating leaf nodes with a much higher number

of negative interactions. This caveat was studied by Alves and

Cerri (2022) who proposed a two-step approach, where PBCTs

are used to generate partitions and an XGboost classifier is

used to predict interactions based on these partitions. Osojnik

et al. (2016) studied option predictive clustering trees (OPCT) for

MTR. An OPCT is a generalization of predictive clustering trees,

allowing the construction of overlapping hierarchical clustering

(as opposed to non-overlapping clustering, such as in Santos

et al., 2021; Alves and Cerri, 2022).This means that at each

node of the tree, several alternative hierarchical clusterings of the

subspace can appear instead of a single one. Additional variants

and ensembles of predictive clustering trees were introduced

by Breskvar et al. (2018), including bagging, random forests,

and extremely randomized clustering trees. Finally, Nakano

et al. (2022) discuss a deep tree-ensemble (DTE) method for

MTL. This method utilizes multiple layers of random forest

(deep forest), where every layer enriches the original feature

set with a representation learning component based on tree-

embeddings.

3 Methodology

Most Tree-based MTL frameworks strive to minimize the

(overall) generalization error, E

(

∑d
r=1 l(Yr , fr(X))

)

, where l is

some loss function (for example, squared error in regression) and

fr is a tree-based model. As described in the previous section,

there are two basic decision tree MTL approaches. The first is

to train a single shared tree for all the targets simultaneously

(fr = f ), while the second is to construct d separate fr trees while

allowing dependencies among them. Our suggested model merges

these approaches and introduces a hybrid tree that capitalizes the

advantages of both schemes.

3.1 The tree training process

We begin our tree training process in the following manner.

First, we go over all p features and seek a single shared feature

(and a corresponding split) for all the targets simultaneously. We

evaluate the performance of the chosen split in a sense that is

later described. Next, we evaluate the performance of every target

independently. That is, for every target we seek a feature and a

corresponding split value, independently of the other targets. We

compare the two approaches and choose the one that demonstrates

better results. Specifically, we choose whether to treat all the targets

simultaneously with a single shared split (denoted as MT), or to

treat each target independently, with its own split (like ST). To

avoid extensive computation and statistical difficulties, we perform

a no-regret tree growing process. This means that once we decide

to split on each target independently, we do not go back to shared

splits in consecutive nodes. The resulting model is a hybrid tree

where higher levels are typically shared splits while deeper levels

correspond to d independent trees (as illustrated in Figure 2). This

hybrid tree follows the same rationale as the MTL neural network

architecture in Figure 1.
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FIGURE 2

An example of our tree structure. At the root node, we split based

on a single shared split. At the left child node, we treat each target

independently. On the right node, we again split based on a single

shared split.

3.2 Splitting criterion and evaluation

Naturally, one of the inherent challenges of our suggested

method is to assess the performance of different splitting

approaches (that is, MT vs. ST). Here, we follow the ALOOF

framework (Section 2.3) and propose an estimator of the

generalization error, based on cross-validation. Let T = {xi, yi}
m
i=1

be a set observations in a given node. For simplicity of the

presentation, we first assume a regression problem where y ∈ R
d.

Let Ttr and Tval be a partitioning of T into train and validation

sets, respectively. Let j be an examined feature. Let s∗j be the

optimal split value of the jth feature over the train set. That is,

s∗j is the argmin of Equation (4) over the set of observations Ttr ,

while the corresponding loss is L(s∗j ). We repeat this process for

K non-overlapping partitioning of T to obtain K values of L(s∗j ).

Finally, we average these K results, similarly to a classical K-fold

CV scheme. We denote the resulting average as

GEMT(j) =
1

K

K
∑

k=1

L
(k)(s∗j ) (5)

where L(k)(s∗j ) is the loss of the k
th fold, as described above.

Next, we would like to estimate the generalization error of the

ST splits. Here, we repeat the same process, but for every target

independently. That is, for the rth target and the jth feature, we

defineK partitioning to train and validations sets. Then, we find the

best split, s∗j,r over the train-set (following Equation 1), and evaluate

its performance on the validation set. We repeat this process K

times and average the results to obtain (Equation 6)

GEST(j, r) =
1

K

K
∑

k=1

L
(k)(s∗j,r) (6)

where here L
(k)(s∗j,r) is the argmin of Equation (1) over the

train-set, for the rth target. Finally, we compare the optimal

splitting choice when treating all targets simultaneously, GE∗MT =

minj GEMT(j) and treating each target independently, GE∗ST =
∑d

r=1 minj GEST(j, r). Algorithm 1 summarizes our proposed

cross-validated splitting criterion. We continue the tree training

process with the approach that yields the lower estimated

generalization error. Specifically. if MT obtains a better result

we proceed with a single shared split and repeat the process

above for each of its child nodes. On the other hand, if ST

is chosen we seek the optimal split for each of the d targets

and proceed with a standard CART tree for each of the

child nodes. We perform a no-regret tree-growing process, as

previously described.

Input: {xi, yi}
m
i=1 a set of observations in a given node.

1: GE∗ST ← 0.

2: for all r = 1 to d do

3: GE∗ST ← minj∈{1,...,p} GEST (j, r)+ GE∗ST.

4: end for

5: GE∗MT ← minj∈{1,...,p} GEMT (j).

6: return min(GE∗MT ,GE
∗
ST ).

Algorithm 1. Comparing MT and ST.

Cross-validation is a widely used approach for estimating the

generalization capabilities of a predictive model. Specifically, in

K-fold CV, the original sample is randomly partitioned into K

equal-sized sub-samples. This allows all available information to

be incorporated into the model training process, ensuring that

no unique information is overlooked in the validation set. K-

fold CV requires a choice of K, but it is unclear which value

should be used. With ten-fold CV, the prediction error estimate

is almost unbiased (Simon, 2007), so K = 10 is a reasonable

off-the-shelf choice. Hence, we use the above throughout

our experiments.

Finally, we need to consider a stopping criterion. For simplicity,

we apply the popular CART grow-then-prune methodology.

This approach involves initially growing a large tree and

subsequently pruning it to achieve its favorable size through cross-

validation. A pseudo-code of our proposed method is provided

in Algorithm 2.

Although we focus our attention to regression trees, our

proposed method can be easily applied to classification problems.

Specifically, the only modification required is to replace the squared

error with the Gini index (Equation 2). In fact, the Gini index is

closely related to the squared error if we utilize with 0 − 1 coding

for the classes (Painsky and Rosset, 2016).

3.3 Computational complexity

Having discussed the main components of our proposed

framework, we turn to its computational complexity. In regression

problems, CART first sorts the n observation pairs according to

their feature values and determines a cut that minimizes the loss on

both sides of the cut. By scanning along this list, O(n) operations

are required, resulting in an overall complexity of O(n · log(n))

due to sorting. As previously noted, seeking a single shared split
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Input: {xi, yi}
m
i=1 a set of observations in a given node.

1: Start at the root node.

2: Apply Algorithm 1 to find a split and use it to

split the node into two child nodes.

3: if a stopping criterion is reached then

4: Exit.

5: else

6: if Splitting on multiple targets (GE∗MT < GE∗ST)

is chosen in Step 2 then

7: Apply steps 2-11 to each child node.

8: else

9: Proceed with standard CART for each child

node while treating each target independently.

10: end if

11: end if

12: Prune the tree with a CART pruning routine.

Algorithm 2. Our proposed method.

only extends the loss function, leading to the same complexity.

On the other hand, seeking d separate splits requires d times

CART complexity. Therefore, the overall computational load of

our proposed method is O(k · d · n′ · log(n′)), where n′ is the

size of the train-set, n′ = (k − 1)n/k. For classification, the only

adjustment required is the replacement of the loss criterion. Hence,

the computational complexity remains unaltered.

4 Experiments

Let us now demonstrate our proposed method in a series of

synthetic and real worlds experiments.

4.1 Synthetic experiments

We begin with an illustration of our proposed method

in a series of synthetic experiments. In the first experiment

we draw 600 observations from two features and d targets,
{

xi1, xi2, yi1, . . . yid
}n

i=1
. We define Xij ∼ U(−10, 10) and rth target

depends on the two features X1,X2 as follows.

Yr =























ǫr , if X1 > αr and X2 > αr

1+ ǫr , if X1 > αr and X2 < αr

2+ ǫr , if X1 < αr and X2 > αr

3+ ǫr , if X1 < αr and X2 < αr

where ǫr ∼ N(0, 1) i.i.d and αr is a predefined parameter. Note

that αr determines the dependence between the features and the

response variables. Further, notice that by choosing the αr ’s very

close to each other we get that the response variables are very

correlated. Hence, in our experiments, we also use αr as a parameter

that controls the strength of the interaction between the response

variables. The observations are split into 80% observations for the

train-set and 20% for the test-set. We train the studied scheme on

the train-set and evaluate the mean squared error (MSE) on the

FIGURE 3

Synthetic experiment with two features and two response variables

from the models are described in the text. The parameter α1 is set to

zero and di�erent values of α2 are evaluated.

FIGURE 4

Synthetic experiment with two features. The parameters αr are set to

zero.

test-set. We further evaluate the ST and MRT as basic benchmarks.

We repeat this process 500 times and report the averaged results.

First, we set d = 2 which corresponds to two response variables.

for Y1 we set α1 = 0 and for Y2 we consider different values

of α2. As mentioned above, small values of α2 correspond to a

greater correlation between the response variables. In this case,

we expect MRT to be preferable. As α2 increases, the response

variables become less related, so ST is the preferable choice. Figure 3

shows that our proposed method successfully tracks the preferred

approach in both cases. Specifically, for smaller α2 we obtain a

single tree with typically two levels, corresponding to the four

possible outputs of the response variables. As α2 increases we
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FIGURE 5

Synthetic experiment with two features. The parameters αr are

randomly drawn.

typically obtain two separate trees, where each tree corresponds

to the four (different) outputs of each target. Next, we examine

the effect of the number of response variables d. We set the

values of α’s to zero for each response variable, indicating that

the response variables are derived from the same model and

are strongly dependent. Figure 4 demonstrates the resulting MSE

as the number of response variables increases. The upper curve

corresponds the ST approach, which is agnostic to the number of

response variables and the underlying models. The lower curve

corresponds to the MRT approach, which demonstrates superior

performance as the number of response variables increases due

to their strong correlation. The middle curve is our proposed

method, which successfully tracks the preferredMRT approach and

enhances its accuracy as the number of response variables grows.

Once again, our proposed method typically outputs a single tree

with four output level, corresponding to α = 0 as desired.

In the third experiment, the αr ’s are arbitrarily chosen. This

means that the response variables are derived from different models

and there is an unknown dependence between them. Figure 5

summarizes the results we obtain. Here, MRT demonstrates a

reduction in performance as the number of response variables

increases. This decline can be explained by MRT attempting to

exploit non-existent dependencies. This adverse effect becomes

more pronounced as the number of response variables increased.

As in the previous experiment, the ST approach at the bottom is

agnostic to the number of response variables. However, it achieves

superior performance in this setup, as the responses are (more

likely) uncorrelated. Once again, our proposed method successfully

tracks the favorable approach.

4.2 Real world experiments

We now turn to a real-world comparative study. Here, we

not only demonstrate our approach in different setups but also

compare it to additional alternatives. In the following experiments,

we compare our proposed method with the standard ST and MRT

schemes as above. In addition, we evaluate a model selection

approach which utilizes CV to identify the best model among the

two (that is, chooses between ST andMRT).We denote this scheme

as ST/MRT. Furthermore, we implement RC/CC and SST/SBR (for

regression and classification problems, respectively), with CART

as a base model. See Section 2.1.1 for a detailed discussion. We

also compare our proposed method with clustering trees (Breskvar

et al., 2018) and deep tree-ensembles (DTE) (Nakano et al., 2022).

Specifically, we apply the ROS-based methods in Breskvar et al.

(2018) and the three deep forest schemes proposed by Nakano et al.

(2022), denoted as X TE, X OS and X TE OS. Additional tree-based

MTLmethods are omitted as they focus on different merits (Piccart

et al., 2008), or do not offer a publicly available implementation

(and are too complicated to implement and tune) (Suzuki et al.,

2001; Basgalupp et al., 2021). In addition, we increase the scope

of our study and consider a Gradient Boosting (GB) framework

(Friedman, 2001). That is, we implement a GB framework where

the sub-learners are either MT, ST, or our proposed method. As the

common practice, we implement GB with tree models and refrain

from complex sub-learners (such as SST/SBR and RC/CC).

MTL has been extensively studied over the years, with several

publicly available datasets. In the following, we briefly describe

them and summarize their main properties. All these datasets are

publicly available on openML2 and Kaggle.3 In the Scpf dataset,

we predict three targets that represent the number of views,

clicks, and comments that have been collected from US major

cities (Oakland, Richmond, New Haven, and Chicago). The dataset

includes seven features such as the number of days the issue

stayed online, the source of the issue (e.g., android, iPhone, remote

API), the issue type (e.g., graffiti, pothole, trash), geographical

coordinates of the issue, the city it was published from, and the

distance from the city center. All multi-valued nominal variables

were converted to binary, and rare binary variables (<1 of the

cases) were removed. The focus of the Concrete Slump dataset

(Yeh, 2007) is to predict the values of three concrete properties,

namely slump, flow, and compressive strength, based on the

composition of seven concrete ingredients, which include cement,

fly ash, blast furnace slag, water, superplasticizer, coarse aggregate,

and fine aggregate. The Jura dataset (Goovaerts, 1997) comprises

measurements of seven heavy metals (cadmium, cobalt, chromium,

copper, nickel, lead, and zinc) taken from locations in the topsoil

of the Swiss Jura region. Each location’s type of land use (Forest,

Pasture, Meadow, Tillage) and rock type (Argovian, Kimmeridgian,

Sequanian, Portlandian, Quaternary) were also recorded. The study

focuses on predicting the concentration of three more expensive-

to-measure metals (primary variables) using cheaper-to-sample

metals (secondary variables). The response variables are cadmium,

copper, and lead, while the remaining metals, land use type, rock

type, and location coordinates serve as predictive features. Overall

we utilize 1,515 features for prediction. Finally, the E-Commerce

dataset comprises transaction records spanning the period from

March to August 2018. The dataset contains several features,

2 https://www.openml.org/

3 https://www.kaggle.com/
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including the customer’s ID, the category name, and the grand total,

which represents the amount of money spent on each transaction.

Prior to analysis, we preprocessed these features to create a new

dataset, where each column represents a specific category and

each row corresponds to a specific customer and the amount of

spending on each category. We focus on “Mobiles & Tablets”

and “Beauty & Grooming” as response variables. Consequently,

the remaining 1,414 categories are treated as features in our

analysis. Moreover, we analyze only those customers who hadmade

purchases in a minimum of nine categories, to avoid the issue of

sparse data. Furthermore, we examine our proposed method for

classification. Specifically, we convert SCPF and E-Commerce to

two-class classification problems by comparing their target values

with their medians. In addition to the above, we study several

benchmark datasets which are popular in the MTL literature. Their

detailed descriptions are provided in Melki et al. (2017); Breskvar

et al. (2018); Nakano et al. (2022), for brevity.

To evaluate the performance of the suggested method, we use

MSE for regression and 0− 1 loss for classification (Painsky, 2023).

For GB we utilize 50 trees and limit their complexity by defining

the minimum number of observations in the trees’ terminal nodes

to be 0.05 · n. To ensure that our results are robust and are not

influenced by the particular random partitioning of the data we

apply standard ten-fold CV. It is important to emphasize that for

each dataset, different targets may have a different scale. This leads

to bias toward large scale targets. To overcome this difficulty, we

normalize the targets accordingly.

Tables 1, 2 summarize the results we achieve for a single tree

and an ensemble of models, respectively. For each experiment we

report the averaged merit and its corresponding standard deviation

in parenthesis. For each dataset, we mark (with a bold font) the

method that achieves the best averaged performance. As we can

see, our proposed method demonstrates superior accuracy for a

single tree, while the difference is less evident with ensembles. This

highlights the well-known advantage of using ensemble methods

over a single tree, as they can mitigate the limitations of a

single tree. Nevertheless, we also observe an evident improvement

in the ensemble setup. To validate the statistical significance

of our results, we apply a standard sign test (Demšar, 2006)

between our proposed method and each of the alternatives.

Specifically, we count the number of datasets in which our proposed

method defeats each alternative scheme. Then, we test the null

hypothesis that both methods perform equally well. We report the

corresponding p-values for each alternative method. For single tree

models we obtain p-values of 0.0014, 0.0195, 0.0058 when tested

against ST, MRT and ST/MRT, respectively. These results imply

that even with an appropriate multiplicity correction for three

hypotheses, our proposed method is favorable with a statistical

significance level of 0.0585. For ensemble models we obtain p-

values of 0.0005, 0.0005, 0.0195, 0.0058, 0.0058, 0.0058, 0.0541, and

0.0195 when tested against SST/SBR, RC/CC, X TE, X OS, X

TE OS, GB-ST, GB-MRT and GB-ST/MRT, respectively. Once

again, we observe relatively low p-values which emphasize the

validity of our results. Yet, these findings are less significant (after

appropriate multiplicity correction), due to the greater number

of alternative methods. In addition, we compare our proposed

method to Breskvar et al. (2018), who focused on the aRMMSE

measure (see Equation 5 in Breskvar et al., 2018). We repeat the

TABLE 1 Real-world data experiments non-ensembles.

Data ST MRT ST/MRT Our method

Slump 0.057

(0.076)

0.058

(0.076)

0.057

(0.077)

0.049

(0.075)

Jura 0.0146

(0.0042)

0.0154

(0.0045)

0.0146

(0.0044)

0.0142

(0.0038)

Scpf 0.00188

(0.0025)

0.00183

(0.0024)

0.00189

(0.0026)

0.00181

(0.0026)

E-commerce 0.00261

(0.0026)

0.00261

(0.0026)

0.00269

(0.0026)

0.00252

(0.0028)

Scpf

classification

0.0981

(0.065)

0.1191

(0.087)

0.0897

(0.04)

0.0979

(0.066)

E-commerce

classification

0.3528

(0.029)

0.3611

(0.025)

0.3539

(0.031)

0.3521

(0.027)

edm 0.0394

(0.0113)

0.0373

(0.0123)

0.0394

(0.0113)

0.00374

(0.0114)

sf1 0.0261

(0.0131)

0.0251

(0.0139)

0.0261

(0.0131)

0.0250

(0.0139)

sf2 0.00553

(0.00225)

0.00508

(0.00206)

0.00553

(0.00225)

0.00506

(0.00188)

wq 0.06098

(0.00361)

0.06088

(0.00365)

0.06088

(0.00361)

0.06155

(0.00343)

andro 0.0223

(0.02331)

0.0522

(0.02331)

0.0223

(0.02331)

0.0222

(0.02248)

osales 0.00552

(0.00163)

0.00551

(0.00208)

0.00552

(0.00163)

0.00550

(0.00137)

Friedman 0.0735

(0.00658)

0.0732

(0.00577)

0.0735

(0.00658)

0.0745

(0.0067)

Music

Origin

0.0389

(0.00539)

0.0381

(0.00384)

0.0389

(0.00539)

0.0380

(0.00450)

Polymer 0.0122

(0.01202)

0.166

(0.01871)

0.0122

(0.01202)

0.0155

(0.01565)

atp1d 0.0106

(0.00319)

0.01337

(0.00513)

0.01061

(0.00319)

0.00978

(0.00265)

atp7d 0.001197

(0.0075)

0.001397

(0.00799)

0.01197

(0.00798)

0.01157

(0.00848)

oes97 0.00481

(0.00243)

0.00435

(0.00268)

0.00481

(0.00243)

0.00474

(0.00256)

oes10 0.00272

(0.00170)

0.00412

(0.00377)

0.00412

(0.00365)

0.00267

(0.00177)

Bold values indicate the best performing method.

experiments above and evaluate the aRMMSE for the last four

datasets in Table 2, which were also studied in Breskvar et al. (2018).

Our proposed method outperforms (Breskvar et al., 2018) in all of

these datasets. To conclude, our results introduce favorable results

over the alternative schemes, where the advantage is more evident

in the more interpretable single tree setup.

Finally, we evaluate and compare the execution time of the

studied methods. Our proposed method takes ∼2-3 times more

to apply, on the average, then the traditional CART (that is,

without ensembles). The reason that the computational load

is less than a factor of ten (as one may expect from our

worst-case analysis in Section 3.3) is quite straightforward. Our

proposed method begins with a 10-fold CV in each level of the

tree. However, once we observe that independent trees become
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TABLE 2 Real-world data experiments—ensembles.

Data SST/
SBR

RC/CC X TE X OS X TE
OS

GB
ST

GB
MRT

GB
ST/MRT

GB our
method

Slump 0.051

(0.08)

0.057

(0.079)

0.0568

(0.02262)

0.0430

(0.0266)

0.0450

(0.0302)

0.043

(0.067)

0.042

(0.07)

0.043

(0.07)

0.038

(0.056)

Jura 0.0152

(0.044)

0.0152

(0.043)

0.0117

(0.00397)

0.0109

(0.00390)

0.0133

(0.00445)

0.0103

(0.003)

0.0108

(0.004)

0.0103

(0.033)

0.0105

(0.035)

Scpf 0.00179

(0.0026)

0.00189

(0.0026)

0.00151

(0.00026)

0.00168

(0.00103)

0.00161

(0.0009)

0.00169

(0.0016)

0.00168

(0.0014)

0.00168

(0.0014)

0.00167

(0.0017)

E-commerce 0.00272

(0.0029)

0.00269

(0.0026)

0.001724

(0.00017)

0.00173

(0.00016)

0.001683

(0.00016)

0.00181

(0.0026)

0.00181

(0.0026)

0.00181

(0.0026)

0.0018

(0.0025)

Scpf

classification

0.1116

(0.072)

0.0897

(0.04)

0.0831

(0.00297)

0.0910

(0.00231)

0.0796

(0.00247)

0.0814

(0.0163)

0.0768

(0.0179)

0.0815

(0.0163)

0.0777

(0.0187)

E-commerce

classification

0.3937

(0.049)

0.3539

(0.031)

0.335

(0.0018)

0.381

(0.00258)

0.0328

(0.00138)

0.3196

(0.0392)

0.322

(0.0394)

0.3196

(0.0392)

0.3132

(0.0393)

edm 0.0397

(0.0137)

0.0379

(0.0125)

0.0374

(0.0092)

0.0359

(0.0121)

0.0359

(0.0151)

0.0351

(0.0139)

0.0344

(0.132)

0.0351

(0.0139)

0.0321

(0.0134)

sf1 0.0259

(0.0131)

0.0261

(0.0134)

0.0291

(0.0089)

0.0283

(0.0017)

0.0318

(0.0091)

0.0265

(0.0141)

0.0261

(0.0141)

0.0265

(0.0143)

0.0245

(0.0135)

sf2 0.00547

(0.0022)

0.00564

(0.00236)

0.00503

(0.00189)

0.00498

(0.0021)

0.00504

(0.00203)

0.00503

(0.00178)

0.00503

(0.00183)

0.00503

(0.00178)

0.00495

(0.00188)

wq 0.06116

(0.00374)

0.06174

(0.00397)

0.05539

(0.00282)

0.05903

(0.00375)

0.05909

(0.00341)

0.5569

(0.00249)

0.05448

(0.00248)

0.05569

(0.00249)

0.05434

(0.00262)

andro 0.0185

(0.02545)

0.0256

(0.03037)

0.0285

(0.02869)

0.0207

(0.02082)

0.0200

(0.02140)

0.0172

(0.02577)

0.0089

(0.01116)

0.0172

(0.02577)

0.0129

(0.01861)

osales 0.00556

(0.00182)

0.00607

(0.00241)

0.00492

(0.00132)

0.00494

(0.00131)

0.00494

(0.00143)

0.00523

(0.00179)

0.00523

(0.00171)

0.00499

(0.00165)

0.00527

(0.00177)

Friedman 0.0733

(0.00663)

0.0737

(0.00616)

0.0729

(0.00567)

0.0907

(0.00787)

0.0981

(0.00714)

0.0774

(0.00658)

0.737

(0.00544)

0.0774

(0.00715)

0.0730

(0.00571)

Music Origin 0.0391

(0.00563)

0.0626

(0.00827)

0.0318

(0.00397)

0.0304

(0.00388)

0.0329

(0.00395)

0.0310

(0.00388)

0.0303

(0.00398)

0.0310

(0.00388)

0.0306

(0.00370)

Poly. 0.0107

(0.0114)

0.0137

(0.0153)

0.0169

(0.02561)

0.0161

(0.0221)

0.0152

(0.02291)

0.00781

(0.01187)

0.00873

(0.01267)

0.00781

(0.01187)

0.00857

(0.01366)

atp1d 0.01068

(0.00349)

0.00923

(0.00398)

0.0082

(0.0024)

0.00809

(0.00236)

0.00831

(0.00263)

0.00646

(0.00207)

0.00679

(0.00257)

0.00646

(0.00207)

0.00644

(0.00203)

atp7d 0.01279

(0.00783)

0.01279

(0.00753)

0.00765

(0.00614)

0.00796

(0.00514)

0.00812

(0.00613)

0.00742

(0.00595)

0.00737

(0.00531)

0.00742

(0.00595)

0.00762

(0.00614)

oes97 0.0044

(0.00183)

0.00474

(0.002202)

0.00396

(0.00145)

0.0042

(0.00141)

0.00386

(0.00097)

0.00387

(0.00255)

0.00395

(0.00255)

0.00377

(0.00237)

0.00376

(0.00255)

oes10 0.00274

(0.00160)

0.00286

(0.00173)

0.00207

(0.00109)

0.00221

(0.00100)

0.00215

(0.00109)

0.00258

(0.00226)

0.00269

(0.00229)

0.00244

(0.00213)

0.00258

(0.00227)

Bold values indicate the best performing method.

favorable (in terms of expected generalization error), we continue

the tree construction with traditional CART (see Step 9 of

Algorithm 2).

5 Conclusions

In this work we propose a novel tree-based model for MTL.

Our suggested framework utilizes the advantages of ST and MRT

as we introduce a hybrid scheme of joint and separate splits.

By adopting a CV framework for selecting the best approach at

each node, we minimize the (estimated) generalization error to

avoid overfitting and improve out-of-sample performance. We

demonstrate our suggested approach in synthetic and real world

experiments, showing preferable merits over alternatives.

Our work emphasizes the importance of carefully considering

the trade-offs between joint and separate modeling when designing

MTL methods. By identifying the strengths and weaknesses of

both approaches and combining them in an innovative way, we

achieve results that surpass those of both decision tree and gradient

boosting methods. These findings have important implications for

the development of more robust and versatile machine learning

algorithms. Our method offers a promising solution to the

challenge of MTL. It provides an effective approach to optimize
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performance while maintaining interpretability, critical factors for

practical applications.
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