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Background and purpose: We proposed an artificial neural network model 
to predict radiobiological parameters for the head and neck squamous cell 
carcinoma patients treated with radiation therapy. The model uses the tumor 
specification, demographics, and radiation dose distribution to predict the 
tumor control probability and the normal tissue complications probability. 
These indices are crucial for the assessment and clinical management of cancer 
patients during treatment planning.

Methods: Two publicly available datasets of 31 and 215 head and neck squamous 
cell carcinoma patients treated with conformal radiation therapy were selected. 
The demographics, tumor specifications, and radiation therapy treatment 
parameters were extracted from the datasets used as inputs for the training of 
perceptron. Radiobiological indices are calculated by open-source software 
using dosevolume histograms from radiation therapy treatment plans. Those 
indices were used as output in the training of a single-layer neural network. The 
distribution of data used for training, validation, and testing purposes was 70, 15, 
and 15%, respectively.

Results: The best performance of the neural network was noted at epoch number 
32 with the mean squared error of 0.0465. The accuracy of the prediction of 
radiobiological indices by the artificial neural network in training, validation, and 
test phases were determined to be 0.89, 0.87, and 0.82, respectively. We also 
found that the percentage volume of parotid inside the planning target volume 
is the significant parameter for the prediction of normal tissue complications 
probability.

Conclusion: We believe that the model has significant potential to predict 
radiobiological indices and help clinicians in treatment plan evaluation and 
treatment management of head and neck squamous cell carcinoma patients.
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1 Introduction

Head and neck squamous cell carcinoma (HNSCC) is becoming 
a significant global health concern, with an estimated 30% increase in 
incidence rates by 2030 as per Global Cancer Observatory 
(GLOBOCAN) data, anticipating it to become a major global burden 
in time (Johnson et al., 2020). Radiation therapy (RT) is one of the 
modalities used for the management of HNSCC cases, often combined 
with surgery or chemotherapy making it an important modality in the 
treatment of HNSCC (Kawashita et  al., 2020). The success of RT 
treatment relies on various factors, including the tumor’s stage, grade, 
treatment time, nutrition status, and treatment volume, as well as 
considerations such as tumor hypoxia (Huang and O’Sullivan, 2017). 
Additionally, the role of biological and radiological markers is evolving 
with clinical prognostic factors that play a crucial role in influencing 
treatment success (Konings et al., 2020; Peng et al., 2021).

In oncology, treatment outcomes revolve around two key factors: 
survival and toxicity. Survival assesses the effectiveness of 
interventions, measuring overall and progression-free durations 
(Abola et  al., 2014). Simultaneously, managing and mitigating 
treatment-related toxicity is vital for the patient’s well-being and 
quality of life (Hunter et al., 2013).

The process of radiotherapy involves several crucial steps, with the 
planning stage serving as a pivotal checkpoint. During this phase, 
meticulous consideration is given to optimizing the delivery of 
radiation, ensuring maximum efficacy in targeting the tumor while 
minimizing potential harm to surrounding healthy tissues (Gardner 
et al., 2019). This planning step plays a foundational role in shaping 
the overall success and precision of radiotherapy treatment. The basic 
principle of planning is optimizing dose delivery to maximize the dose 
to the planning target volume (PTV) while minimizing harm to 
nearby tissues and organs at risk (OAR). Insufficient tumor coverage 
in radiotherapy can compromise treatment effectiveness, while overly 
reducing side effects may result in inadequate tumor treatment. 
Striking the right balance between optimal tumor control and 
minimizing side effects is crucial in the planning and implementation 
of radiotherapy. This delicate equilibrium is a key consideration for 
clinicians to ensure successful outcomes. This emphasizes the need for 
a nuanced approach to balancing the benefits and potential risks 
associated with radiotherapy (Pereira et al., 2014).

Like other treatment modalities, RT does come with known 
specific side effects (Dilalla et al., 2020). Despite leaps of advancements 
in radiation therapy and its standards, managing OAR toxicity 
remains a big frontier. Accurate risk estimation is crucial. For this 
purpose, integrating radiobiological indices like Tumor Control 
Probability (TCP) and Normal Tissue Complication Probability 
(NTCP) into treatment planning can quantify the response to 
irradiation, facilitating informed decision-making. The preference for 
one over the other creates a seesaw effect, leading to a trade-off where 
the loss of one aspect results in the gain of another (Yorke, 2023). 
Although precautionary measures are taken during both the planning 
and delivery stages, it is challenging to completely avoid toxicity to 
OAR. Dose-volume histograms (DVHs) conventionally describe 
3D-dose distribution but have limitations. Integrating radiobiological 
indices with DVH, such as TCP and NTCP, provides a more 
comprehensive evaluation of treatment plans. Presently, the 
calculation methodologies for Tumor Control Probability (TCP) and 
Normal Tissue Complication Probability (NTCP) in radiation therapy 
heavily depend on radiobiological models. Specifically, the 

poison-based model estimates TCP for a given radiation dose, and the 
Lyman-Kutcher-Burman (LKB) model utilizes Dose-Volume 
Histogram (DVH) data to assess the likelihood of normal tissue 
complications (Warkentin et al., 2004). However, these models exhibit 
limitations as they oversimplify the intricate biological processes 
involved, overlooking factors such as tumor heterogeneity, organ- or 
tissue-specific mechanisms, and patient characteristics. To address 
these shortcomings, ongoing research direction is toward enhancing 
these models by integrating uncertainties, thereby promoting more 
nuanced clinical judgment in the context of treatment planning 
(Bufacchi et al., 2020).

In recent years, advancements in prediction outcomes have been 
notable, marked by the emergence of data-driven models (Isaksson 
et al., 2020). These models integrate dose-volume metrics, advanced 
bioinformatics tools, and disease- or patient-based prognostic factors. 
Several publications underscore the efficacy of these prediction 
models, demonstrating medium to good accuracy in forecasting 
clinical outcomes for head-and-neck cancer (Parmar et  al., 2015; 
Giraud et  al., 2019; Mahmood et  al., 2021). These outcomes also 
encompass HNSCC high-grade RT toxicity including xerostomia, 
sticky saliva, radiation-induced trismus, and sensorineural hearing 
loss (Thor et al., 2021; Araújo et al., 2023). Concurrently, ongoing 
research aims to refine traditional radiobiological models by 
incorporating uncertainties for improved clinical judgment in 
treatment planning, addressing the complexity of biological processes 
and patient-specific factors (Gronberg et al., 2023).

The emergence of the machine learning in healthcare for making 
informed decisions, leading to effective patient management. The 
artificial neural network (ANN) showed significant progress in areas 
of outcome prediction, risk quantification personalized treatments, 
and diagnosis accuracy for both chronic and infectious diseases 
(Muhammad et al., 2019; Shafiq et al., 2022; Ataei et al., 2023). This 
also motivated us to utilize ANN in the current study.

This study aims to develop ANN for the prediction of 
radiobiological indices in HNSCC. The primary objective is to 
empower treatment planners with patient-specific information on 
TCP and NTCP, facilitating a more informed approach to prioritizing 
PTV and OAR during the treatment planning and evaluation stages. 
The proposed methodology involves utilizing an artificial neural 
network, a type of machine learning model, trained on a carefully 
curated dataset encompassing dose-volume metrics, patient-specific 
factors, and outcomes. ANN will be designed to predict radiobiological 
indices, particularly TCP and NTCP. Rigorous validation of the 
dataset will ensure the robustness of the model. The development of 
ANN for predicting radiobiological indices holds the potential to 
revolutionize HNSCC treatment planning. By providing treatment 
planners with patient-specific information, this approach aims to 
enhance the overall quality, efficacy, and outcome of radiation therapy, 
ultimately contributing to improved patient care and management.

2 Materials and methods

2.1 Data sets

Set I: The computed tomography (CT) images of 215 HNSCC 
patients were acquired from the publicly available repository “The 
Cancer Imaging Archive” (TCIA) (Clark et al., 2013). Patients were 
treated with curative intent RT from 2003 to 2013 at the University of 
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Texas MD Anderson Cancer Center (Grossberg et  al., 2018). The 
dataset comprises de-identified DICOM images, RT structures, 
planning parameters, DVH, and dose deposition data. The collection 
also consists of patient demographics, tumor grade, and stage, risk 
factors, recurrence, and survival information.

Set II: The dataset consists of CT scans of 31 HNSCC patients. 
Three CT scans were acquired for each patient throughout the 
treatment course. These include treatment planning, mid-treatment, 
or interim and post-treatment (i.e., follow-up) scans. Patients were 
treated with volumetric arc therapy (VMAT) at the Department of 
Radiation Oncology, the University of Miami Miller School of 
Medicine from 2011 to 2017 (Bejarano et  al., 2019). Along with 
DICOM images, patient demographics, tumor histology, outcomes, 
RT structures, DVH, and planning parameters were available for 
public download at TCIA.

2.2 Methodology

The process begins with the acquisition of imaging datasets from 
TCIA, followed by the upload to the treatment planning system for 
verification and pre-processing. Both parotid OARs and PTV were 
selected for DVH data extraction from the treatment planning system 
and then processed toward a spreadsheet for the calculation of 
radiobiological indices. Patient particulars along with radiobiological 
indices were used for the training of the neural network (Figure 1).

2.3 Data acquisition

TCIA is the repository for clinical and imaging data. It hosts 
various data collections of cancer, and non-cancer patients, and 

phantom studies. We selected two different sets of HNSCC patients 
which have RT structures, RT dose, and DVH information along with 
imaging and patient demographics. An open-source software “NBIA 
Data Retriever V8.0” was used to download both sets containing 
DICOM files and spreadsheets of clinical information for all 
the patients.

2.4 Pre-processing

In Eclipse™ (treatment planning system) V 15.1, the anonymized 
DICOM files of both sets were uploaded with new IDs, i.e., HN001, 
and HN002. The CT images of the planning scan, RT structures, and 
RT dose files were imported to generate a dummy plan for each 
patient. These plans were evaluated for dose distribution in PTV and 
OARs. Verification and constancy of downloaded patient data were 
also ensured with these plans. Patients excluded from further 
processing were shown in a flow chart (Figure  2). Derived OAR 
structures were also contoured to extract dose parameters. These 
parameters along with others were used as input parameters for 
ANN. The last step in the pre-processing stage is the export of DVH 
of PTV, OAR, and derived structures in tabular format for the 
calculation of indices.

2.5 Radiobiological indices

RADBIOMOD® (V. beta 0.3) is a spreadsheet-based software tool 
for the calculation of radiobiological indices and evaluation of RT 
treatment plans (Chang et al., 2016). It offers multiple radiobiological 
models for the calculation of TCP and NTCP. We used the Gay & 
Niemierko (Gay and Niemierko, 2007) model for the calculation of 

FIGURE 1

The methodology and basic components utilized for the development of ANN.
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both TCP and NTCP of PTV and parotids, respectively. Gay & 
Niemierko’s model utilizes the equivalent uniform dose (EUD) 
mechanistic formulation based on the linear–quadratic cell survival 
model (Webb and Nahum, 1993). To supplement ANN, we also used 
the Poisson model (Jackson et al., 1995) and (Zaider and Minerbo, 
2000) for the calculation of TCP and the Lyman–Kutcher–Burman 
model (Lyman, 1985) for NTCPs. The calculation begins with the 
import of Tabular DVH from each dummy plan in Eclipse to the 
RADBIOMOD. Dose fractionation, total dose, treatment duration, 
and α/β ratios, i.e., The proportional contribution of single and 
double-strand breaks to cell death, were also used as input for the 
calculation of TCP and NTCP. Then computed radiobiological indices 
for each patient were routed toward training of an artificial 
neural network.

2.6 Artificial neural network architecture

A feed-forward neural network with back-propagation training 
was designed using a machine learning toolbox in Matlab® V.2022a. 
Under the umbrella of Neural Network Fitting, the network consists 
of three layers, i.e., input, hidden, and output layer (Figure 3).

Initially, there were 10 neurons in a hidden layer which were 
modified as needed during the training stage. Scaled Conjugate 
Gradient (SCG) was selected as a training function. SCG is a fully 
automated and fast supervised learning algorithm (Møller, 1993). 
The SCG algorithm updates the weights W of the neural network 
(Eq. 1).

 W W f Wk k k k+ = − ∇ ( )1 α  (1)

Where Wk+1 is the weight matrix of the neural network at iteration 
k and αkis step size, which can be adaptively adjusted during the 
optimization process. The gradient f Wk( ) is typically computed using 
backpropagation, which efficiently calculates the gradient of the error 
function with respect to each weight in the network. The distribution 
of training, validation, and testing cohorts are 75, 15, and 15%, 
respectively. For progress monitoring and validation checks, the 
maximum number of training epochs used as stopping criteria as per 
mean squared error (MSE) is defined as follows (Eq. 2).
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Where xi is the input value, yi represents the predicted value and 
N is the total number of datasets. Error histograms and regression 
plots were used to determine the error distribution and accuracy of 
ANN at different stages.

2.6.1 Predictors
The input cohort used for the machine learning process was a 

combination of all eligible patients from Set-I and Set-II, i.e., N = 200. 
There were 28 patient-specific input variables majorly comprised of 
demographics, tumor stage, and site, RT-dose, and treatment planning 
parameters. Subclasses of predictors include the type of concurrent 
chemotherapy drug administered with RT, radiation dose indices to 
target and OAR, percentage volumes of parotids lying inside the 
target, and patients’ weight loss after RT.

2.6.2 Outcomes
The output layer consists of TCP values calculated via Poisson, 

Zaider-Minerbo, and EUD methods. NTCP calculated for both 
parotids by Lyman-Kutcher-Burman and EUD methods were also 
included in the output layer.

3 Results

ANN training begins without the hardware acceleration of the 
personal computer and it performs efficiently. The training and 
validation performance evaluated by MSE vs. no. of the epochs plot 
(Figure 4A). The plot shows a gradual decrease in MSE values versus 
the number of epochs. The progressive decline in MSE values 
represents the good accuracy of training and test data. Further, it 
shows the adjustment of the right weight after every epoch. The MSE 
reduces around 15 times during the training duration and after 
reaching the saturation the training stops at epoch number 38. It took 
1.06 s to complete the training. The best validation performance was 
noted at epoch number 32 with an MSE value of 0.0465.

An error histogram was plotted to determine the distribution 
of errors between the predicted and target values at different 

FIGURE 2

The inclusion/exclusion flow chart of patient datasets.
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instances (Figure 4B). The histogram was also used as a measure of 
the prediction performance of ANN. Error-values were distributed 
in 20 bins and placed in columns. The error range for the model lies 
between −0.9961 and 0.9462. More than 75% of the data points 
from training, validation, and testing lie in the error range of 
−0.076 to 0.1258. After the validation checks, the prediction 
capacity of the model was accessed with 15% of the test cases 
(Figure  5). Linear regression plots between target and output 
showed for training, validation, and testing stages, represented by 
blue, green, and red lines, respectively. Each plot is supported by a 
line fit equation between the predicted and target values where the 
target is the independent variable and the output is a dependent 
variable. The proportionality between target and output is the 
coefficient of a target for which the value on the stage of training is 
0.79 and 0.81, 0.71 for the validation and testing stages, respectively. 
The constants at the end of equations were errors or residuals and 
its incorporation scaled the target to make better predictions in 
output. The error values were 0.098, 0.1, and 0.14 for the training, 
validation, and testing stages. These equations highlight the 
performance of ANN. The regression coefficient (R) represents the 
accuracy of the model. At the final stage, the value of R found for 
all stages together was 0.877 and 0.89, 0.87, 0.82, respectively, for 
the training, validation, and testing stages.

4 Discussion

For the prediction of radiobiological indices, datasets were chosen 
with few special considerations for the development of ANN. (1) The 
patients were treated with similar conformal RT techniques and 
narrow integral and per fraction dose variations. (2) Both or ipsilateral 
parotid must be nearby or involved with the PTV. (3) DVH must 
be available for both parotids and PTV. The above principles help 
maintain consistency among input variables and result in smooth 
progression during the training stage.

The particular significance given to parotid glands as an OAR in 
this study of HNSCC patients is because even partial sparing of these 
glands will have a positive effect on patients’ quality of life (QOL) 
(Deasy et al., 2010). Our ANN model showed the capacity to predict 
NTCPs for parotid glands and TCPs for target structure. This tool will 
equip clinicians to make informed decisions with patient-specific 
information to adapt and modify OAR and PTV structures, which 
may result in better QOL for patients.

The inclusion of patient data from different institutions strengthens 
the model and incorporates the inter-variability of treatment planning 
and contouring practices among the institutes. It also enables the 
model to adapt further data sets from different regions and origins to 
enhance the learning and prediction process. Additionally, the 

FIGURE 3

The architecture of feed-forward ANN.
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architecture of ANN was designed in a way that makes it susceptible to 
adding more OARs from HNSCC patients.

The data sets used for training and validation were of 
conventional fractionation, ranging from 2 to 2.12 Gy. This limits 
the prediction of indices for hypofractionation plans. The 
non-availability of comprehensive data on the radiobiological 
effects of higher doses on OARs was one of the limiting factors. 
However, a substantial portion of HNSCC patients in developing 
and developed countries are still treated with conventional 
fractions, which highlights the significance of this 
prediction model.

Radiobiological indices were calculated from different models to 
complement the network with the latest available organ-specific 
radiobiological parameters for HNSCC RT. It enables the prediction 
model for current and upcoming HNSCC datasets to be tested and 
comprehended. In contrast to open source available calculators like 
RADBIOMOD and RBMODELV1 (Patel et al., 2022) which utilize 
tabular DVH values for the calculation of TCP and NTCP, the 
proposed ANN model predicts the radiobiological indices by 
incorporating significant parameters like tumor specifications, RT 
parameters, DVH and patient demographics. This makes the current 
model a more comprehensive predictor of TCP and NTCP.

FIGURE 4

The performance plot (A) for ANN and error histogram (B) between predicted and target values.
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The ANN-driven prediction model with its primary application 
to assist treatment planners and radiation oncologists with TCP and 
NTCP values, would potentially minimize the see-saw effect between 
coverage of PTV and sparing of parotids during RT treatment 
planning of HNSCC. This could empower radiation oncologists to 
optimize the margins of PTV near parotids in conjunction with their 
TCP and NTCP values. Another edge it could provide in adaptive RT 
by incorporating previous and current treatment plan parameters into 
the model and producing TCP and NTCP for insight.

For future work, the incorporation of more HNSCC OARs such 
as the spinal cord, cochlea, and optical structures from current 
datasets is in process. We are also seeking larger datasets with variable 
dose fascinations to scale up the performance of the current model.

5 Conclusion

In conclusion, our study has successfully developed ANN with a 
high prediction accuracy (R  = 0.82) for radiobiological indices, 
offering a valuable tool for HNSCC treatment planning. The observed 
correlation between parotid volume within the PTV and increased 
NTCP underscores the importance of minimizing PTV margins to 
reduce post-irradiation complications. Furthermore, our research 
expanded predictive factors to include demographics, tumor 

characteristics, treatment parameters, and additional variables such as 
concurrent chemotherapy, radiation dose indices, and post-RT weight 
loss. These enhancements, combined with DVH, TCP, and NTCP 
models, contribute to the development of personalized and more 
accurate tools for toxicity prediction, advancing the goal of optimizing 
cancer care for HNSCC patients.
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