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Convolutional Neural Networks (CNNs) are frequently and successfully used

in medical prediction tasks. They are often used in combination with transfer

learning, leading to improved performance when training data for the task

are scarce. The resulting models are highly complex and typically do not

provide any insight into their predictive mechanisms, motivating the field of

“explainable” artificial intelligence (XAI). However, previous studies have rarely

quantitatively evaluated the “explanation performance” of XAI methods against

ground-truth data, and transfer learning and its influence on objective measures

of explanation performance has not been investigated. Here, we propose a

benchmark dataset that allows for quantifying explanation performance in a

realistic magnetic resonance imaging (MRI) classification task. We employ this

benchmark to understand the influence of transfer learning on the quality of

explanations. Experimental results show that popular XAI methods applied to the

same underlyingmodel di�er vastly in performance, even when considering only

correctly classified examples. We further observe that explanation performance

strongly depends on the task used for pre-training and the number of CNN

layers pre-trained. These results hold after correcting for a substantial correlation

between explanation and classification performance.

KEYWORDS

XAI, explainability, interpretability, pre-training, MRI, benchmark, dataset, classification

1 Introduction

Following AlexNet’s (Krizhevsky et al., 2012) victory in the ImageNet competition,

CNNs developed to become the deep neural network (DNN) architecture of choice for any

image-based prediction tasks. Apart from their ingenious design, the success of CNNs was

made possible by ever-growing supplies of data and computational resources. However,

sufficient labeled data to train complex CNNs are not widely available for every prediction

task. This is especially true for medical imaging data, which is cumbersome to acquire

and underlies strict data protection regulations. To address this bottleneck, Transfer

Learning (TL) techniques are frequently employed (Ardalan and Subbian, 2022). In the

context of DNNs, TL strategies often consist of two steps. First, a surrogate model is

trained on a different prediction tasks, for which ample training data are available. This

is called pre-training. And, second, the resulting model is adapted to the prediction task of
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interest, where only parts of the model’s parameters are updated

(Pan and Yang, 2010). This is called re-training or fine-tuning and

requires smaller amounts of labeled data than training a network

from scratch, leading to a less computationally expensive process.

TL is, therefore, frequently employed for prediction tasks in

medical imaging, where it is believed that TL techniques improves

the generalization by identifying common features between the two

tasks (Valverde et al., 2021). Cheng and Malhi (2017) use a DNN,

trained with the ImageNet dataset (Deng et al., 2009), to classify

ultrasound images into eleven categories, achieving better results

than human radiologists. Another example is the reconstruction

of Magnetic Resonance Imaging (MRI) data with models trained

on an image corpus that was augmented with ImageNet data

(Dar et al., 2020). The resulting model outperformed conventional

reconstruction techniques. However, it also has been argued

(Shirokikh et al., 2020) that the use of pre-trained models may not

be adequate for the medical field. The main argument being that

structures in medical images are very different from those observed

in natural images. Hence, feature representations learned during

pre-training may not be useful for solving clinical tasks.

Despite the success of DNN models, their intrinsic structure

makes them hard to interpret. This challenges their real-world

applicability in high-stake fields such as medicine. Although

many practices in medicine are still not purely evidence-based,

the risk posed by faulty algorithms is exponentially higher than

that of doctor–patient interactions (Topol, 2019). Thus, it has

been recognized that the working principles of complex learning

algorithms need to be made transparent if such algorithms are

to be used on critical human data. The General Data Protection

Regulation of the European Union (GDPR, Article 15), for

example, states that patients have the right to receive meaningful

information about how decisions are achieved based on their data,

including decisionsmade based on artificial intelligence algorithms,

such as DNNs (European Commission, 2018).

The field of “explainable artificial intelligence” (XAI) arose to

address this need. A popular class of XAI methods seek to deliver

so-called local post-hoc explanations, which are derived from a

trained model’s output on a test input. These methods can be

either specific to a particular architecture or type of ML model or

model-agnostic, where explanations can be produced for a large

variety of model architectures. The outcome of such methods is

often a so-called heat map, which assigns an “importance” score

to each input feature. However, despite the popularity of XAI

methods, their theoretical underpinnings are far from established.

Most importantly, there is no agreed upon definition of what

explainability means or what XAI methods are supposed to deliver

(Zucco et al., 2018). Consequently, little quantitative empirical

validation of XAI methods exists (Das and Rad, 2020). This limits

the utility of XAI methods for quality control purposes in critical

domains such as medicine.

To date, most quantitative evaluations of XAI methods focus

on secondary quality aspects such as robustness or uncertainty of

explanations but spare out the fundamental issue of explanation

correctness. To define a notion of correctness, it is necessary

to devise working definitions of what constitutes a desirable

explanation for a given input datum. Such a definition would allow

one to measure the explanation performance of XAI methods using

objective metrics. Synthetic data whose data-generating process is

known by construction provide such a ground truth.

In this work, we focus on the problem of classifying MR images

of the human brain. We devise synthetic ground-truth data for

this problem, thereby addressing the current lack of validation

of model explanations in this context. Precisely, we overlay real

MR images with artificial lesions of two different types, where the

type of lesion defines class membership. Lesions are realistically

designed to resemble white matter hyperintensities (WMH), which

are important biomarkers of the aging brain and aging-related

neurodegenerative disorders (Wharton et al., 2015; d’Arbeloff et al.,

2019). As the positions of the class-discriminative lesions are fully

known by construction this provide a ground-truth for model

explanations. We provide an open code and data framework for

generating MRI slices with different types of lesions and respective

ground-truths.1

In the second part of this work, we show the benchmark’s utility

by investigating both classification and explanation performance

as a function of model pre-training. Concretely, we benchmark

common XAI methods against each other and compare the

explanation performance of models pre-trained using either

within-domain data (using different MRI classification tasks) or

out-of-domain data (using natural images from the ImageNet

classification challenge, Deng et al., 2009) as well as models that

have been retrained on the task of interest to varying degrees.

2 Related work

A number of recent works in the field of XAI have moved

toward objective validation of XAI approaches using synthetic

data. Kim et al. (2018) propose to validate XAI via surrogate

ground-truth information employing so called concept activation

vectors (TCAV), which are accessible with synthetic data. Yang

and Kim (2019) propose a notion of relative feature importance

to develop a metric to quantitively assess methods such as

TCAV. Known data generating processes are also increasingly

being utilized to provide ground-truth information for model

explanations (Ismail et al., 2019, 2020; Tjoa and Guan, 2020).

An evaluation strategy for XAI methods proposed by Agarwal

et al. (2022) leverages a scheme to generate synthetic data, where

each class is represented by a unique spatial cluster in feature

space, prompting options for quantitative evaluations. Utilizing

a Visual Question-Answering (VQA) task, Arras et al. (2022)

introduce a framework, based on synthetic data, to quantify an

explanation’s quality for a distinctive object of an image. Further,

Hofmann et al. (2022) used XAI methods to find structural

changes of the aging brain, which allowed the authors to identify

white matter lesions associated to the aging brain and forms

of dementia. They applied layerwise relevance propagation (LRP,

Bach et al., 2015) and compared the resulting heat maps with

white matter lesion maps. Cherti and Jitsev (2021) analyzed the

effect of pre-training on model transfer in medical imaging but

did not investigate aspects of explainability. Finally, our own

1 Please find all code here: https://github.com/Marta54/Pretrain_XAI_gt,

and all benchmark data here: https://www.doi.org/10.17605/OSF.IO/XNWAJ.
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FIGURE 1

Example of images of the dataset created. The top row consists of axial MRI slices from the Human Connectome Project (HCP, Van Essen et al., 2013)

healthy brain dataset, with artificial lesions added. The bottom row consists of the top row images, but with the position of the regular lesion

contoured in blue and the irregular lesions contoured in red, forming the ground-truth for an explanation.

work has highlighted common misinterpretations of XAI methods.

Using counterexamples and analytical derivations, Haufe et al.

(2014) and Wilming et al. (2023) demonstrated that many popular

XAI methods systematically attribute importance to so-called

supressor variables (Conger, 1974; Friedman and Wall, 2005),

which are beneficial to the model’s performance due to statistical

correlations with other, informative features, but are themselves

statistically unrelated to the predicted target variable. This

undesirable effect was shown to be present even for linear models

often assumed to be “intrinsically interpretable” (Rudin, 2019),

and is incentivized by current algorithmic operationalizations
of explanation correctness such as faithfulness (Bach et al.,

2015). We further devised low-dimensional benchmarks to study

this effect and compare different model architectures and XAI

methods using a theoretically well-founded data-driven definition

of explanation correctness (Wilming et al., 2022; Clark et al.,

2023). Wilming et al. (2022), for example, introduce a synthetic

data generation process explicitly defining discriminative and class-

agnostic features such as suppressor variables. However, as these
works are based on low-dimensional mathematical toy problems,

the emergence of suppressor variables in realistic medical use

cases such as MRI classification, and their potential influence

on explanation performance in such a context, has not been

studied. The present work aims to fill this gap by providing

a relatively realistic clinical MR image generation scheme that

induces, to a certain extent, the emergence of suppressor variables.

Our work thereby provides a more challenging setting than

comparable studies involving ground-truth data in medical and

non-medical contexts.

3 Methods

3.1 Data generation

To generate the data used for this analysis, we use 2-

dimensional T1-weighted axial MRI slices from 1007 healthy

adults aged between 22 and 37 years, sourced from the Human

Connectome Project (HCP, Van Essen et al., 2013 see also

Supplementary Section 1). The MRI data consists of 3D MRI slices

pre-processed with the FSL (Jenkinson et al., 2012) and FreeSurfer

(Fischl, 2012) tools as described in Jenkinson et al. (2002) and

Glasser et al. (2013) and defaced as reported in Milchenko and

Marcus (2013). These slices provide the background on which a

random number of artificial “lesions” are overlaid. Regular and

irregular lesions are generated and added to the slices. Each slice

contains only one type of lesions. This defines a binary classification

problem, which we solve using CNNs. The lesions are added so that

the dataset created is balanced.

For this study, we keep only slices with <55% black pixels.

These images are 260× 311 pixels in size. To obtain square images,

they are padded vertically with zeros and cropped horizontally. The

final size of the slices result in background images B ∈ R
270×270,

where we keep the intensity values Bij ∈ [0, 0.7] for i, j = 1, . . . , 270.

Artificial lesions are created from a 256×256 pixel noise image,

to which a Gaussian filter with a radius of 2 pixels is applied. The

Otsu method (Otsu, 1979) is used to binarize the smoothed image.

After the application of the morphological operations erosion and

opening, a second erosion is applied to create more irregular

shapes (see Supplementary Section 3). Since these shapes occur less
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FIGURE 2

Example of the lesion creation process. (A) Depicts an original axial MRI slice from the Human Connectome Project and denoted as background

image B. (B) Showcases an example lesion mask L composed of several lesions. (C) Represents ground-truth explanations used for the XAI

performance study.

frequently than regular shapes, these determine the number of

different noise images necessary to create a given number of lesions.

From the images obtained after the application of the

morphological operations, the connected components (contiguous

groups of non-zero intensity pixels fully surrounded by zero

intensity pixels) are identified, which serve as lesion candidates.

Further, lesions are selected based on the compactness of their

shape. Here, it is sufficient to consider the isoperimetric inequality

on a plane A ≤ p2/4π , where A ∈ R is the area of a particular

lesion shape and p ∈ R its perimeter. The compactness is obtained

by comparing the shape of the lesion candidate to a circle with the

same perimeter. The larger the compactness, the rounder the shape.

Here, regular lesions are required to have a compactness above 0.8

and irregular lesions have a compactness below 0.4. After selecting

the lesions, they are padded with a 2-pixel margin, and a Gaussian

filter with a radius of 0.75 pixels is applied to smooth the lesion

boundaries. Examples of obtained lesions are displayed in Figure 1.

Three to five lesions of the same type (regular or irregular)

are composed in one image L ∈ R
270×270 in random locations

within the brain, without overlapping and pixel-wise multiplied

with the background MRI B (see Figure 2). For the lesions we

consider the intensity values Lij ∈ [0,w], where i, j correspond

to pixels representing lesions. The parameter w is a constant that

controls the SNR. Higher w values lead to whiter lesions and higher

SNR, leading to easier classification and explanation tasks. In this

study, we set w = 0.5. Note also, that this setup may lead to the

emergence of so-called suppressor variables. These would be pixels

of the background outside any lesion, which could still provide a

model with information on how to remove background content

from lesion areas in order to improve the model’s predictions.

Suppressor variables have been shown to be often misinterpreted

for important class-dependent features by XAI methods (Haufe

et al., 2014; Wilming et al., 2022, 2023).

In parallel to the generation of the actual synthetic MR images,

the same lesions are added to a black image to create ground-truth

masks. We summarize the ground-truth explanations via the set

Flesions := {i, j ∈ [270] | Lij 6= 1 or Lij 6= 0} , (1)

where [270] := {1, . . . , 270}. The ground-truth explanation

Equation 1 is different for each image and an example of Flesions

represented as an image can be seen in Figure 2C.

Out of the 1,006 subjects in the HCP dataset, 60% were used to

create the training dataset, 20% to create the validation dataset, and

another 20% to create the holdout dataset, corresponding to 24,924,

8,319, and 8,319 slices, respectively.

3.2 Pre-training

We apply the XAI methods to the VGG-16 (Simonyan

and Zisserman, 2014) architecture, included in the Torchvision

package, version 0.12.0+cu102. Two models are pre-trained using

two different corpora, and serve as starting points for our study.

The first model is pre-trained using the ImageNet dataset (Deng

et al., 2009) (out-of-domain pre-training). The weights used are

included in the same version of Torchvision. The second model is

pre-trained using MRI slices extracted from the HCP as described

before but without artificial lesions (within-domain pre-training).

Here, the task is to classify slices according to whether they were

acquired from female or male subjects. To train the latter model,

24, 924 slices are used, 46% of which belong to male subjects and

54% to female subjects. These slices are arranged into batches of 32

data points. The model is trained using stochastic gradient decent

(SGD) with a learning rate (LR) of 0.02 and momentum of 0.5. The

learning rate is reduced by 10% every 5 epochs. Cross-entropy is

used as the loss function.

3.3 Fine-tuning

After pre-training, the models are fine-tuned layer-wise on

the lesion-classification problem, with images chosen from the

holdout dataset, which we split into train/validation/test again (see

Supplementary Section 4). Each degree of fine-tuning includes the

convolutional layers between two consecutive max-pooling layers.

Thus, the five degrees of fine-tuning are: 1conv (fine-tuning up to

the first max-pooling layer), 2conv (fine-tuning up to the second
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max-pooling layer), and so on, up to all (fine-tuning of all VGG-16

layers). Weights in layers that are not to be fine-tuned are frozen.

SGD and Cross-entropy loss with the same parameters as used

for the pre-training are employed in this phase. However, several

different LRs are used.

3.4 XAI methods

We apply XAI methods from the Captum library (version

0.5.0). These methods have been proposed to provide

“explanations” of the models’ output in the form of a heat

map s ∈ R
270×270, assigning an “importance” score to each input

feature of an example. We use the default settings from Captum

for all XAI methods. Wherever a baseline—a reference point to

begin the computation of the explanation—is needed, an all-zeros

image is used. This is done for Integrated Gradients, DeepLift, and

GradientSHAP. The absolute value of the obtained importance

score or heat map constitutes the basis for our visualizations and

quantitative explanation analyses. For visualization purposes, we

further transformed the intensity of the importance scores by

− log(1 − sij(1 − 1/b))/ log(b), where log is the natural logarithm

and b = 0.5. The XAI methods used were Integrated Gradients

(Sundararajan et al., 2017), Gradient SHAP (Lundberg and Lee,

2017), LRP (Bach et al., 2015)s, DeepLIFT (Shrikumar et al.,

2017), Saliency (Simonyan et al., 2013), Deconvolution (Zeiler and

Fergus, 2014), and Guided Backpropagation (Springenberg et al.,

2015).

3.5 Explanation performance

Our definition of quantitative explanation performance is

the precision to which the generated importance or heat maps

resemble the ground-truth, i.e., the location of the lesions (cf.

Figure 2). It would be expected that the best explanation would

only highlight the pixels of the ground-truth, since those are

the ones that are relevant to the classification task at hand. We

determine the explanation performance by finding the n most

intense pixels Topn(s) of the heat map s, where n(s) := |Flesions|

is the number of pixels in the ground-truth of each image. Then we

calculate the number of these pixels that were in the ground-truth

(true positives). The precision or explanation performance EP is

obtained by calculating the ratio between the true positives and all

positives (the number of pixels in the ground-truth)

EP :=
|Topn(s) ∩ Flesions|

|Flesions|
. (2)

3.6 Baselines

The performance of each explanation is then compared

to several baseline methods, which act as “null models” for

explanation performance. These baselines are models that are

initialized randomly and not trained (randommodel) and two edge

detection methods, the Laplace and Sobel filters.

4 Experiments

Showcasing the proposed dataset’s utility, we fine-tune two

VGG-16 models that have been previously pre-trained with the

two corpora (ImageNet and MRI), to five different degrees. For

each degree of fine-tuning, we fine-tuned 15 models with different

seeds. Then we select the three best-performing models, where

performance is measured on test data in terms of accuracy. We

further analyze the model explanation performance of common

XAI methods with respect to the ground-truth explanations in

the form of lesion maps provided by our dataset. A reference to

the Python code to reproduce our experiments is provided in the

Supplementary Section 2.

5 Results

All models, except the least fine-tuned ones (1conv), reached

accuracies above 90%. The models pre-trained with ImageNet

achieved higher accuracy than the ones pre-trained with

MR images.

5.1 Qualitative analysis of explanations

Figure 3 displays importance heat maps for a test sample with

four irregular lesions. These explanations are obtained by eight XAI

methods for five degrees of fine-tuning. Plots are divided into two

sections reflecting the two corpora used for pre-training (ImageNet

and MRI female vs. male). The white contours in each heat map

represent the ground-truth of the explanation. A good explanation

should give high attribution to regions inside the white contour

and low everywhere else. In this respect, most of the explanations

appear to perform well, identifying most of the lesions, especially

for high degrees of fine-tuning. However, the explanations generally

do not highlight all of the lesions in the ground-truth. This image

also shows that, for some XAI methods, the explanation may

deteriorate for an intermediate degree of fine-tuning, and then

improve again. This can be seen especially in the results of the

model pre-trained with ImageNet data. Heat maps of the untrained

baseline model are shown in Supplementary Section 6.

When comparing the “explanations” obtained from models

pre-trained on ImageNet data with the ones from models pre-

trained onMRI data, the latter seems to contain less contamination

from the structural features of the MRI background, especially for

Deconvolution andGuided Backpropagation.We can further argue

that some models seem to do a better job identifying the lesions

than others. Particularly noisy explanations are obtained with

Deconvolution, especially for models pre-trained with ImageNet

data. In this case, pixels with higher importance attribution seem to

form a regular grid, roughly covering the shape of the brain of the

underlying MRI slice. For models pre-trained on the MRI corpus,

Deconvolution is able to place higher importance within the lesions

for higher degrees of fine-tuning.
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FIGURE 3

Examples of heat maps representing importance scores attributed to individual inputs by popular XAI methods for several degrees of fine-tuning of

the VGG-16 architecture. The models were selected to achieve maximal test validation accuracy. Each row corresponds to an XAI method, whereas

each column corresponds to a di�erent degree of fine-tuning from 1 convolution block (1conv) to the entire network (all). The image is divided into

two vertical blocks, where importance maps obtained from models pre-trained with ImageNet data are depicted on the left, and importance maps

obtained from models pre-trained with MR images are depicted on the right.

5.2 Quantitative analysis of explanation
performance

Figure 4 shows quantitative explanation performance

Equation 2. Here, each boxplot was derived from the intersection

of test images that were correctly classified by all models

(N = 2,371). The results obtained for the edge filter baseline

as well as the random baseline model are derived from the

same 2,371 images. Note that the edge detection filters only

depend on the given image and are independent of models

and XAI methods. Thus, identical results are presented for

edge filters in each subfigure. The lines in the background

correspond to the average classification performance (test

accuracy) of the five models for each degree of fine-tuning.

The random baseline model is only one and has a test accuracy

of 50%. Interestingly, models pre-trained with ImageNet

data consistently achieved higher classification performance

than models pre-trained with MR images. The classification

performance of the models pre-trained with MR images

peaks at an intermediate degree of fine-tuning (3conv), while

the models pre-trained with ImageNet improve with higher

fine-tuning degrees.

In some settings, ImageNet pre-training leads to considerably

worse explanation performance. This is the case for specific

methods such as Deconvolution and, to some extent, Guided

Backpropagation. Moreover, ImageNet pre-training leads to worse

explanations across all XAI methods for lower degrees of fine-

tuning (1conv and 2conv), where large parts of the models are

prohibited to depart from the internal representations learned on

the ImageNet data.
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FIGURE 4

Quantitative explanation performance for XAI methods applied to the five best models, with di�erent degrees of fine-tuning. The blue line and

boxplots correspond, respectively, to the classification performance (accuracy) and explanation performance (precision) derived from models

pre-trained with MRI data, whereas the pink line and boxlots correspond analogously to classification and explanation performance for models

pre-trained with ImageNet data. The other three boxplots correspond to the performance of baseline heat maps. Yellow and orange color

correspond to the Sobel and Laplace filters, respectively, and red color to the model with random weights.

As a function of the amount of fine-tuning, explanation

performance generally increases with higher degrees of fine-tuning.

However, depending on the XAI method used, and the corpus used

for pre-training, this trend plateaus or even slightly reverses at a

high degree of fine-tuning (4conv).

Importantly, explanation performance appears to strongly

correlate with the classification performance of the underlying

model. As classification accuracy could represent a potential

confound to our analysis, we repeated our quantitative analysis

of explanation performance based on five models with similar

classification performance per pre-training corpus and degree

of fine-tuning. Here, it is apparent that, when controlling for

classification performance, models pre-trained on MRI data

consistently outperform equally well-predicting models that were

pre-trained on ImageNet data in terms of explanation performance.

These results are presented in Supplementary Section 7.

6 Discussion

The field of XAI has produced a plethora of methods whose

goal it is to “explain” predictions performed by deep learning and

other complex models, including CNNs. However, quantitative

evaluations of these methods based on ground-truth data are

scarce. Even if these methods are based on seemingly intuitive

principles, XAI can only serve its purpose if it is itself properly

validated, which is so far not often done. The present study was

designed to create a benchmark within which explanation quality

can be objectively quantified. To this end, we designed a well-

defined ground-truth dataset for model explanations, where we

modeled artificial data to resemble the important clinical use case of

structural MR image classification for the diagnosis of brain lesions.

With this benchmark dataset, we propose a framework to evaluate

the influence of pre-training on explanation performance.

We observed a correlation between classification accuracy and

explanation performance, which could be expected since a more

accurate model is likely to more successfully focus on relevant

input features. Networks trained on ImageNet data may have

learned representations for objects occurring only outside the

domain of brain images (e.g., cats and dogs). The existence of

such representations in the network seems to negatively affect

XAI methods, whose importance maps are in parts derived by

propagating network activations backwards through the network.

Consistent with this remark is the observation that for lower

degrees of fine-tuning (1conv and 2conv), the explanation quality

of models pre-trained with ImageNet data is worse compared to

models pre-trained with MR images. These findings challenge the

popular view that the low-level information captured by the first

layers of a CNN can be shared across domains.

Our quantitative analysis suggests a large dispersion of

explanation performance for all XAI methods, which may be

unexpected given the controlled setting in which these methods
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have been applied here. Individual explanations can range from

very good to very poor even for high overall classification accuracy,

indicating a high risk of misinterpretation for a considerable

fraction of inputs.

6.1 Limitations

Note, our analysis of XAI methods is limited to one DNN

architecture, VGG-16, mainly showcasing the utility of our devised

ground-truth dataset for model explanations.We stress, that, rather

than conducting an exhaustive study of the behavior of popular

XAI methods in relation to specific model architectures, with our

work, we aim to predominantly contribute to the evaluation of

XAI methods by providing a controlled ground-truth dataset, with

known explanations, class-related features, enabling future research

to benchmark new XAI methods.

We emphasize that we purposely refrain from expert annotated

data as it does not constitute a stable ground-truth, and that

full knowledge about the underlying ground-truth is needed to

validate methods, a purpose that is only served be synthetically

crafted data. In the medical domain, ML methods are often used

with the expectation that they will uncover statistical relations

that are either unknown or too complex (e.g., involving non-

linear interactions of features) for human experts to discern.

When experts annotate data, they may inadvertently overlook these

features, potentially leading to false-positive detections if an XAI

method indeed succeeds in highlighting them. Conversely, human

experts may provide annotations that are simply incorrect. They

can be influenced by pseudo-correlations in the data resulting

from limited sample size in prior studies, or mistakenly base

their judgement on confounders or even suppressors. In such

instances, a correctly functioning XAI method may be mistakenly

accused of delivering false-negative detections. Note in this context

that clinical doctrines are highly fluctuating as new evidence

is constantly being produced. For example, the assumed causal

role of beta-amyloid and tau protein plaques in the brain for

various types of dementia is currently being challenged. To address

these challenges and strive toward real-world validity, experiments

involving annotated real data are valuable and complementary

next steps. However, they cannot entirely replace ground-truth

experiments involving synthetic or manipulated real data due

to their intrinsic biases. And generating realistic artificial and

controllable image data for the MRI domain is, in itself, a very

hard problem.

Furthermore, the proposed lesion generation process resembles

the idea of white matter hyperintensities where we aim to

approximate specific neurodegenerative disorders from a “model

perspective”, where a natural prediction task would be “healthy”

vs. “lesioned brain”. But it would be difficult to define a

ground-truth for the class “healthy”. Hence, we chose to create

a classification problem based on two different shapes of

lesions: round vs. elongated. Admittedly, this distinction has

no immediate physiological basis and serves purely the purpose

of this benchmark, i.e., we can solve a classification task well

enough by using a model architecture considered popular in

this field. However, we provide a classification scenario where

the background, real brain slice images, provides features that

are partially leveraged by ML models, which put XAI methods

in the position to differentiate between class-related features,

artificial lesions, and realistic brain-related features. Where we

think that this distinction constitutes a realistic environment for

XAImethods. In this light, our dataset can be seen as a first instance

of contributing to the performance quantification of explanations

produced by XAI methods for the MRI domain.

We argue that the quantitative validation of the correctness

of XAI methods is still a greatly under-investigated topic

given how popular some of the methods have become.

Major efforts both on the theoretical and empirical side are

needed to create a framework within which evidence for the

correctness of such methods can be provided. As a first step

toward such a goal, meaningful definitions of what actually

constitutes a correct explanation need to be devised. While in

our study, ground-truth explanations were defined through

a data generation process, other definitions, depending on

the intended use of the XAI, are conceivable. The existence

of such definitions would then pave the way for a theoretical

analysis of XAI methods as well as for use-case-dependent

empirical validations.

7 Conclusion

In this work we created a versatile synthetic image dataset

that allows us to quantitatively study the classification and

explanation performances of CNN and similar complex ML

methods in a highly controlled yet realistic setting, resembling

a clinical diagnosis/anomaly detection task based on medical

imaging data. Concretely, we overlaid structural brain MRI

data with synthetic lesions representing clinically relevant white

matter hyperintensities. We propose this dataset, to evaluate the

explanations obtained from pre-trained models. Our study is

set apart from the majority of work on XAI in that it uses a

well-defined ground-truth for explanations, which allows us to

quantitatively evaluate the “explanation” performance of several

XAI methods.

Our study revealed a strong correlation between the

classification performance of the model and the explanation

performance of the XAI methods. Despite this correlation, models

fine-tuned to a greater extent were shown to lead to better

explanations. Controlling for classification performance, models

pre-trained on MRI data lead to better explanations for every

XAI method. The explanation performance of models pre-trained

on within-domain images seem to have more stable explanation

performance for a bigger range of classification accuracies. On

the other hand, the explanation performance of models pre-

trained with more general images quickly degrades with lower

classification performance.

The quantitative analysis of the explanations also shows

a concerning variability of explanation performance values,

suggesting that, when these methods are used to explain an

individual prediction, a large uncertainty is associated with the

correctness of the resulting importance map. This is a critical issue

when using XAI methods to “explain” predictions in high-stake

fields such as medicine.

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1330919
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Oliveira et al. 10.3389/frai.2024.1330919

Data availability statement

The original contributions presented in the study are included

in the article/Supplementary material, further inquiries can be

directed to the corresponding author.

Ethics statement

Ethical approval was not required for the study involving

humans in accordance with the local legislation and institutional

requirements.Written informed consent to participate in this study

was not required from the participants or the participants’ legal

guardians/next of kin in accordance with the national legislation

and the institutional requirements. Written informed consent

was obtained from the individual(s) for the publication of any

potentially identifiable images or data included in this article.

Author contributions

MO: Writing – original draft, Data curation, Investigation,

Visualization. RW: Writing – review & editing, Supervision,

Validation. BC: Writing – review & editing, Supervision,

Validation. CB: Writing – review & editing, Investigation.

FE: Writing – review & editing, Supervision. KR: Writing

– review & editing, Supervision. SH: Writing – review &

editing, Conceptualization, Funding acquisition, Methodology,

Supervision, Writing – original draft.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This result

is part of a project that has received funding from the European

Research Council (ERC) under the European Union’s Horizon

2020 research and innovation programme (Grant Agreement No.

758985), the German Federal Ministry for Economy and Climate

Action (BMWK) in the frame of the QI-Digital Initiative, and the

Heidenhain Foundation.

Conflict of interest

The authors declare that the research was conducted

in the absence of any commercial or financial relationships

that could be construed as a potential conflict

of interest.

The author(s) declared that they were an editorial board

member of Frontiers, at the time of submission. This had no impact

on the peer review process and the final decision.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.3389/frai.2024.

1330919/full#supplementary-material

References

Agarwal, C., Saxena, E., Krishna, S., Pawelczyk,M., Johnson, N., Puri, I., et al. (2022).
Openxai: towards a transparent evaluation of model explanations. arXiv [preprint].
doi: 10.48550/arXiv.2206.11104

Ardalan, Z., and Subbian, V. (2022). Transfer learning approaches for neuroimaging
analysis: a scoping review. Front. Artif. Intell. 5:780405. doi: 10.3389/frai.2022.780405

Arras, L., Osman, A., and Samek, W. (2022). Clevr-xai: a benchmark dataset for
the ground truth evaluation of neural network explanations. Inf. Fus. 81, 14–40.
doi: 10.1016/j.inffus.2021.11.008

Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.-R., and Samek, W.
(2015). On pixel-wise explanations for non-linear classifier decisions by layer-wise
relevance propagation. PLoS ONE 10, 1–46. doi: 10.1371/journal.pone.0130140

Cheng, P. M., and Malhi, H. S. (2017). Transfer learning with convolutional neural
networks for classification of abdominal ultrasound images. J. Digit. Imaging 30,
234–243. doi: 10.1007/s10278-016-9929-2

Cherti, M., and Jitsev, J. (2021). Effect of Pre-Training Scale on Intra- and Inter-
Domain Full and Few-Shot Transfer Learning for Natural and Medical X-Ray Chest
Images. Sydney, NSW: Medical Imaging Meets NeurIPS (MedNeurIPS), 1-6

Clark, B., Wilming, R., and Haufe, S. (2023). Xai-tris: non-linear
benchmarks to quantify ml explanation performance. arXiv [preprint].
doi: 10.48550/arXiv.2306.12816

Conger, A. J. (1974). A revised definition for suppressor variables: a guide
to their identification and interpretation. Educ. Psychol. Meas. 34, 35–46.
doi: 10.1177/001316447403400105

Dar, S. U. H., Özbey, M., Çatlı, A. B., and Çukur, T. (2020). A transfer-learning
approach for accelerated MRI using deep neural networks. Magn. Reson. Med. 84,
663–685. doi: 10.1002/mrm.28148

d’Arbeloff, T., Elliott, M. L., Knodt, A. R., Melzer, T. R., Keenan, R., Ireland, D., et al.
(2019). White matter hyperintensities are common in midlife and already associated
with cognitive decline. Brain Commun. 1:fcz041. doi: 10.1093/braincomms/fcz041

Das, A., and Rad, P. (2020). Opportunities and challenges in explainable artificial
intelligence (XAI): A survey. arXiv [Preprint].

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). “Imagenet: a
large-scale hierarchical image database,” in 2009 IEEE Conference on Computer Vision
and Pattern Recognition (IEEE), 248–255.

European Commission (2018). 2018 Reform of EU Data Protection Rules.

Fischl, B. (2012). FreeSurfer. Neuroimage 62, 774–781.
doi: 10.1016/j.neuroimage.2012.01.021

Friedman, L., and Wall, M. (2005). Graphical views of suppression
and multicollinearity in multiple linear regression. Am. Stat. 59, 127–136.
doi: 10.1198/000313005X41337

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1330919
https://www.frontiersin.org/articles/10.3389/frai.2024.1330919/full#supplementary-material
https://doi.org/10.48550/arXiv.2206.11104
https://doi.org/10.3389/frai.2022.780405
https://doi.org/10.1016/j.inffus.2021.11.008
https://doi.org/10.1371/journal.pone.0130140
https://doi.org/10.1007/s10278-016-9929-2
https://doi.org/10.48550/arXiv.2306.12816
https://doi.org/10.1177/001316447403400105
https://doi.org/10.1002/mrm.28148
https://doi.org/10.1093/braincomms/fcz041
https://doi.org/10.1016/j.neuroimage.2012.01.021
https://doi.org/10.1198/000313005X41337
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Oliveira et al. 10.3389/frai.2024.1330919

Glasser,M. F., Sotiropoulos, S. N.,Wilson, J. A., Coalson, T. S., Fischl, B., Andersson,
J. L., et al. (2013). The minimal preprocessing pipelines for the human connectome
project. Neuroimage 80, 105–124. doi: 10.1016/j.neuroimage.2013.04.127

Haufe, S., Meinecke, F., Görgen, K., Dähne, S., Haynes, J.-D., Blankertz, B., et al.
(2014). On the interpretation of weight vectors of linear models in multivariate
neuroimaging. Neuroimage 87, 96–110. doi: 10.1016/j.neuroimage.2013.10.067

Hofmann, S. M., Beyer, F., Lapuschkin, S., Goltermann, O., Loeffler, M., Müller, K.-
R., et al. (2022). Towards the interpretability of deep learning models for multi-modal
neuroimaging: finding structural changes of the ageing brain. Neuroimage 261:119504.
doi: 10.1016/j.neuroimage.2022.119504

Ismail, A. A., Gunady, M., Bravo, H. C., and Feizi, S. (2020). Benchmarking deep
learning interpretability in time series predictions. Adv. Neural. Inf. Process. Syst. 33,
6441–6452.

Ismail, A. A., Gunady, M., Pessoa, L., Bravo, H. C., and Feizi, S. (2019). Input-Cell
Attention Reduces Vanishing Saliency of Recurrent Neural Networks, 10814–10824.

Jenkinson, M., Bannister, P., Brady, M., and Smith, S. (2002). Improved
optimization for the robust and accurate linear registration and motion
correction of brain images. Neuroimage 17, 825–841. doi: 10.1006/nimg.2002.
1132

Jenkinson, M., Beckmann, C. F., Behrens, T. E., Woolrich, M. W., and Smith, S. M.
(2012). FSL. Neuroimage 62, 782–790. doi: 10.1016/j.neuroimage.2011.09.015

Kim, B., Wattenberg, M., Gilmer, J., Cai, C., Wexler, J., Viegas, F., et al.
(2018). “Interpretability beyond feature attribution: quantitative testing with concept
activation vectors (TCAV),” in International Conference on Machine Learning (PMLR),
2668–2677.

Krizhevsky, A., Sutskever, I., andHinton, G. E. (2012). “ImageNet classification with
deep convolutional neural networks,” in Advances in Neural Information Processing
Systems 25, eds F. Pereira, C. J. C. Burges, L. Bottou, and K. Q. Weinberger (Curran
Associates, Inc.), 1097–1105.

Lundberg, S. M., and Lee, S.-I. (2017). “A unified approach to interpreting model
predictions,” in Proceedings of the 31st International Conference on Neural Information
Processing Systems (Long Beach, CA), 4768–4777.

Milchenko, M., and Marcus, D. (2013). Obscuring surface anatomy in volumetric
imaging data. Neuroinformatics 11, 65–75. doi: 10.1007/s12021-012-9160-3

Otsu, N. (1979). A threshold selection method from gray-level histograms. IEEE
Trans. Syst. Man Cybern. 9, 62–66. doi: 10.1109/TSMC.1979.4310076

Pan, S. J., and Yang, Q. (2010). A survey on transfer learning. IEEE Trans. Knowl.
Data Eng. 22, 1345–1359. doi: 10.1109/TKDE.2009.191

Rudin, C. (2019). Stop explaining black box machine learning models for high
stakes decisions and use interpretable models instead. Nat. Mach. Intell. 1, 206–215.
doi: 10.1038/s42256-019-0048-x

Shirokikh, B., Zakazov, I., Chernyavskiy, A., Fedulova, I., and Belyaev, M. (2020).
“First U-Net layers contain more domain specific information than the last ones,” in
Domain Adaptation and Representation Transfer, and Distributed and Collaborative

Learning, eds S. Albarqouni, S. Bakas, K. Kamnitsas, M. J. Cardoso, B. Landman, W.
Li, et al. (Cham: Springer International Publishing), 117–126.

Shrikumar, A., Greenside, P., and Kundaje, A. (2017). “Learning important features
through propagating activation differences,” in International Conference on Machine
Learning (PMLR), 3145–3153.

Simonyan, K., Vedaldi, A., and Zisserman, A. (2013). Deep inside convolutional
networks: visualising image classification models and saliency maps. CoRR
abs/1312.6034.

Simonyan, K., and Zisserman, A. (2014). Very deep convolutional networks for
large-scale IMAGE recognition. arXiv [preprint]. doi: 10.48550/arXiv.1409.1556

Springenberg, J., Dosovitskiy, A., Brox, T., and Riedmiller, M. (2015). “Striving for
simplicity: the all convolutional net,” in ICLR (Workshop Track).

Sundararajan, M., Taly, A., and Yan, Q. (2017). “Axiomatic attribution for deep
networks,” in Proceedings of the 34th International Conference on Machine Learning,
Vol. 70, eds D. Precup, and Y. W. Teh (PMLR), 3319–3328.

Tjoa, E., andGuan, C. (2020). Quantifying explainability of saliencymethods in deep
neural networks with a synthetic dataset. IEEE Trans. Artif. Intell. 4, 858–870.

Topol, E. J. (2019). High-performance medicine: the convergence of human and
artificial intelligence. Nat. Med. 25, 44–56. doi: 10.1038/s41591-018-0300-7

Valverde, J. M., Imani, V., Abdollahzadeh, A., De Feo, R., Prakash, M., Ciszek,
R., et al. (2021). Transfer learning in magnetic resonance brain imaging: a systematic
review. J. Imaging 7:66. doi: 10.3390/jimaging7040066

Van Essen, D. C., Smith, S. M., Barch, D. M., Behrens, T. E., Yacoub, E., and Ugurbil,
K. (2013). The WU-Minn human connectome project: an overview. Neuroimage 80,
62–79. doi: 10.1016/j.neuroimage.2013.05.041

Wharton, S. B., Simpson, J. E., Brayne, C., and Ince, P. G. (2015). Age-associated
white matter lesions: the MRC cognitive function and ageing study. Brain Pathol. 25,
35–43. doi: 10.1111/bpa.12219

Wilming, R., Budding, C., Müller, K.-R., and Haufe, S. (2022). Scrutinizing XAI
using linear ground-truth data with suppressor variables.Mach. Learn. 111, 1903–1923.
doi: 10.1007/s10994-022-06167-y

Wilming, R., Kieslich, L., Clark, B., and Haufe, S. (2023). “Theoretical behavior
of xai methods in the presence of suppressor variables,” in Proceedings of the
40th International Conference on Machine Learning (ICML), Vol. 202 (PMLR),
37091–37107.

Yang, M., and Kim, B. (2019). Benchmarking attribution methods with relative
feature importance. arXiv [Preprint]. arXiv:1907.09701.

Zeiler, M. D., and Fergus, R. (2014). “Visualizing and understanding
convolutional networks,” in Computer Vision-ECCV 2014, eds D. Fleet, T.
Pajdla, B. Schiele, and T. Tuytelaars (Cham: Springer International Publishing),
818–833.

Zucco, C., Liang, H., Fatta, G. D., and Cannataro, M. (2018). “Explainable sentiment
analysis with applications in medicine,” in 2018 IEEE International Conference on
Bioinformatics and Biomedicine (BIBM), 1740–1747.

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1330919
https://doi.org/10.1016/j.neuroimage.2013.04.127
https://doi.org/10.1016/j.neuroimage.2013.10.067
https://doi.org/10.1016/j.neuroimage.2022.119504
https://doi.org/10.1006/nimg.2002.1132
https://doi.org/10.1016/j.neuroimage.2011.09.015
https://doi.org/10.1007/s12021-012-9160-3
https://doi.org/10.1109/TSMC.1979.4310076
https://doi.org/10.1109/TKDE.2009.191
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1038/s41591-018-0300-7
https://doi.org/10.3390/jimaging7040066
https://doi.org/10.1016/j.neuroimage.2013.05.041
https://doi.org/10.1111/bpa.12219
https://doi.org/10.1007/s10994-022-06167-y
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Benchmarking the influence of pre-training on explanation performance in MR image classification
	1 Introduction
	2 Related work
	3 Methods
	3.1 Data generation
	3.2 Pre-training
	3.3 Fine-tuning
	3.4 XAI methods
	3.5 Explanation performance
	3.6 Baselines

	4 Experiments
	5 Results
	5.1 Qualitative analysis of explanations
	5.2 Quantitative analysis of explanation performance

	6 Discussion
	6.1 Limitations

	7 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	Supplementary material
	References


