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Crying is an inevitable character trait that occurs throughout the growth of

infants, under conditions where the caregiver may have di�culty interpreting

the underlying cause of the cry. Crying can be treated as an audio signal that

carries a message about the infant’s state, such as discomfort, hunger, and

sickness. The primary infant caregiver requires traditional ways of understanding

these feelings. Failing to understand them correctly can cause severe problems.

Several methods attempt to solve this problem; however, proper audio feature

representation and classifiers are necessary for better results. This study uses

time-, frequency-, and time-frequency-domain feature representations to gain

in-depth information from the data. The time-domain features include zero-

crossing rate (ZCR) and root mean square (RMS), the frequency-domain feature

includes theMel-spectrogram, and the time-frequency-domain feature includes

Mel-frequency cepstral coe�cients (MFCCs). Moreover, time-series imaging

algorithms are applied to transform 20MFCC features into images using di�erent

algorithms: Gramian angular di�erence fields, Gramian angular summation

fields, Markov transition fields, recurrence plots, and RGB GAF. Then, these

features are provided to di�erent machine learning classifiers, such as decision

tree, random forest, K nearest neighbors, and bagging. The use of MFCCs, ZCR,

and RMS as features achieved high performance, outperforming state of the art

(SOTA). Optimal parameters are found via the grid search method using 10-

fold cross-validation. Our MFCC-based random forest (RF) classifier approach

achieved an accuracy of 96.39%, outperforming SOTA, the scalogram-based

shu	eNet classifier, which had an accuracy of 95.17%.

KEYWORDS

time-series classification, Mel-frequency cepstral coe�cient, spectrogram, machine

learning, audio processing, time-series imagining

1 Introduction

The motivation behind infant crying interpretation is to alleviate consequences that
arise from continuous crying, such as discomfort, hunger, and sickness. Consequences such
as disturbing crying, painful crying, and crying from sickness can also lead to serious health
issues. The best solution that can relieve caregivers or inexperienced parents from this
painful experience is being able to interpret the infant’s crying. Additionally, it is considered
helpful in detecting diseases such as hyperacusis, deafness, asphyxia, hypothyroidism,
hyperbilirubinemia, and cleft palate.

Understanding of infant crying and the detection of the underlying facts is a wide
research area in the signal processing and machine learning (ML) fields. Any infant cry
signal always needs a translator to determine the reasoning, and the primary solution has
been an interpretation made by someone who is always close to the infant. Although the
potential of humans to understand infant cries should not be underestimated, a well-built
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computer system is better in some activities such as image (Ho-
Phuoc, 2018) and audio classification (Zieliński et al., 2020).

According to Mukhopadhyay et al. (2013), the highest
probability that people will understand an infant cry signal
is 33.09%, whereas ML-based solutions can achieve 80.56%
recognition accuracy. In cry audio signals, some features are
not always present in healthy infants; however, they appear in
infants with disease and discomfort (Farsaie Alaie and Tadj, 2012).
Differentiating between cries is very challenging; for instance, the
difference between a sleepy cry and a sick cry can be difficult for
caregivers. Because of these reasons, a system that can solve this
problem efficiently needs to be developed (Zayed et al., 2023).

The contribution of this study is as follows:

• Introduction of feature extraction using MFCC and several
time-series imaging (TSI) methods, which have a higher
feature representation capability for this type of signal.

• Many ML classifier methods are trained on these extracted
features, and a comparison analysis is presented.

The novelty of this study is that the proposed method
successfully classifies five classes of infant crying, including hunger,
discomfort, belly pain, burping, and tiredness. The best results are
achieved with the MFCC-based ML model, with an accuracy of
96.39% with testing data, outperforming state of the art.

2 Related work

Several studies have been proposed to prevent
misunderstanding about infant crying, stress, and any serious
medical problems. According to Liu et al. (2019), cry audio
waveform and time-frequency analysis are conducted to extract
features such as MFCC and Bark frequency cepstral coefficients
(BFCCs). The final step of recognizing the infant cry is formulating
features with a vertical vector and obtaining sparse representation
using compressive sensing.

Deep learning (DL) and classical ML methods were
explored (Cohen et al., 2020). An image of the infant’s cry
was obtained with Mel-scale representation as input to the
convolutional neural network (CNN)-based model. A bidirectional
recurrent neural network (RNN) was used to account for
any temporal relationships between the input and output
sequences of the audio data. For the classical ML, certain
types of features were extracted, such as pitch-related, filter
bank, and cepstrum coefficients, and logistic regression (LR)
and support vector machine (SVM) were used as classifiers of
infant crying.

DL-based methods are used in biomedical fields to help
physicians understand the state of an infant. Lahmiri et al.
(2022) built a system to classify infants into two classes:
healthy and unhealthy. Cepstral features are extracted by
the inverse discrete Fourier transform (DFT) of the log of
DFT magnitude. These features are trained with CNN, deep
feed-forward neural networks (DFFNN), and long short-term
memory (LSTM).

In another study, a dataset of the expiration and inspiration
of infant cry audio signals was collected (Matikolaie and Tadj,
2022). A system was built to identify whether the infant was
sick or healthy. Next, features were extracted, including tilt,
rhythm, intensity, and MFCCs. Some criteria were imposed,
like considering the linguistic group of the infant’s parent
as the unborn infant learns those prosodic features in the
last 3 months of pregnancy. Finally, the performance was
evaluated by classification methods, such as SVM and decision
tree (DT).

Le et al. (2019) used spectrogram images of the infant cry audio
and trained them with several methods to detect abnormalities
that arise in the first few months of an infant’s life and could
cause a permanent critical problem if not treated at an early stage.
The methods used in this study were transfer learning, SVM, and
ensemble learning. The ensemble combining transfer learning and
SVM was more accurate than the individual ones.

Yao et al. (2022) proved that for a model to have high
generalization, it needs to be trained in diverse data. This was
cross-checked by building data with a controlled and uncontrolled
environment, and the former data resulted in higher recall but high
false positivity when testing was performed with data collected in a
real environment with noise and other factors.

To make the system perform better, Wu et al. (2019)
manually removed the data concerning silent recording, footstep
sounds, adult speech, and other noise types. An infant’s
crying signals have different acoustic and prosodic information
at different levels, involving vocalization, choking, coughing,
and silence.

Data augmentation solves data size limitations such as
noise variation, spectrogram, and signal size alternation
(Ji et al., 2021). A comparison of augmentation methods
was made by Fukuda et al. (2018), and for audio signal
recognition, voice transformation, and noise addition, this
comparison resulted in higher performance. On the other hand,
feature selection is applied to eliminate redundant features
that decrease the model’s ability to differentiate the infant
crying classification.

A fully automated segmentation algorithm implemented by
Abou-Abbas et al. (2017) extracted the cry sound components in
a noisy environment using the audible expiration and inspiration
methods. It is studied in statistical analysis and post-processing
ways based on intensity, ZCR, and feature extraction.

Yao et al. (2022) collected real-world datasets in a controlled
home environment. Multiple ML approaches were proposed
based on deep spectrum features (DSF) and acoustic features
(AF) and trained on the built and annotated dataset. According
to their studies, the model trained on the in-lab data showed
low performance when tested on the data collected in a real-
world environment. When tested on the RW-Filt dataset,
the CNN-based model achieved the best performance, with
a slight difference from their proposed model. Ji (2021)
combined generated weighted prosodic and acoustic features
to improve infant cry recognition. With this feature, a
graph convolutional network (GCN) approach with transfer
learning performed better than the CNN model in infant
cry classification.
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The study by Tusty et al. (2020) worked on classifying infants’
cries into five classes: hunger, discomfort, stomachache, burping,
and sleepiness. The model used is a combination of CNN and
RNN; the former is dedicated to extracting local features from the
spectrogram images, and the latter learns temporal features; at the
end, there is a linear layer to perform the classification.

Infant cry audio is known for its high frequency, which ranges
from 400 to 500Hz. Liang et al. (2022) emphasized that high-
frequency components with filters and stable features are obtained
by cutting the signal into smaller parts. Then, the hamming
window, Fast Fourier Transform (FFT), Mel filter, and, finally, the
discrete cosine transform (DCT) are applied to obtain the MFCC
signal. The final classification problem is solved by passing these
features to the Artificial neural network (ANN), CNN, and LSTM.

Sharma et al. (2019) extracted features from infant cry audio
in different forms, e.g., mean frequency, standard deviation, and
median frequency. Unsupervised approaches, such as k-means
clustering, hierarchical clustering, and the Gaussian mixture model
(GMM), were used to perform the classification. After testing
the methods with infant cry audio data, the GMM achieved the
highest accuracy.

Chunyan et al. (2021) introduced a graph convolutional
classification to take advantage of the potential of graph networks
in unlabeled datasets and the ability to describe data points in the
same class and different classes. From infant audio data, features are
extracted using transfer learning with ResNet50 as a base model,
and the semi-supervised and supervised graphs are constructed
with labeled training data and unlabeled testing data, respectively.
The researchers achieved a better result than the CNN model on
both the semi-supervised and supervised GCN.

Multi-class classification on infant cry data was performed by
Vincent et al. (2021) with pain, hunger, and sleepiness classes. The
audio signal was primarily converted to a spectrum image using
an STFT method. Automatic feature extraction was performed by
providing the image to the CNN. The extracted features were input
to the SVM classifier to obtain the final class. Different SVM kernels
were evaluated. The highest accuracy, 88.89%, was obtained from
the RBF-SVM.

Researchers conducted a study on classifying infant crying into
four categories: hunger, pain, tiredness, and diaper (Joshi et al.,
2022). They first preprocessed the signals and converted them
into Mel-spectrograms.

After that, they explored the possibility of using a CNN-
based DL approach with different architectures, like VGG16 and
Yolov4. The researchers also proposed a multi-stage heterogeneous
stacking ensemble model using four classifiers, each corresponding
to a different level. The researchers also proposed a multi-stage
heterogeneous stacking ensemble model using four classifiers,
each corresponding to a different level. Their motivation is
that the dataset is diverse and contains spectrograms of
various audio frames, hence a single classifier cannot perform
well. For the different levels, they used different model types
like SVM, MLP, NuSVC, RF, XGBoost, and AdaBoost, but
ultimately settled on NuSVC, RF, AdaBoost, and XGBoost
for the four levels in order. The researchers found their
proposed approach achieved an average accuracy of 92% and
an average F1 score of 0.923, which were significantly higher

than the CNN-based DL approach, which had an accuracy
of 75%.

Multimodal data were collected to investigate the correlation
between the newborn distress levels and neurological diseases
(Laguna et al., 2023). Various data sources, such as voice recordings,
electroencephalogram (EEG), near-infrared spectroscopy (NIRS),
facial expressions, and body movements, were utilized. The data
was recorded under three conditions: resting, crying, and distress.
Different filters and preprocessing techniques were applied based
on the data source. Experts validated all data. Finally, a total of
1,473 crying and 491 distressed crying samples were collected. Both
the ML and DL algorithms were used to classify distress vs. non-
distress. A CNN-based model achieved a higher accuracy of 93%,
outperforming the RF-based model, which had an accuracy of 89%.
Additionally, the importance of each feature was evaluated using
various algorithms, including ANOVA, Tukey–Kramer, Mann–
Whitney U-test, and Kruskal–Wallis. A correlation was found
between most of the extracted features from the signals, including
fundamental frequency, brain activity (delta, theta, and alpha
frequency bands), cerebral and body oxygenation, heart rate, facial
tension, and body rigidity. The study concluded that infant cries
could be a biomarker for detecting specific pathologies.

To classify infant cry audio signals into those that were normal
and abnormal, Hariharan et al. (2012) used time-frequency derived
features with short-time Fourier-transform (STFT) and general
regression neural network (GRNN) methods for the classification
task, which performed better than multi-layer perceptron (MLP)
and the time-delay neural network (TDNN).

3 Materials and methods

Our proposed methodology is illustrated in Figure 1. The
raw audio is processed in a predefined form, such as a 5-s
duration and frequency sampling rate of 22,050Hz. The features
are extracted from the resulting signal. Different features in time
(ZCR and RMS), frequency, and time-frequency domain (MFCC)
are extracted. Moreover, MFCC-based TSI is used to transform
MFCC into images.

3.1 Dataset

Multiple datasets exist for infant crying, such as the Chillanto
dataset (Reyes-Galaviz et al., 2008) and donate-a-cry-corpus.1

Infants in both datasets have five statuses. There is also another type
(Yao et al., 2022) that is collected in real life and includes noise and
adult speech.

In our work, a “donate a cry-corpus” dataset was used for model
training and validation as it was publicly available. The dataset
consists of 457 signals with five classes: hungry, burping, tired, belly
pain, and discomfort, as listed in Table 1.

1 https://github.com/gveres/donateacry-corpus
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FIGURE 1

Methodology block diagram.

TABLE 1 Dataset distribution between the classes.

Donate a
cry-corpus

Hungry Tired Burping Belly pain Discomfort Total

Original 382 24 8 16 27 457

Augmented data 382 384 384 384 405 1,939

FIGURE 2

Visualization of Mel-spectrograms of di�erent infant crying statuses.

3.2 Data preparation

The dataset used in this study is small and characterized
by a high imbalance between the classes; hence, we took
certain measurements to avoid misclassification and minimize
the variance-bias trade-offs that may occur due to this. Several
techniques can be used in this case, such as undersampling the class
with higher data and oversampling the class with the lowest data
points. In the current ML trend, mainly in DL, data augmentation
has proven to be more effective in image and audio data and is
widely used. Data augmentation in audio data has the importance
of improving the model’s performance by increasing the size of
the data and introducing different variants of a single data entity.
Gaussian noise was applied in our experiment with a minimum
and maximum amplitude of 0.01 and 0.015, respectively. As the
hungry class already has a larger sample size, the augmentation is
applied to the rest of the classes independently for each technique.
The outcome from data augmentation is listed in Table 1.

3.3 Feature extraction

Audio features can be extracted in the time-, frequency-, or
time-frequency domains. Time-domain features are extracted from
the raw audio. By contrast, the frequency-domain features are
extracted after converting the raw audio from the time domain

into the frequency domain using Fourier transform. In the time-
frequency domain, Fourier transform is applied to the time-
domain waveform. ZCR, amplitude envelope, and RMS energy are
examples of time domain features. Contrarily, spectrogram/Mel-
spectrogram, band energy ratio, spectral flux, and spectral
centroid are examples of frequency-domain features. MFCCs
and constant Q transforms are examples of time-frequency-
domain features. In our study, ZCR, RMS, Mel-spectrogram,
and MFCCs were used as features to classify the status of the
infants. Moreover, MFCC features were transformed into images
using TSI. The following sections introduce a brief description of
these features.

3.3.1 Time-domain features
In audio, ZCR refers to the number of times the audio

waveform crosses the zero axis per second. It measures the
frequency of changes in the polarity of the audio signal. A higher
ZCR indicates a more rapidly changing audio waveform, whereas a
lower ZCR indicates a more slowly changing waveform. In audio,
RMS refers to the measure of the average power of an audio signal.
It is calculated by taking the square root of the mean (average)
of the squared values of the audio signal. RMS is a more accurate
measure of the loudness or amplitude of an audio signal than peak
amplitude, as it considers the entire waveform rather than just the
highest point.
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FIGURE 3

Visualization of di�erent TSI algorithms. Columns represent the infant crying statuses: belly pain, burping, discomfort, hungry, and tired. (A) GADF. (B)

GASF. (C) MTF. (D) RP. (E) RGB GAF.

3.3.2 Time-frequency domain features
Before going further, a cepstrum represents the information

of the changing rate in spectral bands. Mathematically, it is the
spectrum of the log of the spectrum of the time signal. The
obtained spectrum is not in frequency or time but in the quefrency
domain. Therefore, the MFCC represents the coefficients of the

Mel-frequency spectrum. The MFCC is used to model features
of the audio signal (Abdul and Al-Talabani, 2022). It extracts
harmonics and side bands of the signal’s spectrum. The MFCC
includes several steps: pre-emphasis, framing and windowing, DFT,
Mel-frequency filter bank, logarithm, and DCT. The parameters
used for a feature generation with theMFCC are as follows: number
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FIGURE 4

Di�erent features for the model in the experiments conducted.

of features= 20; number of Mel bands= 20; FFT window= 1,024;
and a band-pass filter of (300, 600) Hz.

3.3.3 Frequency domain features
A spectrogram visually represents a time-series signal or signal

strength. Spectrograms can be linear or Mel-spectrograms. The
linear spectrogram is efficient when all frequency components are
equally important. On the contrary, the Mel-spectrogram models
non-linear perception, such as human hearing. A 216 × 216 Mel-
spectrogram was generated as features. The Mel-spectrogram of a
few samples from different infant classes is presented in Figure 2.
The following settings were used to generate the Mel-spectrogram
in Python’s Matplotlib library: signal length = 5 s; sampling rate =
22,050Hz; window, Hanning window with overlapping of 128; 256
data points for FFT generation.

3.3.4 Time-series imaging algorithms
TSI algorithms transform time-series signals into images

(Wang and Oates, 2015), as shown in Figure 3. They analyze
time-series data and can provide valuable insights into trends and
patterns that may not be visible through other analysis methods.
The obtained images from TSI can be treated as typical image
recognition tasks. These techniques can also benefit from CNN’s
approach to solving image classification problems. TSI can be
obtained using different algorithms, such as Gramian angular
summation fields (GASF), Gramian angular difference fields
(GADFs), recurrence plots (RP), Markov transition fields (MTF),
and RGB GAF. GADFs calculate the temporal correlation between
the pairs of time-series values. RGB GAF is based on images
obtained from GASF and GADF. MTF finds a field of transition

probabilities for time-series data. RP calculates pairwise Euclidean
distances between time-series data. The authors investigated the
performance of RP with CNN (Hatami et al., 2018). This approach
outperformed the existing deep architectures and SOTA in time-
series classification (TSC).

3.4 Implementation details

The features extracted, such as the ZCR, RMS, Mel-
spectrogram, and MFCCs, and, additionally, image data obtained
from MFCCs using time-series imaging algorithms, were supplied
to ML algorithms.

All conducted experiments are illustrated in Figure 4. We used
several algorithms, such as LR, Ridge, SVM, DT, RF, K nearest
neighbors (KNN), eXtreme Gradient Boosting (XGB), and Naive
Bayes (NB). We used Python for programming2 and API Librosa
0.9.23 to process the audio data and OpenCV for image processing.
For time-series imaging implementation, PyTs library4 was used.

The data is split into 80% training and 20% testing. Categorical
cross-entropy was used as a loss function. The hyperparameter
tuning technique was used with grid search-based cross-validation
to find the best model for validation accuracy. A K fold of k = 10
was used to validate the models.

The audio duration was 5 s, and 216 features were used
from ZCR, RMS, and MFCCs. Regarding image-based models,
we used 216 × 216 images for Mel-spectrogram and time-series
imaging techniques.

2 https://www.python.org/

3 https://librosa.org/

4 https://pyts.readthedocs.io/en/stable/modules/image.html
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TABLE 2 Evaluation (testing) results: MFCC-, ZCR-, and RMS-based ML.

PRC (%) REC (%) ACC (%) F1-score
(%)

MFCC

LR 91.24 90.00 90.21 88.92

Ridge 77.06 78.28 78.35 77.24

DT 93.83 93.56 93.56 93.61

RF 96.79 96.41 96.39
∗ 96.46

NB 55.42 45.71 45.62 44.24

KNN 94.33 94.33 94.33 94.33

XGB 95.10 95.10 95.10 95.10

SVM 96.13 96.13 96.13 96.13

Bagging 94.85 94.85 94.85 94.85

ZCR

LR 92.64 92.47 92.53 92.53

Ridge 95.65 95.12 95.10 95.21

DT 90.16 89.94 89.95 90.01

RF 96.52 95.90 95.88 95.98

NB 66.42 67.31 67.01 65.61

KNN 96.52 95.90 95.88 95.98

XGB 95.26 94.85 94.85 94.92

SVM 96.21 95.63 95.62 95.72

Bagging 96.18 95.64 95.62 95.70

RMS

LR 87.72 87.34 87.37 87.43

Ridge 86.63 86.33 86.34 86.35

DT 73.61 73.08 72.94 73.06

RF 91.27 91.19 91.24 91.21

NB 65.86 64.63 64.43 64.43

KNN 90.81 90.88 90.98 90.76

XGB 90.21 88.87 88.92 89.06

SVM 95.62 95.35 95.36 95.40

Bagging 92.00 92.00 92.01 91.99

Bold values indicate the best performance obtained by the authors in their experiments. Bold

values with ∗ indicate the highest performance obtained among all studies.

We used signals with a fixed duration of 5 s. The frame length
was set to 2048 and the hop length to 512 in the Librosa library
implementation, producing 213 frames, which can be calculated
using Equation 1. Additionally, the library added some padding;
therefore, we finally ontained 216 frames for each signal.

Frames number =
Signal length − (Frame length − hop length)

Frame length − (Frame length − hop length)

(1)

It is worth mentioning that while generating MFCC features for
the first 5 s from the audio signal, we used a band-pass filter of

TABLE 3 Evaluation (testing) results: MFCC-TSI-based.

PRC (%) REC (%) ACC (%) f1-score
(%)

GADF

DT 69.77 70.28 70.36 69.25

RF 91.42 91.12 91.24 90.76

KNN 93.30 93.19 93.30 93.07

Bagging 92.98 92.97 93.04 92.89

GASF

DT 59.57 47.16 46.91 45.76

RF 78.16 77.20 77.32 76.79

KNN 70.36 70.36 70.36 70.36

Bagging 83.52 83.69 83.76 83.32

MTF

DT 71.33 53.56 53.35 55.19

RF 77.37 62.03 61.86 63.69

KNN 85.78 58.52 58.25 60.28

Bagging 77.90 63.07 62.89 64.74

RP

DT 66.07 66.28 66.24 66.00

RF 89.06 89.08 89.18 88.87

KNN 91.22 90.89 90.98 90.72

Bagging 92.25 92.22 92.27 92.22

RGB GAF

DT 62.83 61.33 61.34 61.49

RF 86.77 86.69 86.86 86.18

KNN 92.30 92.16 92.27 92.02

Bagging 91.25 91.13 91.24 90.94

Mel-spectrogram

DT 80.88 80.82 80.67 80.49

RF 94.92 94.36 94.33 94.43

KNN 94.55 94.09 94.07 94.14

Bagging 95.45
∗ 94.85 94.85 94.95

Bold values indicate the best performance obtained by the authors in their experiments. Bold

values with ∗ indicate the highest performance obtained among all studies.

(300, 600) Hz on the infant signals. Additionally, we used 20 Mel
bands and the length of the FFT window was 1,024, while the other
parameters were taken by default from the Librosa library.

In this study, we used hyperparameter tuning using grid search
while training ML models. For convenience, the parameter space is
not added to the paper. All settings are provided in the source code.
In grid search, we trained models using all possible combinations
of parameters. The best model (for each experiment) was selected
and reported.

Model results on test data were reported in terms of accuracy,
macro f1-score (f1-score), macro precision (PRC), andmacro recall
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TABLE 4 Comparative study of the performance of this study with state-of-the-art research.

Features Model Donate a cry corpus

PRC (%) REC (%) ACC (%) F1-score (%)

Hand-crafted features (F1, F2,
F3, MFCC, and LPCC;
Ozseven, 2023)

SVM 87.88 87.58 87.87 87.72

RNN 72.09 75.19 74.84 73.01

PNN 88.95 85.69 87.17 87.14

Spectrogram (Ozseven, 2023) GoogleNet 51.29 43.42 53.52 44.38

ShuffleNet 93.12 98.05 92.25 91.91

ResNet-18 93.46 93.40 93.71 93.43

Scalogram (Ozseven, 2023) GoogleNet 64.35 58.62 65.63 64.05

ShuffleNet 95.18 93.78 94.56 94.45

ResNet-18 94.71 94.81 95.17 94.75

Frequency, entropy, spectral
+ GMM (Sharma et al., 2019)

– – – 81.27 –

Our work

MFCC+ GADF KNN 93.30 93.19 93.29 93.07

MFCC+ GASF KNN 73.06 73.06 73.06 73.06

MFCC+MTF Bagging 77.89 63.07 62.89 64.74

MFCC+ RP Bagging 92.25 92.22 92.27 92.22

MFCC+ RGB GAF KNN 92.30 92.16 92.27 92.02

Mel-spectrogram Bagging 95.45 94.85 94.85 94.95

MFCC RF 96.79 96.41 96.39
∗ 96.46

MFCC SVM 96.13 96.14 96.13 96.13

ZCR RF 96.52 95.89 95.88 95.98

ZCR KNN 96.52 95.89 95.88 95.98

ZCR SVM 96.21 95.63 95.62 95.72

ZCR Bagging 96.18 95.64 95.62 95.70

RMS SVM 91.99 91.99 95.36 95.40

Bold values indicate the best performance obtained by the authors in their experiments. Bold values with ∗ indicate the highest performance obtained among all studies.

(REC), as listed in Equations (2–5).

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
(2)

Macro f 1score =

∑n
i=1 F 1 scorei

n
(3)

f 1score = 2 ×
PRC × REC

PRC + REC
(4)

PRC =
TP

TP + FP
(5)

REC =
TP

TP + FN
(6)

TP, TN, FP, and FN are true positive, true negative, false positive,
and false negative, respectively.

4 Results and discussion

The solution proposed was evaluated on the infant cry data
discussed in the dataset subsection. The testing result was obtained
from features extracted by MFCCs, the Mel-spectrogram, ZCR,
RMS methods, and several ML classification algorithms, such as
XGB, LR, and NB, as listed in Table 2. Next, the test result obtained
from different classifiers with features extracted by several TSI
methods is shown in Table 3. Some previous studies tested their
solution on the dataset we used, and in Table 4, a performance
comparison was made with our result. The highest accuracy
obtained with the MFCC feature is in the random forest classifier
and support vector machine, at ∼96%. Feature extraction by ZCR
seems to have the same performance with the RF and KNN
methods but a slightly lower performance than MFCC features.
Regarding the RMS feature extraction method, the SVM classifier
achieved the best accuracy. We have also explored TSI methods for
feature extraction, as shown in Table 3, and tested them in four ML
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classifiers. The GADF method and bagging classifier resulted in the
highest accuracy in this part of the experiment. Mel-spectrogram
feature representation also resulted in high precision when tested
in a bagging classifier.

The final goal of this study was to bring a solution to
the research community with better performance than previous
studies. Ozseven (2023) conducted state-of-the-art research and
studied the extraction of infant cry signals. The author tested their
solution on different ML and DL pretrained models. They obtained
the highest accuracy with hand-crafted features and the SVM
classifier. The accuracy of the pretrained ResNet-18 model train
with spectrogram-represented features was better than the former.
Again, they trained the ResNet-18 model with the scalogram
feature, and finally, they achieved their best accuracy of 95.17%.
Our study has shown performance improvement over previous
state-of-the-art studies compared with different metrics.

After conducting several experiments, we have selected and
presented the best results in Table 4. As can be observed in the
table, MFCC features trained on random forest and support vector
machine classifiers, and ZCR features trained on RF, KNN, SVM,
and bagging classifiers have all yielded higher precision, recall,
accuracy, and f1-score results than SOTA on a donate-a-cry corpus
dataset. In addition, RMS features trained on SVM were more
accurate and had a higher f1-score than previous results. One of
the time-series imaging algorithms, GADF, achieved an accuracy
of more than 93%, which shows that it has the power to represent
this type of data in image format and yield good performance. If
the signal duration was sufficiently long, GADF could find a better
temporal correlation and, consequently, achieve higher accuracy.
To sum up, the highest accuracy, precision, recall, and f1-score are
obtained from the MFCC feature with an RF classifier.

5 Conclusion

Infant cry classification is essential for helping inexperienced
parents understand the feelings of their child. It can be used
for the medical diagnosis of infant developmental health. The
crying of an infant is their only way of communicating with the
world. Understanding their crying helps caregivers understand
their needs. This research proposes anMLmodel based on different
features. The proposed method successfully classifies five classes
of infant crying, such as hunger, discomfort, belly pain, burping,
and tiredness. The best performance is achieved with the MFCC-
based ML model, with an accuracy of 96.39% on testing data,
outperforming SOTA. Even though the models obtained great

classification accuracy with a signal duration of 5 s of infant crying,
their performance might suffer when evaluated on longer signal
durations. As a result, we intend to investigate the feasibility of
combining characteristics such as ZCR, RMS, and MFCCs in a
single model to attain high accuracy irrespective of signal duration.
Other datasets, more advanced data augmentation techniques, and
alternative DL-based methodologies will also be considered.
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