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The rapid proliferation of data across diverse fields has accentuated the
importance of accurate imputation for missing values. This task is crucial for
ensuring data integrity and deriving meaningful insights. In response to this
challenge, we present Xputer, a novel imputation tool that adeptly integrates
Non-negative Matrix Factorization (NMF) with the predictive strengths of
XGBoost. One of Xputer’s standout features is its versatility: it supports zero
imputation, enables hyperparameter optimization through Optuna, and allows
users to define the number of iterations. For enhanced user experience and
accessibility, we have equipped Xputer with an intuitive Graphical User Interface
(GUI) ensuring ease of handling, even for those less familiar with computational
tools. In performance benchmarks, Xputer often outperforms IterativeImputer
in terms of imputation accuracy. Furthermore, Xputer autonomously handles a
diverse spectrum of data types, including categorical, continuous, and Boolean,
eliminating the need for prior preprocessing. Given its blend of performance,
flexibility, and user-friendly design, Xputer emerges as a state-of-the-art solution
in the realm of data imputation.
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Introduction

The task of managing missing data points is an essential component of the preliminary

data preparation phase, particularly in the context of data science applications such

as machine learning models. A comprehensive dataset with no missing values is a

prerequisite for a multitude of algorithms, emphasizing the necessity to address and

rectify the absence of certain values. A rudimentary approach to resolve this issue

might involve substituting these gaps with zeros or the mean of the column values.

However, such methods could be an oversimplification, failing to take into account

the inherent structural relationships within the data (Hastie et al., 2016). An advanced

and well-accepted technique for managing missing data is the multiple imputation

method, which was first proposed by Rubin (1987). This approach recognizes the

uncertainty that comes with the imputation of missing values by generating multiple

complete datasets. Each of these datasets offers a distinct but statistically plausible

replacement for the missing data. The individual analysis results derived from these

multiple datasets are then amalgamated to yield a single, more robust result. This

process not only provides a method for filling in the missing data but also for

estimating the statistical properties for subsequent analysis (Little and Rubin, 2019).
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The Multivariate Imputation by Chained Equations (MICE)

protocol, also referred to as Fully Conditional Specification (FCS)

or Sequential Regression Multiple Imputation (SRMI), is a widely

recognized imputation methodology with a process that shares

similarities to multiple imputation. This technique is built on the

premise of a round-robin approach, whereby every feature in the

dataset that contains missing data is modeled as a function of

the remaining features, and this process is performed iteratively

(Azur et al., 2011; van Buuren and Groothuis-Oudshoorn, 2011).

MICE is a flexible method that can handle various types of

variables, making it a popular choice for dealing with missing data.

Nevertheless, while MICE is a robust and versatile method, it is

important to be cognizant of its potential limitations. Specifically,

if MICE is implemented using its default settings, it may not

fully capture non-linear relationships within the data during the

imputation process. The default MICE process employs linear

regression models for imputing missing values in continuous

variables and logistic regression for binary and ordinal variables,

both of which inherently assume a linear relationship between the

predictors and the target variable (Raghunathan et al., 2001; Su

et al., 2011). Consequently, these models may not be well-suited

to data that exhibit non-linear relationships. There are ways to

overcome this limitation. For instance, by integrating machine

learning algorithms such as decision trees or random forests in the

MICE process, non-linear relationships can be taken into account

during imputation (Shah et al., 2014). It is, therefore, crucial to

understand the characteristics of the dataset at hand and to adjust

the imputation strategy accordingly to ensure accurate results.

The application of tree-based models, such as those employing

Random Forests or Classification and Regression Trees (CART),

for data imputation presents a potentially powerful methodology

(Breiman, 2001; Trendowicz and Jeffery, 2013). This is particularly

relevant when data exhibit complex non-linear associations that

could be otherwise challenging to handle with traditional linear

methods. Tree-based models implement a hierarchical decision

structure, which allows them to adeptly manage and exploit

non-linear relationships embedded within the data. They thus

offer an advanced tool for predicting missing data values under

complex interaction scenarios. However, the adoption of such

methodologies is not without its own set of challenges. Tree-

based models, particularly those of a high complexity, can demand

substantial computational resources, posing a hindrance for large-

scale datasets (Hastie et al., 2016). Additionally, their performance

can suffer in situations where a significant proportion of the data

is missing. The difficulty of accurately predicting missing values

increases as the amount of missing data rises, which may result

in less reliable imputations. Furthermore, while tree-based models

provide a robust method for capturing complex structures within

data, the predictions they provide can be unstable due to their

sensitivity to small changes in the training data, which can lead

to substantial changes in the tree structure and subsequently in

the imputed values. Thus, while tree-based models constitute a

versatile tool for imputing missing data in complex scenarios, these

limitations need to be carefully considered in the context of the

specific dataset and research question at hand.

The process of imputing missing data should not be perceived

as a rudimentary or minor phase in data preprocessing. Instead,

it should be considered a critical procedure that can profoundly

affect downstream analyses and the consequent outcomes. The

decision regarding the choice of imputation technique should not

be arbitrary or casual; instead, it should be guided by a careful

assessment of the unique characteristics of the dataset and the

specific requirements of the subsequent analysis (Donders et al.,

2006). The impacts that various imputation methods can have on

the final results of the data analysis are not trivial and can be

substantial. Thus, it is essential to assess the inherent assumptions

accompanying each imputation method and to understand how

they might influence the findings of the analysis. Notably, an

inappropriate choice of an imputation method might introduce

bias, distort relationships, or mask patterns in the data, leading to

misleading or incorrect conclusions (Sterne et al., 2009). Therefore,

understanding the properties and limitations of various imputation

methods and their suitability to the specific data context is

paramount for a robust and reliable data analysis (van Buuren,

2018).

In this article, we present a unique approach to missing value

imputation that leverages the strengths of matrix factorization and

the XGBoost algorithm. Our innovative method begins with an

initial phase of imputation utilizing matrix factorization, which

is a technique primarily aimed at reducing bias associated with

the onset of imputation. Matrix factorization techniques help

uncover the latent features underlying the interactions of the

input data, thus providing a more robust and informed basis for

initiating the imputation process. This step effectively minimizes

the introduction of potential errors or biases at the very outset,

thereby contributing to the overall accuracy and reliability of the

imputation process. Following this, our approach utilizes XGBoost,

a powerful gradient boosting framework, to predict missing

values iteratively. In this phase, overfitting and underfitting—two

common challenges in machine learning—are mitigated through

automated hyperparameter optimization. The XGBoost model’s

hyperparameters are fine-tuned in a manner that balances bias

and variance, thus preventing the model from becoming too

complex (overfitting) or too simple (underfitting). To further

enhance the precision of our imputation, we employ a process of

iterative refinement of the missing value prediction. In essence,

the imputation process is performed iteratively, with each iteration

serving to improve the accuracy of the estimated missing values

based on the results of the preceding iteration. Finally, in order

to promote accessibility and ease of use, we have encapsulated

this innovative imputation methodology within a user-friendly

graphical user interface (GUI). This allows users, even those with

limited programming or technical experience, to conveniently

apply our imputationmethod to their own data. Thus, this powerful

imputation tool can be broadly utilized across a range of disciplines

and applications where missing data is a challenge.

The architecture of Xputer

To construct the foundation of Xputer, we combined NMF

with a supervised learning model. While there is a plethora of

supervised learning algorithms suitable for imputation, especially

when considering prediction performance and computational
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efficiency, our choice to pair NMF with XGBoost was informed by

a specific aim: addressing potential non-linear relationships in the

unseen data. XGBoost is a powerful gradient boosting algorithm

that can effectively handle both categorical and continuous data.

It stands out for its speed when predicting large datasets and

offers a high degree of flexibility in model tuning, which makes

it an optimal choice for this integration (Chen and Guestrin,

2016). However, it is worth noting that other gradient boosting

frameworks, such as LightGBM, could serve as viable alternatives

(Ke et al., 2017). LightGBM also boasts efficient computational and

memory usage, and it has shown itself to be an effective tool in

predictive modeling scenarios. Thus, our strategy is designed to

enhance imputation accuracy by leveraging the strengths of both

NMF and XGBoost, thereby accommodating the diverse nature and

complexity of data we might encounter.

The structural design of the Xputer is succinctly illustrated in

Figure 1. This framework incorporates an array of interconnected

modules, each serving a distinct functionality. Beginning with the

preprocessing module (Figure 1A), this component undertakes the

initial responsibility of data preparation. It executes tasks such as

eliminating or correcting missing or erroneous data, standardizing

numerical values, and transforming categorical variables into a

format suitable for subsequent analyses. The subsequent step in the

Xputer framework is the matrix factorization module (Figure 1B).

This module leverages linear algebraic techniques to decompose

a complex matrix into simpler, interpretable matrix constituents.

This operation is pivotal to the simplification of high-dimensional

data and the identification of inherent structure and relationships

within the data. Next, the architecture encompasses the XGBoost

imputation module (Figure 1C), a sophisticated component

applying a gradient-boosting framework. This module plays an

instrumental role in handling missing data, and extrapolating

probable values based on the observed patterns in the existing

data. It deploys a set of machine learning models, namely decision

trees, which sequentially correct residuals of the preceding model,

thereby enhancing the prediction accuracy. Finally, the iterative

imputation module (Figure 1D) is incorporated into the Xputer

design. This module cyclically estimates missing values, refining

its predictions in each iteration. This methodical process ensures

that the imputation of missing data is not merely an isolated guess

but a robust, data-informed estimation (Dong and Peng, 2013).

Together, these modules integrate to form the comprehensive

architecture of Xputer, as visually encapsulated in Figure 1. Each

module’s role and interaction contribute to the efficacy and

precision of the overall data analysis and prediction system.

The preprocessing module

Within this process, Xputer utilizes a Pandas Data Frame

where sample identifiers are categorized in the index and feature

designators are in the header. It commences by performing a

scrutiny for absent or inoperative values, denoted by indicators

such as “NaN”, “NAN”, “Nan”, “nan”, “NA”, “#NA”, “N/A”,

“NA#”, “#VALUE!”, “#DIV/0!”, etc., and proceeds to substitute

any instances of these with the canonical ’np.nan’. In addition,

it affords the user the option to convert zeros into ’np.nan’ for

later imputation. Subsequently, Xputer conducts an individual

analysis for each column, distinguishing between continuous

and categorical data points. If a specific type of data, say

categorical, represents more than 60% of the column’s contents,

Xputer categorizes the entire column as such and replaces any

numerical data with ’np.nan’. This protocol applies reciprocally

to columns with over 60% numerical data, which are then

considered as columns of continuous values and any non-

numerical entries are replaced with ’np.nan’. Categorical data

points are subsequently subject to encoding via a label encoder.

In case a column fails to meet those criteria, leaves out of

imputation. Post-processing, Xputer yields three separate Pandas

DataFrames: a cleaned dataset, an encoded dataset, and a pre-

imputed encoded dataset. The preprocessing module can function

autonomously and be invoked through the “from xputer.utils

import preprocessing_df” command.

Adaptive matrix factorization

Our adaptive matrix factorization strategy represents an

advanced methodology designed to enhance the quality of pre-

imputed data through the deployment of matrix factorization

techniques. This process is characterized by its inherent

adaptability, altering its computational approach based on

the specific characteristics of the data at hand. In circumstances

where the data set is devoid of negative values, the strategy deploys

iterative sub-grouped non-negative matrix factorization (NMF).

NMF is a technique that decomposes the original data into two

non-negative matrix factors, providing an efficient and effective

tool for representing the data and capturing the underlying

structure (Lee and Seung, 1999). As a consequence of NMF’s

non-negativity constraints, the resulting components are more

interpretable and can offer a robust reconstruction of the original

data. Conversely, in the presence of negative values within the

dataset, the strategy resorts to Singular Value Decomposition

(SVD). This method is a general matrix factorization technique

that decomposes the data into three distinct matrices (DeSa and

Matheson, 2004). SVD is versatile and applicable to any real-valued

matrix, providing an elegant solution when the non-negativity

condition of NMF is not met. The adaptive matrix factorization

strategy operates on both the encoded dataset and the pre-

imputed encoded dataset, aiming to produce either a selectively

transformed dataset—where only NaN values are replaced—or a

fully reconstructed dataset depending on the specific requirements

of the analysis. This dynamic approach ensures that the most

suitable factorization method is applied, accounting for the

unique attributes of the data and optimizing the precision of the

imputation process.

XGBoost imputation

Xputer commences the imputation process by processing each

column independently. It initiates this operation by selecting a

column from the cleansed data, wherein categorical variables have

not been encoded, and subsequently identifies the data type. Upon

the determination of whether imputation is necessary for the

specific column, the column in question is expunged from the
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FIGURE 1

The structure of Xputer. The core structure of Xputer includes (A) data preprocessing unit, (B) adaptive matrix factorization unit, (C) XGBoost
hyperparameter search and model implementation unit, and (D) iterative imputation unit.
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pre-imputed or NMF/SVD-transformed data, thereby serving as

a training or prediction set. Subsequent to the discernment of the

data type, Xputer undertakes the decision as to whether a classifier

or regressor is apt for the imputation task. For the optimization

of the XGBoost hyperparameters, we have incorporated Optuna,

a robust hyperparameter optimization framework (Akiba et al.,

2019). However, prior to commencing the hyperparameter search,

Xputer evaluates the number of samples, necessitating more

than 50, and validates the sample-to-feature ratio, mandating

a minimum ratio of 4. Furthermore, it reviews the number

of features, with a maximum allowance of 100 columns with

missing values. Given these conditions, Xputer determines if the

hyperparameter search needs to be executed, or if the deployment

of predefined parameters is more pertinent. Regardless of the

path chosen, Xputer employs a 70% subsampling strategy. In

the event a hyperparameter search is performed, the system is

meticulously designed to evade both overfitting and underfitting

of the model. Once the hyperparameters are solidified, Xputer

executes a minimum of three predictions (with an option to select

up to nine) and employs an average value for the imputation.

Both the cleansed data and encoded data are consequently updated

with the predicted values. Additionally, Xputer accumulates the

XGBoost parameters for each column from this phase for potential

utilization in iterative imputation procedures in the future.

Iterative imputation

Xputer has been architecturally devised to execute an iterative

process of imputation. In this scheme, values that have been

previously estimated and subsequently imputed are employed for

subsequent predictions, effectively utilizing iterative refinement for

the missing data estimation. This mechanism proves particularly

efficacious when dealing with datasets afflicted by a substantial

proportion of missing values. In such scenarios, every column is

sequentially updated with novel predictions, each one informed

by the newly imputed values from the previous round. This

creates a feedback loop where each iteration enhances the accuracy

of imputations in the next, thus leveraging the potential for

continuous improvement in the estimation of missing data. As

of now, Xputer accommodates a range of iterations from a

minimum of one to a maximum of nine, offering flexibility in

choosing the depth of refinement according to the specifics of the

dataset and the imputation requirements. This iterative imputation

process propagates information from observed to unobserved

values, making it a powerful method to reconstruct missing data

in large datasets.

Results

Supervised learning algorithms hold the
superior predictive capacity for missing
value imputation

In the initial phase of our study, a comparative analysis was

conducted among several supervised and unsupervised machine

learning algorithms to evaluate their efficacy in the imputation

of missing values. The chosen dataset for this investigation

comprised of a heterogeneous collection of gene expression

data (Bottomly et al., 2022; Chen et al., 2022), including both

microarray and RNAseq data, covering 400 genes (features).

To facilitate this comparison, we artificially introduced missing

values into the dataset by removing data ranging from 1%

up to 25%, thereby generating 25 unique datasets. An initial

imputation was then carried out using column mean values,

which served as a foundation for the subsequent application of

27 distinct regressors, each tasked with predicting the missing

values in every column (Figure 2A). The array of machine learning

algorithms under examination comprised unsupervised methods

such as autoencoders, non-negative matrix factorization (NMF),

and principal component analysis (PCA), which were juxtaposed

against their supervised counterparts. The performance of these

algorithms was compared based on the log2-transformed mean

squared error (MSE) and the log2-transformed computational

time in seconds. The majority of supervised algorithms exhibited

comparable performances, with the exceptions of RANSAC and

the Gaussian process which differed (Figure 2B). In terms of

time efficiency, PCA emerged as the most proficient (Figure 2C);

however, its performance lagged when evaluated based on the

NegLog2RMSL (Nasimian et al., 2024) (Figures 2D, E). The

comparative results suggested that supervised algorithms are

relatively more efficient in the imputation process than most

unsupervised algorithms, with NMF being the exception. However,

it should be emphasized that none of the algorithms were

optimized for this specific task. Therefore, it is possible that the

performance of some algorithms could improve if optimization

were to be implemented.

Xputer hyperparameters testing

In assessing the performance of Xputer, hyperparameter

optimization, though optional, can potentially enhance its

efficacy. Six diverse datasets facilitated an exploration of Xputer

hyperparameters’ impact on imputation. We artificially introduced

missing values at varying percentages (10% to 40%) across

both categorical and continuous data types within each dataset.

Our initial inquiry centered on the influence of pre-imputation

on the ultimate imputation outcomes. We employed three

distinct strategies: ColumnMean: missing continuous values were

substituted with the respective column mean, whereas missing

categorical or Boolean entries were replaced by the most frequently

occurring value, KNNImputer: utilized the sklearn’s KNNImputer

to address NaNs across all columns, and MixType: continuous

NaNs were supplanted by the column mean, while the remaining

were managed using KNNImputer. For the majority of columns

across the datasets, there was no discernible preference for any

particular strategy. However, certain scenarios evidenced a tilt

toward ColumnMean, KNNImputer, or MixType (Figure 3A). By

default, Xputer constructs three XGBoost models for imputation,

which can be expanded up to nine, leveraging the mean value

for imputation. We juxtaposed the efficacy of utilizing 3, 6, or

9 models, maintaining other default parameters. Some attributes

benefited from a larger model pool, yet the overall enhancement

remained marginal (Figure 3B), implying that three models might

suffice for robust imputation. The application of either NMF

NaN-transformed or fully transformed data could potentially

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1345179
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Younus et al. 10.3389/frai.2024.1345179

FIGURE 2

Comparative evaluation of various algorithms’ functionality. (A) A composite dataset consisting of RNAseq and microarray data, dimensioned at 1770
X 400, underwent random masking to instigate missing values, ranging from 1% to 25%, thus creating 25 distinct data matrices. In the case of
unsupervised learning algorithms, namely autoencoder, NMF, and PCA, the imputation of the entire dataset was accomplished via the column mean
through SimpleImputer prior to the execution of the algorithm. For supervised algorithms, an initial identification of columns with NaNs was carried
out. An individual column containing NaN was isolated and designated as the label, while the remainder of the data underwent imputation via the
column mean with the aid of SimpleImputer. Following the preliminary imputation, the data was segregated into training and predictive datasets
corresponding to non-NaN and NaN rows in the label column. (B) Subsequent to imputation with a specific algorithm, imputed values underwent a
comparative analysis with their original counterparts, facilitating the determination of the mean squared error. Each box demonstrates 25
measurements employing missing values varying from 1%-25% (in increments of 1%), while the bar represents the minimum to maximum values
range. (C) The duration necessitated to carry out imputation utilizing a specific algorithm. (D–E) Six imputed datasets were employed to ascertain the
prediction performance of the Trametinib response via the XGBoost algorithm. **p < 0.01 and ***p < 0.001.
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ameliorate imputation, especially in the presence of outliers

(Figure 3C). Though our datasets did not manifest tangible

gains from Optuna-driven hyperparameter tuning compared

to predefined parameters (Figure 3D), we cannot preclude its

potential benefits in other datasets. Notably, a reduced iteration

count in Optuna consistently underperformed compared to default

parameters. Thus, it’s advised to either adhere to default settings

or, if using Optuna, opt for a greater number of iterations.

Finally, while augmenting the iteration count can confer minor

enhancements, the default setting generally sufficed (Figure 3E).

Dependency of Xputer’s imputation time
on feature quantity

The imputation latency experienced with the Xputer system

is intricately linked to the quantum of features necessitating

imputation. Mechanistically, Xputer operates by scanning for

null values within each column, subsequently embarking on

a column-wise imputation procedure leveraging the XGBoost

algorithm. Specifically, when a column is targeted for imputation,

extant values therein are harnessed to construct the XGBoost

predictive model, which then projects or fills the absent values.

This modus operandi elucidates why columns teeming with

null values considerably amplify the temporal demands of the

imputation process (Figure 4A). Further analyses revealed a

negative logarithmic relationship between the magnitude of

missing values and the time commitment per unit of such values

(Figure 4B). Intriguingly, while the aggregate sample volume

appeared to exert negligible impact on imputation duration

(Figure 4C), there was a robust correlation between an escalating

feature count and the time invested per feature during imputation

(Figure 4D). We conducted a comparative analysis between Xputer

and sci-kit learn’s IterativeImputer, a multivariate imputation

tool that predicts each feature using all other features (Pedregosa

et al., 2011). Comparative assessments with the IterativeImputer

showed that, under default configurations, IterativeImputer

demonstrated superior speed but, when configured with a

Random Forest estimator, the IterativeImputer consistently

underperformed relative to Xputer, irrespective of the feature

quantity (Figure 4E). In aggregate, the empirical evidence posits

that Xputer’s performance might decelerate as the feature

count swells.

Comparing Xputer with IterativeImputer

In this analysis, we juxtaposed the imputation efficacy of Xputer

against that of IterativeImputer. Notably, Xputer is intrinsically

engineered to seamlessly manage a diverse range of data types,

including categorical, bimodal, and continuous datasets. However,

to ensure an equitable benchmark, particularly mirroring the

primary function of IterativeImputer, our evaluation was confined

to continuous data. The rigorousness of our evaluation was

upheld through the employment of the Root Mean Square

Error (RMSE) metric coupled with detailed density plots. This

assessment spanned across scenarios with 10% to 40% missing

data values in contrast to the original dataset. Our empirical

findings revealed that Xputer demonstrated consistent and robust

performance (Figure 5A). Conversely, the IterativeImputer, under

its default configuration, occasionally faltered. The augmentation

of the IterativeImputer with a Random Forest Regressor enhanced

imputation performance in certain instances. This enhancement is

substantiated by the density plots, which demonstrate a notable

convergence in the distribution between the original dataset,

the data imputed by Xputer, and the data imputed through

the combined application of the Random Forest Regressor and

IterativeImputer (Figure 5B). Our comparative study emphasizes

the inherent strengths of Xputer in data imputation.

Discussion

Addressing the challenge of missing value imputation

is paramount across a range of disciplines (Choi et al.,

2023; Mukherjee et al., 2023; Vanderaa and Gatto, 2023). In

bioinformatics, dealing with the multifaceted and distinct

characteristics of various data types including RNAseq, proteomic

and metabolomic data poses unique challenges for missing

value imputations (Vanderaa and Gatto, 2023). In the world of

marketing, complete datasets are essential to derive accurate

consumer insights, optimize advertising strategies, and predict

market trends (Anand and Mamidi, 2020). Missing values can

lead to misleading segmentation or incomplete customer profiles,

which can adversely impact campaign efficacy and return of

investment (ROI). Similarly, in the banking and financial sectors,

accurate data is the backbone of risk assessments, credit scoring,

and investment decisions. Missing or incorrect data can lead to

misguided financial strategies, erroneous lending decisions, or

misestimation of market risks (Fujimoto et al., 2022). Household

surveys, often used for demographic research or to assess consumer

behavior, are another domain where imputation plays a pivotal

role. Such datasets often contain gaps due to non-responses or

incomplete survey returns, and imputation is vital to provide a

comprehensive view of the population being studied (Mirzaei et al.,

2022). Given the increasing reliance on data across industries, the

need for sophisticated and accurate imputation methods becomes

ever more crucial. The heterogeneous nature of datasets across

sectors underscores the need for robust and tailored imputation

methods to ensure data integrity, accurate predictions, and

informed decision-making.

Given the complexities highlighted above, we have developed

Xputer that combines flexibility, speed, and diversity. However,

Xputer may not be suitable for scenarios in which the number of

features exceeds the number of samples. In our comprehensive

analysis, the role of supervised learning algorithms in enhancing

the precision of imputation became distinctly evident (Getz et al.,

2023). Through rigorous evaluation using datasets artificially

populated with missing values, our findings affirmed the

superior predictive capacity of supervised algorithms over their

unsupervised counterparts for the imputation of missing values.

This advantage held true despite the fact that none of the evaluated

algorithms was specifically optimized for the imputation task,

suggesting innate strengths within supervised learning paradigms.

The only unsupervised exception, NMF, hints at potential niches

wherein unsupervised learning could have competitive or even

advantageous roles. Furthermore, the detailed hyperparameter

testing of Xputer showcased its potential versatility. While it
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FIGURE 3

Xputer hyperparameter evaluation. For a comprehensive assessment of Xputer’s individual hyperparameters, six distinct datasets were employed,
each infused with a diverse spectrum of artificially introduced missing values. These modified datasets were subsequently juxtaposed against their
original values. The hyperparameters under examination encompassed (A) pre-imputation strategies, (B) the count of XGBoost models for
ensembling, (C) matrix factorization techniques, (D) XGBoost hyperparameter optimization using Optuna, and (E) the total iteration count. The “Bank
marketing” data was from archive.ics.uci.edu/dataset/222/bank+marketing, the “Breast cancer” data was collected from archive.ics.uci.edu/dataset/
17/breast+cancer+wisconsin+diagnostic, the “NATICUSdroid” data was from archive.ics.uci.edu/dataset/722/naticusdroid+android+permissions+
dataset, the “PIMA Indian” data was downloaded from www.kaggle.com/datasets/uciml/pima-indians-diabetes-database, and the “Student’s
dropout” data was collected from archive.ics.uci.edu/dataset/697/predict+students+dropout+and+academic+success.

was evident that hyperparameter tuning can yield marginal

improvements, for many datasets, the default configurations of

Xputer often delivered satisfactory imputation outcomes. Notably,

the nature of missing data, whether categorical or continuous,

and its percentage appeared to influence the preferred imputation

strategy. The relationship between Xputer’s imputation time and

the volume of features underscores a salient operational aspect of

the software. Xputer’s meticulous column-wise approach, relying

on XGBoost, illuminates the escalating temporal requirements

with an increasing proportion of missing values. The observed
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FIGURE 4

Assessment of imputation duration. In this analysis, we utilized data encompassing 7 to 97 features and sample sizes varying from 569 to 29,332. This
evaluation covered various metrics: (A) time taken for imputation relative to the number of features, (B) time per unit of missing value, (C) time per
individual value, and (D) imputation time for each feature in relation to the total number of features. Additionally, (E) we compared our results with
the IterativeImputer’s performance. Number of features: Bank Marketing−7, PIMA Indian – 8, Breast Cancer – 30, Students dropout−36,
NATICUSdroid−86, Mixed Cancer−97; number of samples: Bank Marketing−4521, PIMA Indian−768, Breast Cancer−569, Students dropou−3630,
NATICUSdroid−29332, Mixed Cancer−1770.

FIGURE 5

Comparative analysis of Xputer and Iterativeimputer. Using six continuous-data datasets, we assessed the performance of Xputer against
IterativeImputer. Performance comparisons were conducted employing both the RMSE metric (A) and density plots (B) across varying percentages of
missing values.

logarithmic relationship between time and magnitude of missing

values points to diminishing returns in efficiency as missing

data accrue. Interestingly, this observation is juxtaposed with the

rather consistent temporal demands across varying sample sizes,

revealing feature count as the more prominent determinant of

imputation latency.

The comparative evaluation with IterativeImputer, a similar

version of MICE (van Buuren and Groothuis-Oudshoorn, 2011)

offered insights into the nuances of these two methodologies.

While Xputer’s intrinsic design accommodates a diverse

gamut of data types, IterativeImputer requires specific

configurations, like the inclusion of the Random Forest

Regressor, enhanced performance in certain instances. While

supervised algorithms, embodied by Xputer, typically excel in

these endeavors, the context-specific merits of unsupervised

algorithms, or hybrid solutions like IterativeImputer combined

with Random Forest, cannot be overlooked. The findings

also emphasize the necessity to understand the operational

nuances of each tool, ensuring that researchers can harness

them effectively, optimizing both imputation accuracy and

computational efficiency.
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