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The impact of artificial intelligence (AI) in education can be viewed as a

multi-attribute group decision-making (MAGDM) problem, in which several

stakeholders evaluate the advantages and disadvantages of AI applications in

educational settings according to distinct preferences and criteria. A MAGDM

framework can assist in providing transparent and logical recommendations

for implementing AI in education by methodically analyzing the trade-o�s

and conflicts among many components, including ethical, social, pedagogical,

and technical concerns. A novel development in fuzzy set theory is the 2-

tuple linguistic q-rung orthopair fuzzy set (2TLq-ROFS), which is not only a

generalized form but also can integrate decision-makers quantitative evaluation

ideas and qualitative evaluation information. The 2TLq-ROF Schweizer-Sklar

weighted power average operator (2TLq-ROFSSWPA) and the 2TLq-ROF

Schweizer-Sklar weighted power geometric (2TLq-ROFSSWPG) operator are

two of the aggregation operators we create in this article. We also investigate

some of the unique instances and features of the proposed operators. Next,

a new Entropy model is built based on 2TLq-ROFS, which may exploit the

preferences of the decision-makers to obtain the ideal objective weights for

attributes. Next, we extend the VIseKriterijumska Optimizacija I Kompromisno

Resenje (VIKOR) technique to the 2TLq-ROF version, which provides decision-

makers with a greater space to represent their decisions, while also accounting

for the uncertainty inherent in human cognition. Finally, a case study of how

artificial intelligence has impacted education is given to show the applicability

and value of the established methodology. A comparative study is carried out to

examine the benefits and improvements of the developed approach.

KEYWORDS

2-tuple linguistic q-rung orthopair fuzzy set, entropy, VIKOR, impact of AI in education,
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1 Introduction

AI refers to a machine’s ability to carry out operations that

are typically associated with human intelligence, such as learning,

logical reasoning, and decision-making. AI possesses the ability to

revolutionize education in a number of ways, including through

enhanced assessment and feedback, personalization of the learning

environment, enhancements to the teaching and learning process,

and encouragement of collaboration and communication. For

instance, AI can help teachers design and deliver more efficient and

interesting lessons, adapt instruction to the needs and preferences

of each student, give immediate and adaptive feedback, and keep

track of the development and performance of their students.

Additionally, AI can assist students in gaining access to a wider

variety of personalized learning resources, connecting with peers

and mentors around the world, and honing skills like creativity,

critical thinking, and solving problems. But there are risks and

challenges associated with AI as well, including those related to

its impact on human roles and abilities as well as its ethical,

social, and legal ramifications, data privacy and security concerns.

For instance, AI might make people rethink the values and goals

of education, the duties and rights of students and teachers, the

ownership and use of data, and any potential biases or inequalities

that might arise from using AI. Additionally, AI may have an

impact on the supply and demand of human labor, the knowledge

and abilities needed in the future workforce, and the ratio of human

to machine intelligence. It is critical to take into account the impact

of AI on education from a variety of perspectives and to ensure

that its application is consistent with the principles and goals of

education. Table 1 presents current research findings on the impact

of AI in education.

A graphical representation illustrating AI’s role in education is

presented in Figures 1, 2 illustrates various applications of AI across

different domains.

An approach for evaluating and determining alternatives based

on a variety of parameters and the preferences of decision-makers

(DMs) is multi-attribute group decision-making (MAGDM). The

facts and views of the group members are contradictory in

MAGDMdifficulties. As a result, an array of strategies andmethods

have been created to deal with these problems, including fuzzy

logic (Zadeh, 1988), intuitionistic fuzzy logic (Takeuti and Titani,

1984), linguistic variables (Zadeh, 1983), grey numbers (Liu et al.,

2012), and rough sets (Pawlak, 1982). Aggregation-based and

consensus-based MAGDM techniques can be categorized into two

broad groups. Aiming to combine each group member’s individual

preferences into a single, overall taste, aggregate-based approaches

employ this preference to rank the options. Before making

a conclusion, consensus-based techniques emphasize a strong

agreement among the group members. The best way to choose

will rely on the features and requirements of the situation because

both sorts of solutions have benefits and drawbacks. MAGDM

techniques may be used in a wide range of fields, including

management, engineering, economics, and social sciences.

The process of MAGDM is a valuable approach for effectively

handling complex and challenging data in real-world problems.

MAGDM serves as a method for assigning ranking grades

to limited options corresponding to distinct characteristics

of various choices, playing a crucial role in the field of

TABLE 1 Summary of existing research on the impact of AI in education.

References Research
methodology

Key findings

Nguyen et al. (2023) Thematic analysis AI in education

Liu et al. (2023) Fuzzy analytical

hierarchy process

Long-term learning through

artificial intelligence-based

visual communication

Flogie and Krabonja

(2023)

RAT scale AI in education

Martinez et al.

(2023)

Systematic review and

meta-analysis

Effects of computing and AI

on pupil achievement

Su et al. (2023) Pedagogical approaches Literacy using AI in early

childhood education

Holmes et al. (2023) Qualitative study AI in education

Chen et al. (2022) Bibliometric analysis AI in education

Nemorin et al.

(2023)

Text mining and

thematic analysis

Learning and growth using

AI

Prahani et al. (2022) Bibliometric analysis Research on AI in education

during the past ten years

Shaikh et al. (2022) Phenomenological

technique

The development of a

digital classroom using

machine learning and

artificial intelligence and its

long-term effects on

education will be dealt with

during COVID-19

Thurzo et al. (2023) Qualitative study Influence of AI on learning

about dentistry

Hong Yun et al.

(2022)

A decision-support

system

AI and machine learning in

music tuition for playing

games online

Teng et al. (2023) Fuzzy comprehensive

appraisal and artificial

intelligence technology

The assessment and control

of risks in the supply chain

for sports services

Albaity et al. (2023) Intuitionistic Fuzzy Soft

WASPAS Method

The implications of AI and

machine learning upon

business

Paek and Kim

(2021)

Linear regression model Global research trends on

the effects of AI on

education

decision-making sciences. Practical decision-making scenarios,

accurately representing these characteristic attributes is a central

concern due to the intricacy and ambiguity often encountered. To

deal with the issue at hand, Zadeh (1988) introduced the theory

of fuzzy sets (FS), which confines membership degrees (MD) to

the unit interval. The FS theory has garnered significant attention

from experts and found application in diverse fields and situations

(Mardani et al., 2019; Tian et al., 2022). Nevertheless, there have

been instances where the FS theory has not delivered precise results.

For instance, utilizing FS to handle information represented in

terms of truth and falsity degrees can pose challenges. To deal

with such complexity, Atanassov and Stoeva (1986) introduced the

theory of intuitionistic fuzzy sets (IFS), which is a refined variation

of FS designed to adeptly handle cumbersome and uncertain data.

IFS encompasses both MD and non-membership degrees (NMD)

through a specific set of rules 0 ≤ µ + ν ≤ 1. The theory of

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1347626
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mahboob et al. 10.3389/frai.2024.1347626

FIGURE 1

Visual representation of AI in the education.

IFS has garnered significant research interest and has been applied

in various studies (Krishankumar et al., 2023; Yue et al., 2023).

Nevertheless, IFS data has a limited range and relies on the rule that

mandates the total of MD and NMD to be within the unit interval,

which is not always necessary. To deal with this challenge, Yager

(2013) introduced the concept of Pythagorean fuzzy sets (PyFS),

that represents a modified version of IFS tailored for handling

complex and uncertain information. PyFS accommodates MD and

NMD in a way that maintains the combined value of the squares

of their pairings within the unit interval. The theory of PyFS has

also garnered significant attention in a diverse range of research

endeavors (Kumar and Chen, 2023; Pan et al., 2023). Nonetheless,

PyFS data also has a limited range and adheres to a rule stipulating

that the sum of the squares of MD and NMD should fall within

the unit interval, although this restriction is not always essential. In

cases where the sum of the squares of these degrees exceeds the unit

interval, such as when assigning 0.7 to MD and 0.8 to NMD, PyFS

conditions are violated, resulting in a value of (0.7)2 + (0.8)2 =

0.49 + 0.64 = 1.13. To address these complex challenges, Yager

(2016) introduced amodification of the PyFS theory, creating the q-

rung orthopair fuzzy sets (q-ROFS) theory. This modification was

aimed at improving the handling of intricate and unreliable data. q-

ROFS encompasses bothMDs and NMDs, with the q-powers of the

pairings added restricted to the unit interval. As a result, q-ROFS

effectively resolves issues related to such information, ensuring that

the result is consistently equal to (0.7)4+(0.8)4 = 0.2401+0.4096 =

0.6497 ≤ 1. The principles governing q-ROFSs have undergone

substantial modifications compared to established concepts like

IFSs and PyFSs. These distinctive features have attracted significant

attention, leading to extensive research conducted by renowned

scholars and practical applications across a wide range of domains.

For example, By employing transformers and q-ROFS theory, an

innovative approach for ranking products that took into account

the mass assignment of features was presented by Yin et al.

(2023). Then, Fetanat and Tayebi (2023) created the q-ROFS based

MAIRCA (Multi-Attributive Ideal-Real Comparative Analysis),

a unique hybrid decision support system. Using the suggested

decision support system, industrial filtration technologies were

prioritized while taking sustainability and maintainability into

account. Furthermore, Oraya et al. (2023) incorporated the q-ROFS

into the computational framework to address the inconsistency

and doubt of the DMs’ assessments during the evaluation process.

A real-world case study of residential construction projects used

the novel q-ROF weighted influence non-linear gauge systems

level-based weight assessment FlowSort approach that has been

proposed. To choose the best software solution from a variety of
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FIGURE 2

A visual of di�erent uses of AI.

possibilities, Wan et al. (2023) developed a novel integrated group

decision-making technique for the quality assessment of the system

under the interval-valued q-ROFSs.

The hypertension follow-up system’s characteristics served as

a foundation for the design of its assessment indices, which in

turn represented the evaluation requirements of typical software

applications and highlighted the uniqueness of the system.

Additionally, For complex q-ROF data, Liu et al. (2023) focused on

analyzing the improved Einstein operational rules. Weights were

handled objectively in a decision-making technique with complex

q-ROF information. In order to develop the collective preference

data on cache placement policies with respect to the criteria,

Peng X. et al. (2023) initially proposed an assessment criteria

system to formulate to reflect experts’ thoughts for evaluating

cache placement policies. They then used the concepts of set pair

analysis and q-ROFS to define the group preference information of

cache placement policies in direct and indirect ways, respectively.

Marti and Herrera (2012) created a 2-tuple linguistic (2TL) model

designed to handle both verbal and nonverbal data in decision-

making processes without compromising the integrity of the data.

This valuable model primarily relies on symbolically translating

linguistic variables and has found extensive application in various

MAGDM scenarios (Rodriguez and Martinez, 2013; Romero et al.,

2019). Given the complexity of objects and the inherent vagueness

of human thinking, it is more appropriate to express evaluations

using linguistic information rather than numerical values (Pang

and Liang, 2012; Pang et al., 2023). Consequently, numerous

researchers have delved into the realm of linguistic information to

address MAGDM problems, devising various methods to explore

linguistic representation models (Herrera and Martinez, 2000; Wu

et al., 2021). Broadly speaking, the linguistic information model

can be categorized into three main parts: methods based on MDs,

methods utilizing linguistic symbols, and methods founded on

the concept of linguistic 2-tuple. However, the first two methods

possess certain limitations, as they approximate the translation

process to evaluate findings in their original domain. This

approximation can result in reduced precision and accuracy. In

contrast, the 2TL model offers a means to enhance the accuracy of

linguistic terms (LTs), computation, and interpretation of findings.

Due to its recognized quality and effectiveness in handling the

linguistic opinions of DMs, the 2TLmodel has garnered widespread

adoption in decision-making scenarios, especially in addressing

the transitivity issue within the context of MAGDM problems.

Following the creation of the 2TL model, researchers began

to identify certain limitations associated with it, specifically its

capacity to handle solely uniformly distributed linguistic term sets.

To address these limitations, Wu et al. (2023) employed

MAGDM techniques to develop an uncertainty model aimed

at resolving the selection challenges posed by autonomous cars.

They utilized the proportional hesitant 2TL term set to represent

assessment information. Subsequently, Jin et al. (2023) introduced

a convergent consistency improvement method, employing a

minimal adjustment strategy to preserve the initial evaluation

data provided by DMs while enhancing the consistency of

the original 2TL preference relation to a predefined level. For

2TL Pythagorean fuzzy values, Verma and Alvarez-Miranda

(2023) introduced a novel score value function and discussed

its essential characteristics. Two innovative AOs, the advanced

2TL Pythagorean fuzzy weighted average operator and the

advanced 2TL Pythagorean fuzzy weighted geometric operator,

were proposed to combine 2TL Pythagorean fuzzy data using

unique operational principles governing 2TL Pythagorean fuzzy

values. In a distinctive approach, Sarwar (2023) integrated a

2TL framework with rough approximations and cloud theory,

presenting a new mathematical model. Lastly, in the context of

cognitive data utilized in the hospital evaluation process, Naz et al.

(2023b) implemented a MAGDM approach incorporating a 2TL

T-spherical fuzzy set.

To better capture the ambiguity of the environment and

prevent information loss or distortion during the information

aggregation stage, Zhang H. et al. (2023) established the

concept of the interval 2-tuple q-ROFS. In an effort to tackle

uncertainty within the realm of group decision-making, Ullah et al.

(2023) recommended the utilization of MAGDM methodologies

incorporating 2TL confidence level complex q-ROFSs. The primary

aim of that research was to improve the selection process for the

most appropriate recycling method. Ali et al. (2023) extended the

concepts of three-way decisions and decision theoretic rough sets

within the context of Complex q-rung orthopair 2TL variables,

subsequently discussing several of its significant properties. Akram

et al. (2023) investigated and expanded the evaluation and

prioritization of alternatives based on the compromise solution

within the framework of 2TLq-rung picture fuzzy sets. Pairwise

comparison serves as a valuable method for DMs to articulate their

preferences, particularly in situations where cognition is intricate

and uncertain. Consequently, Li and Zhang (2023) opted to utilize

linguistic q-ROF preference relations as a means to represent the

cognitive information provided by experts. Additive consistency

for the linguistic q-ROF preference relation was introduced as a

mechanism to rank objects, and a consistency-focused model was
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built to derive the normalized linguistic q-ROF priority weight

vector.

The Schweizer-Sklar (SS) operator is an effective method for

aggregating fuzzy data with varying degrees of interdependence

and relevance. This operator has the advantage of being flexible

and effective at handling both prioritized and unprioritized input.

Schweizer and Sklar (2011) invented the SS operator. Mahmood

and ur Rehman (2023) investigated the principles for operation

depend on the t-norm and t-conorm of SS and created aggregation

operators based on these operational laws in the context of a Bipolar

complex fuzzy BCF collection. Chen et al. (2023) proposed an

advanced method for multi-attribute decision-making (MADM)

in the context of q-rung orthopair probabilistic hesitant fuzzy

environments. They introduced the q-rung orthopair probabilistic

hesitant fuzzy SS power weighted Hamy mean operator to improve

the computational capabilities of the information aggregation

operator. In a similar vein, Kausar et al. (2023) not only introduced

the SS aggregation operator based on cubic m-polar fuzzy sets

(CmPFS) but also innovatively developed several aggregation

operators using CmPFS in conjunction with the SS t-norm and t-

conorm. Furthermore, Liu et al. (2023) contributed by establishing

operational rules for the q-rung orthopair normal fuzzy set. He

also extended the SS t-norm and t-conorm to q-rung orthopair

normal fuzzy numbers. In the existing literature, there has been

no exploration of the SS operator within the context of 2TLq-

ROF information, representing a significant gap. Therefore, we

introduce this operator to address this gap and demonstrate its

effectiveness in handling uncertainty.

The entropy approach is used to calculate weights because it

can manage data-driven weight determination in decision-making,

making it appropriate for scenarios with accurate and easily

accessible data. The entropy method is a widely used technique

for ranking and selecting alternatives in MADM problems. The

entropy method is best for situations where there is a large number

of attribute, and the DMs wants to avoid bias and inconsistency

in the weighting process. A novel feature selection approach was

presented by Pandey et al. (2023) using intuitionistic fuzzy entropy.

The amalgamated Fermatean fuzzy set and entropy approach

was developed by Chang et al. (2023) to prioritize the risk of

product failure items. By using a brand-new entropy measure

function created specifically for this method, Aydogdu et al.

(2023) produced a revolutionary TOPSIS method in a complicated

spherical fuzzy context by objectively determining the weights

of the criterion and DMs. Zhang Y. et al. (2023) established a

stability evaluation framework for the region’s rocky slopes using

the entropy weighting-fuzzy theory. The usefulness and advantages

of the idea of structure-based Pythagorean Fuzzy entropy that

Mao et al. (2023) provide for PyFS are substantiated by numerical

evidence and mathematical analysis. To enhance the currently

used fuzzy entropy metric, Krishankumar et al. (2023) presented

a unique entropy function for the IFS.

Opricovic (1998) suggested the VIKOR ranking system as

a compromise in 1998. Zhang N. et al. (2023) suggested a

VIKOR approach grounded in regret theory to tackle the

MAGDM challenge with fully unknowable weight data along with

Pythagorean hesitate fuzzy assessment value. Peng J. J. et al.

(2023) suggested an enhanced picture fuzzy VIKOR method using

bidirectional projection to carry out selection procedure. The

problem of selecting environmentally friendly and sustainable

suppliers was addressed by Wang et al. (2023) by integrating

the TODIM and VIKOR methods, decision-making information

type-2 neutrosophic numberset, and attribute weight adopted the

entropy weight technique. Using the VIKOR MADM technique,

Nath et al. (2023) prepared and presented a rank list of the

reported catalysts. Yadav et al.’s (2023) investigation focused on

the invention of the hybrid Entropy-VIKOR MCDM technique

for selecting and rating dental restorative composite materials.

To determine which dental composite formulation was the best,

eleven performance-defining characteristics of dental composites

were taken into account. Riaz et al. (2023) created a novel

hybrid approach for MAGDM that combines cubic bipolar fuzzy-

VIKOR method with Einstein averaging aggregation operators.

Lei et al. (2023) utilized the TODIM and VIKOR techniques to

address MAGDM problems as the research on the placement of

medical logistics distribution centers has significant theoretical and

practical application implications independently. To the greatest

extent of the information we have, this would be the first ranking

research study on the impact of AI in education since the VIKOR

method hasn’t yet been utilized for such a ranking assessment.

1.1 Contributions

Following are our work’s essential contributions:

- In this article, we present the idea of 2TLq-ROFS, which

combines the benefits of the 2TL set with the q-ROFS and has the

ability to handle qualitative as well as quantitative information in

a flexible and comprehensive approach.

- We created a few novel aggregation operators based on the

SSWPA operator in a 2TLq-ROFS environment, and we looked

at their unique circumstances and properties. The SSWPA

operator can be reduced to some existing operators as special

instances and can represent the relationships between the input

arguments by utilizing a parameter vector.

- In MAGDM environments using 2TLq-ROFS information,

we have used the Entropy-VIKOR methodology to calculate

the ideal weights for the attributes and rank the outcomes.

The drawbacks of subjective weighting methods and objective

weighting methods can be overcome by the Entropy-VIKOR

methodology, which can produce a ranking result that is more

reasonable and reliable.

- Using an actual case to look at whether the impact of AI in

education, we have demonstrated the applicability and efficacy

of our proposed method. We also contrasted our approach with

a few already in use.

1.2 The suggested study’s architecture

The remainder of the paper will be organized according to

the following format: In Section 2, we will provide a concise

overview of fundamental definitions and concepts related to 2TLq-

ROFS and its associated operational laws. Section 3 will delve into

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1347626
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mahboob et al. 10.3389/frai.2024.1347626

SS power average and SS power geometric operators, along with

their weighted variants tailored for 2TLq-ROF numbers. We will

also explore their respective properties. The 2TLq-ROF-Entropy-

VIKORmethod for solving theMAGDMproblemwill be presented

in Section 4. In Section 5, we will demonstrate the effectiveness

and feasibility of our proposed model through a practical case

study focused on the impact of artificial intelligence in education.

Additionally, we will conduct a comparative analysis between our

approach and prior research. Lastly, Section 6 will conclude the

paper, highlighting key findings, acknowledging limitations, and

outlining potential directions for future research.

2 Preliminaries

In this section, we provide a recap of important concepts, such

as 2TLq-ROFS, to enhance the clarity and comprehension of the

subsequent sections.

Definition 1. Naz et al. (2022b). Consider a set S defined as follows:

S = {ℜl|l = 0, . . . , τ }. This set is characterized as a LTS with

an odd cardinality. If (ℜr(∂), §(∂)), (ℜt(∂),G(∂)) is defined for

ℜr(∂),ℜt(∂) ∈ S, §(∂),G(∂) ∈ [−0.5, 0.5), where (ℜr(∂), §(∂))

and (ℜt(∂),G(∂)) represent the MD and NMD by 2TL terms,

respectively. Equation (1) defines the 2TLq-ROFS:

W = {〈∂ , ((ℜr(∂), §(∂)), (ℜt(∂),G(∂)))〉|∂ ∈ L}, (1)

where 0 ≤ 1−1(ℜr(∂), §(∂)) ≤ τ , 0 ≤ 1−1(ℜt(∂),G(∂)) ≤ τ ,

and 0 ≤ (1−1(ℜr(∂), §(∂)))
q + (1−1(ℜt(∂),G(∂)))

q ≤ τ q.

The descriptions that follow of the score function and accuracy

function can be utilized when comparing any two 2TLq-ROFNs:

Definition 2. Naz et al. (2022b). Assume that W =

((ℜr, §), (ℜt,G)) corresponds to 2TLq-ROFN. Consequently,

the Equation (2) can be utilized for presenting the score function

of a 2TLq-ROFN:

̥(W) = 1

(

τ

2

(

1+

(

1−1(ℜr, §)

τ

)q

−

(

1−1(ℜt,G)

τ

)q
))

,

1−1(̥(W)) ∈ [0, τ ], (2)

Additionally, the accuracy function ג is represented by

Equation (3).

(W)ג = 1

(

τ

(

(

1−1(ℜr, §)

τ

)q

+

(

1−1(ℜt,G)

τ

)q
))

,

((W)ג)1−1 ∈ [0, τ ]. (3)

Definition 3. Naz et al. (2022b). Consider W1 =

((ℜr1 , §1), (ℜt1 ,G1)) and W2 = ((ℜr2 , §2), (ℜt2 ,G2)) are two

2TLq-ROFNs, then these two 2TLq-ROFNs can be compared using

the rules listed below:

(1) If̥(W1) > ̥(W2), thenW1 ≻ W2;

(2) If̥(W1) < ̥(W2), thenW1 ≺ W2;

(3) If̥(W1) = ̥(W2), then

• If (W1)ג > ,(W2)ג thenW1 ≻ W2;

• If (W1)ג < ,(W2)ג thenW1 ≺ W2;

• If (W1)ג = ,(W2)ג thenW1 ∼ W2.

Based on algebraic operations, the following operational laws

for 2TLq-ROFNs can be established:

Definition 4. Naz et al. (2022b). LetW = ((ℜr, §), (ℜt,G)),W1 =
((ℜr1 , §1), (ℜt1 ,G1)) and W2 = ((ℜr2 , §2), (ℜt2 ,G2)) are three
2TLq-ROFNs, whereby q ≥ 1, afterwards

1. W1 ⊕W2 =













1

(

τ q

√

1−
(

1−
(

1−1(ℜr1 ,§1)

τ

)q) (

1−
(

1−1(ℜr2 ,§2)

τ

)q)
)

,

1
(

τ
(

1−1(ℜt1 ,G1)

τ

) (

1−1(ℜt2 ,G2)

τ

))













;

2. W1 ⊗W2 =













1
(

τ
(

1−1(ℜr1 ,§1)

τ

) (

1−1(ℜr2 ,§2)

τ

))

,

1

(

τ q

√

1−
(

1−
(

1−1(ℜt1 ,G1)

τ

)q) (

1−
(

1−1(ℜt2 ,G2)

τ

)q)
)













;

3. λW =





 1

(

τ
q

√

1−
(

1−
(

1−1(ℜr ,§)
τ

)q)λ
)

,1

(

τ
(

1−1(ℜt ,G)
τ

)λ
)






, λ > 0;

4. Wλ =





 1

(

τ
(

1−1(ℜr ,§)
τ

)λ
)

,1

(

τ
q

√

1−
(

1−
(

1−1(ℜt ,G)
τ

)q)λ
) 




, λ > 0.

Definition 5. Naz et al. (2022b). Let W1 = ((ℜr1 , §1), (ℜt1 ,G1))

and W2 = ((ℜr2 , §2), (ℜt2 ,G2)), respectively, two 2TLq-ROFNs.

Following the subsequent description, the normalized 2TLq-ROF

Hamming distance is:

d(W1,W2) = 1









τ
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∣

∣
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−
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∣

∣
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∣
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−
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)q∣
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∣

∣

















.

(4)

3 The 2TLq-ROFSSWPA operator

Definition 6. Yager (2001). The power average (PA) operator, a

non-linear weighted average aggregation operator was proposed by

Yager and described as follows Equation (5)

PA(r1, r2, . . . , rň) =

ň
∑

ψ=1

(1+ k(rψ ))rψ

ň
∑

ψ=1

(1+ k(rψ ))

, (5)

where k(rψ ) =
ň
∑

φ=1,φ 6=ψ

rψ)ג , rφ) and (⊔,r)ג is the support for

r and ⊔ which meets the three prerequisites listed below:

• (⊔,r)ג ∈ [0, 1];

• (⊔,r)ג = ,t)ג r);

• (⊔,r)ג ≥ ,a)ג b), if |r− t| < |a− b|.

Definition 7. Let Wφ = ((ℜrφ , §φ), (ℜtφ ,Gφ))(φ = 1, 2, . . . , ň) be

a group of 2TLq-ROFNs. The 2TLq-ROFSSWPA operator serves as

a mapping Tň → T as shown in Equation (6).

2TLq-ROFSSWPA(W1,W2, . . . ,Wň) =
ň
⊕
φ=1

DφWφ , (6)

in which T is the set of 2TLq-ROFNs, β = (β1,β2, . . . ,βň)
T is

the weight vector ofWφ(φ = 1, 2, . . . , ň), such that βφ ∈ [0, 1] and

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1347626
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org


Mahboob et al. 10.3389/frai.2024.1347626

ň
∑

φ=1

βφ = 1.

In this case, Dφ might be determined as follows:

Step 1. Determine the support degree among Wφ and Wψ (φ =

1, 2, . . . , ň, ;φ 6= ψ) by using Equation (7).

k(Wφ ,Wψ ) = 1− d(Wφ ,Wψ ). (7)

Wherein the d(Wφ ,Wψ ) is the distance amongst Wφ and

Wψ .

Step 2. Conduct the syntheses support degree calculationsi(Wφ)

of (Wφ) by using Equation (8).

i(Wφ) =

ň
∑

φ=1,φ 6=ψ

βφk(W
φ ,Wψ ) (8)

Step 3. Calculate the complete set of power weights using

Equation (9):

Dφ =
βφ
(

1+ i(Wφ)
)

ň
∑

φ=1

βφ
(

1+ i(Wφ)
)

. (9)

Theorem 1. Let Wφ = ((ℜrφ , §φ), (ℜtφ ,Gφ))(φ = 1, 2, . . . , ň) a

group of 2TLq-ROFNs with a weight vector β = (β1,β2, . . . ,βň)
T ,

such that βφ ∈ [0, 1] and
ň
∑

φ=1

βφ = 1, the 2TLq-ROFSSWPA

operator is defined as shown in Equation (10).

2TLq-ROFSSWPA(W1,W2, . . . ,Wň)

=
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1
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.

(10)

Proof. By utilizing the mathematical induction technique to the

positive integer ň, we demonstrate that the Equation (10) holds.

(a) Whenever ň = 1, afterwards

D1W1 =
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1
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τ

(
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τ

)qξ
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1
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.

Thus, Equation (10) holds for ň = 1.

(b) Assume that Equation (10) holds for ň = m̌,

2TLq-ROFSSWPA(W1 ,W2 , . . . ,Wφ )

=
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ň
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φ=1
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1−

(

1−1(ℜrφ
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)q)ξ
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τ
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Dφ

(

1−1(ℜtφ
,Gφ )

τ

)qξ
)

1
qξ























.

Then, by inductive assumption, when ň = m̌+ 1

2TLq-ROFSSWPA(W1,W2, . . . ,Wm̌,Wm̌+1)

= 2TLq-ROFSSWPA(W1,W2, . . . ,Wm̌)⊕ Dm̌+1Wm̌+1

=
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τ
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τ
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1
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.

Consequently, it can be concluded that Equation (10) holds for

a positive integer ň = m̌ + 1. Although Equation (10) holds for

every ň ≥ 1, it can be proved using the mathematical induction

method.

Theorem 2. Let Wφ = ((ℜrφ , §φ), (ℜtφ ,Gφ)) and W ′
φ =

((ℜ′
rφ
, §′φ), (ℜ

′
tφ
,G′
φ))(φ = 1, 2, . . . , ň) be two sets of 2TLq-

ROFNs, the 2TLq-ROFSSWPA operator satisfies the following

characteristics:

1. (Idempotency) If all Wφ = ((ℜrφ , §φ), (ℜtφ ,Gφ))(φ =

1, 2, . . . , ň) are identical with regard to each φ, then

2TLq-ROFSSWPA(W1,W2, . . . ,Wň) = W .

2. (Monotonicity) IfWφ ≤ W ′
φ , for all φ, then

2TLq-ROFSSWPA(W1,W2, . . . ,Wň)

≤ 2TLq-ROFSSWPA(W ′
1,W

′
2, . . . ,W

′
ň).

3. (Boundedness) Let Wφ = ((ℜrφ , §φ), (ℜtφ ,Gφ))(φ =

1, 2, . . . , ň) be a group of 2TLq-ROFNs, and consider

W− = (min
φ

(ℜrφ , §φ), max
φ

(ℜtφ ,Gφ)) and W+ =

(max
φ

(ℜrφ , §φ), min
φ

(ℜtφ ,Gφ)), then

W− ≤ 2TLq-ROFSSWPA(W1,W2, . . . ,Wň) ≤ W+.

Definition 8. Xu and Yager (2009). Building on the power average

operator (PA) and the geometric mean, Xu and Yager suggested a
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new operator termed the power geometric operator (PG), defined

in Equation (11).

PG(r1, r2, . . . , rň) =

ň
∑

ψ=1

r

1+i(rψ )

n
∑

ψ=1
(1+i(rψ )

ψ . (11)

The non-linear weighted aggregation tools PA and PG utilize

weighting vectors that depend upon input values. These operators

permit values to be aggregated in a manner that complements

and strengthens one another. In other words, when the values

depicted by rψ and rφ are near together, they are more identical

and lend more powerful suppor to one another. Several 2TLq-

ROFSSWPG aggregation operators are defined based on the PG

and the 2TLq-ROFSSWPA operator.

Definition 9. Let Wφ = ((ℜrφ , §φ), (ℜtφ ,Gφ))(φ = 1, 2, . . . , ň) be

a group of 2TLq-ROFNs. The 2TLq-ROFSSWPG operator serves as

a mapping Tň → T as shown in Equation (12).

2TLq-ROFSSWPG(W1,W2, . . . ,Wň) =
ň
⊗
φ=1

W
Dφ
φ , (12)

in which T is the set of 2TLq-ROFNs, β = (β1,β2, . . . ,βň)
T is

the weight vector ofWφ(φ = 1, 2, . . . , ň), such that βφ ∈ [0, 1] and
ň
∑

φ=1

βφ = 1.

Where Dφ might be determined as:

Step 1. Determine the support degree among Wφ and Wψ (φ =

1, 2, . . . , ň, ;φ6 = ψ) by using Equation (13).

k(Wφ ,Wψ ) = 1− d(Wφ ,Wψ ). (13)

Wherein the d(Wφ ,Wψ ) is the distance amongst Wφ and

Wψ .

Step 2. Conduct the syntheses support degree calculationsi(Wφ)

of (Wφ) by using Equation (14).

i(Wφ) =

ň
∑

φ=1,φ 6=ψ

βφk(W
φ ,Wψ ) (14)

ℏγ = [W
γ

ψφ]m̌×ň (17)

=













((ℜr11 , §11)
γ , (ℜt11 ,G11)

γ ) ((ℜr12 , §12)
γ , (ℜt12 ,G12)

γ ) . . . ((ℜr1m̌
, §1m̌)

γ , (ℜt1m̌
,G1m̌)

γ )

((ℜr21 , §21)
γ , (ℜt21 ,G21)

γ ) ((ℜr22 , §22)
γ , (ℜt22 ,G22)

γ ) . . . ((ℜr2m̌
, §2m̌)

γ , (ℜt2m̌
,G2m̌)

γ )
...

...
. . .

...

((ℜrň1
, §ň1)

γ , (ℜtň1
,Gň1)

γ ) ((ℜrň2
, §ň2)

γ , (ℜtň2
,Gň2)

γ ) . . . ((ℜrňm̌
, §ňm̌)

γ , (ℜtňm̌
,Gňm̌)

γ )













m̌×ň

Step 3. Calculate the complete set of power weights using

Equation (15)

Dφ =
βφ
(

1+ i(Wφ)
)

ň
∑

φ=1

βφ
(

1+ i(Wφ)
)

. (15)

Theorem 3. Let Wφ = ((ℜrφ , §φ), (ℜtφ ,Gφ))(φ = 1, 2, . . . , ň) be

a group of 2TLq-ROFNs containing an appropriate weight vector

β = (β1,β2, . . . ,βň)
T , such that βφ ∈ [0, 1] and

ň
∑

φ=1

βφ = 1.

Consequently, the operator’s 2TLq-ROFSSWPG’s aggregate value

stays a 2TLq-ROFN, the 2TLq-ROFSSWPA operator is defined as

shown in Equation (16).

2TLq-ROFSSWPG(W1,W2, . . . ,Wň)

=



















1
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ň
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Dφ

(
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τ

)qξ
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1
qξ
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1
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(

ň
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(
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)q)ξ
)

1
q





1
ξ

























.

(16)

Proof. The proof resembles that of the Theorem 1.

The idempotency, monotonicity, and boundedness of the 2TLq-

ROFSSWPA operator are also characteristics of the 2TLq-

ROFSSWPG operator.

4 Decision analysis with
entropy-VIKOR approach in MAGDM
environment

The framework described in this section combines the VIKOR

and Entropy methods in the 2TLq-ROF environment. The VIKOR

and Entropy methods are important in the context of MAGDM.

The 2TLq-ROF-VIKOR methodology, from which the weight is

obtained via the Entropy method, is explained in detail as follows:

Step 1 Construct the 2TLq-ROF decision matrix. Consider there

are a variety of ‘m̌’ alternatives. 2 = {21,22, . . . ,2m̌} and

a set of ‘ň’ attributes � = {�1,�2, . . . ,�ň}. A group of

DMs 8 = {81,82, . . . ,8e} is created with the weight vector

β ′ = (β ′1,β
′
2, . . . ,β

′
e)
T where β ′ ∈ [0, 1] and

e
∑

γ=1
β ′γ =

1, to articulate their views regarding each alternative 2ψ
about the attribute �φ in the terms of 2TLq-ROFNs.

Assuming that each DM 8γ presents information about

the assessment in terms of the 2TLq-ROF decision matrix

ℏγ = [W
γ

ψφ]m̌×ň = ((ℜ
γ
rψφ

, §
γ

ψφ), (ℜ
γ
tψφ

, c
γ

ψφ))(ψ =

1, 2, . . . , m̌,φ = 1, 2, . . . , ň) as:

Step 2 Evaluate the support degree k(W
γ

ψφ ,W
ε
ψφ) by utilizing

Equation (18):

k(W
γ

ψφ ,W
ε
ψφ)

= 1− d(W
γ

ψφ ,W
ε
ψφ)(γ , d = 1, 2, . . . , e; γ 6= ε),

(18)
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where d(W
γ

ψφ ,W
ε
ψφ) denotes to indicate the normalized

Hamming distance,estimated by Equation (4), between W
γ

ψφ

andWε
ψφ .

Step 3 The synthesis support matrices ought to have been

computed [i(W
γ

ψφ)]m̌×ň by using Equation (19).

i(W
γ

ψφ) =

e
∑

γ=1;ε 6=γ

k(W
γ

ψφ ,W
ε
ψφ) (19)

Step 4 The comprehensive power weight matrices should be

computed [Ď
γ

ψφ]m̌×ň(γ = 1, 2, . . . , e) using Equation (20).

Ď
γ

ψφ =
β ′
(

1+ i(W
γ

ψφ)
)

e
∑

γ=1
β ′
(

1+ i(W
γ

ψφ)
)

(20)

Step 5 Individual decision matrices are combined. With the

support of the 2TLq-ROFSSWPA operator, where

2TLq-ROFSSWPA(W1,W2, . . . ,Wň)

=
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(

ň
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Ďφ
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1−

(

1−1(ℜrφ
,§φ )

τ

)q)ξ
)

1
ξ





1
q





,

1



τ
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φ=1

Ďφ
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,Gφ )

τ

)qξ
)

1
qξ























.

(21)

.

4.1 A method of group decision-making
for 2TLq-ROFSs based on weighted
exponential entropy measure

Step 6 As a first step, we remove ambiguity in the attributes units

by normalizing the values of the attributes in the decision

matrix. Equation (22) is used to derive the normalized

criterion values.

∇ψφ =
2ψφ

ň
∑

ψ=1

2ψφ

, (22)

where ∇ψφ is the values of the φth criteria for the ψth

alternative which have been normalized (unit-less).

Step 7 Second, we utilize the Equation (23) to figure out the

degree of entropy “Eφ" for each criterion (φ = 1, 2, . . . , ň; 0 ≤

Eφ ≤ 1).

Eφ = −
1

lnn

ň
∑

ψ=1

∇ψφ ln(∇ψφ) (23)

Step 8 Thirdly, we calculate the degree of differences (dφ)in each

criterion as follows:

dφ = 1− Eφ (24)

Step 9 Lastly, the normalized value dφ of the Entropy weight “βφ”

of the criterion (φ) can be calculated as follows:

βφ =
dφ

ň
∑

φ=1

dφ

, (25)

it should be noted that
ň
∑

φ=1

βφ = 1,φ = 1, 2, . . . , ň.

4.2 The 2TLq-ROF-VIKOR multiple
criteria analysis approach

Step 10 Based on the thorough 2TLq-ROF evaluation matrix, to

determine the positive ideal solution (PIS) ℏ+φ and negative

ideal solution (NIS) ℏ−φ for each attribute, utilize the following

equations.

The ℏ+φ and ℏ
−
φ indices are calculated from Equation (26) for

the positive attributes.







ℏ
+
φ = (max

φ
(ℜrψφ , §ψφ), min

φ
(ℜtψφ ,Gψφ))

ℏ
−
φ = (min

φ
(ℜrψφ , §ψφ), max

φ
(ℜtψφ ,Gψφ))

;

ψ = 1, 2, . . . , m̌,φ = 1, 2, . . . , ň (26)

The ℏ+φ and ℏ
−
φ indices are calculated from Equation (27) for

the negative attributes.







ℏ
+
φ = (min

φ
(ℜrψφ , §ψφ), max

φ
(ℜtψφ ,Gψφ))

ℏ
−
φ = (max

φ
(ℜrψφ , §ψφ), min

φ
(ℜtψφ ,Gψφ))

;

ψ = 1, 2, . . . , m̌,φ = 1, 2, . . . , ň (27)

Step 11 Next 2TLq-ROFS group benefit value Rψ and individual

regret value Lψ for every evaluation alternative could be

estimated through the Equations (28) and (29):

Rψ =

n
∑

φ=1

βφ

(

ℏ
+
φ − ℏψφ

)

(

ℏ
+
φ − ℏ

−
φ

) ;ψ = 1, 2, . . . , m̌ (28)

Lψ = max
φ



βφ

(

ℏ
+
φ − ℏψφ

)

(

ℏ
+
φ − ℏ

−
φ

)



 ;

ψ = 1, 2, . . . , m̌,φ = 1, 2, . . . , ň (29)

where Rψ and Lψ identify the group utility and individual

regret measures for every alternative. The lower the value

of Kψ , the better the group utility of the alternative. The

opposite is also true the lower the value of Lψ , the lower

the individual regret. where the φth criteria’s weight value

is βφ .
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Step 12 Equation (30) demonstrates the calculation of the

compromise sort index value for each alternative.

3ψ = u×
[

Rψ−R+

R−−R+

]

+ (1− u)×
[

Lψ−L
+

L−−L+

]

(30)

where R+ = min
ψ

Rψ , R− = max
ψ

Rψ , L
+ =

min
ψ

Lψ , L
− = max

ψ
Lψ . And u denotes the compromise

sorting coefficient, which is commonly assumed to be 0.5.

Step 13 Ultimately, rank the alternatives based on the acquired

values of 3ψ (ψ = 1, 2, . . . , m̌), where a higher 3ψ indicates

a less favorable alternative, while a lower value signifies amore

favorable one.

A visual depiction of methodology is given in Figure 3.

5 Numerical example

The following subsection presents a numerical illustration to

show how flexible and effective the suggested approach is. We

choose the most noteworthy instances of artificial intelligence’s

impact on education in order to validate our work.

5.1 Case overview

The teaching, learning, evaluation, and administration of

education are all being transformed by AI. AI can improve

education quality and effectiveness by offering individualized

and adaptable learning experiences, intelligent tutoring systems,

automated grading and feedback, and data-driven insights for

educators and policymakers. AI can encourage critical thinking,

creativity, and teamwork in both students and teachers. However,

AI also presents a number of hazards and difficulties for education,

including possible ethical, social, and legal repercussions, problems

with fairness and the digital divide, and issues with human-AI

interaction and trust. As an outcome, it’s crucial to ensure that AI is

used appropriately in education, for the good of all parties involved,

and in a way that respects human dignity and values. Some of the

alternatives of the impact of AI in education are:

1. Ethical analysis(21)

This focuses on the moral ideals and concepts that underpin the

design, creation, and use of AI in education. Regarding issues

like privacy, fairness, responsibility, and openness, it also takes

into account the moral conundrums and difficulties that may

result from the use of AI in education.

2. Pedagogical analysis (22)

This looks at the ideas and methods of pedagogy that underpin

the application of AI in education. Additionally, it assesses how

effectively teaching and learning are improved by AI, as well as

how AI affects learning in terms of cognitive, emotional, and

social elements.

3. Sociocultural analysis (23)

This looks at the social and cultural implications of artificial

intelligence in education. Additionally, it examines how AI may

affect the diversity, inclusiveness, and equality of educational

opportunities and results, as well as how AI may impact kids’

and teachers’ cultural identities and values.

4. Political analysis(24)

This looks into the interests and power structures that influence

the creation and application of AI in education. It also looks

at the impact of AI on educational governance, policy, and

regulation, as well as the possible drawbacks and upsides of AI

for social justice and democracy.

5. Economic analysis(25)

This weighs the costs and advantages of artificial intelligence

in education. Additionally, it assesses how AI will affect

educational institutions’ creativity, productivity, and efficiency

as well as how AI will affect students’ and teachers’ capacity to

grow their talents and find employment.

6. Ecological analysis (26)

This focuses on how AI in education affects the environment.

It also takes into account the resilience and sustainability of

educational methods and solutions enhanced by AI, as well as

the potential role of AI in raising awareness of and promoting

environmental action.

AI in education can be seen as a MAGDM problem, where multiple

stakeholders with different preferences and objectives need to

make decisions about the design, implementation, and evaluation

of AI systems in education. Based on the previously discussed

survey and analysis, we intend to utilize the 2TLq-ROF-Entropy-

VIKOR method proposed in this article to assess the impact of

AI in education. In this context, we will evaluate six alternatives

denoted as 2 = {21,22, . . . ,26} with the input of five DMs

represented as 8 = {81,82,83,84,85}, each assigned weights

in accordance with β ′ = (0.2192, 0.2134, 0.1930, 0.1906, 0.1838)T

to address the specific problem at hand. These five DMs will

select the best alternative according to the assessment of four

attributes � = {�1,�2,�3,�4}, as outlined in Table 2. To

quantitatively assess each LTS S9={ℜ9
0 : extremely unfavorable,ℜ9

1

: very unfavorable, ℜ9
2: unfavorable, ℜ9

3 : slightly unfavorable,

ℜ9
4 : neutral, ℜ9

5 : slightly favorable, ℜ9
6: favorable, ℜ

9
7 : very

favorable, ℜ9
8 : extremely favorable} five DMs convey their unique

viewpoints. The decision matrix, shown in Table 3, summarizes

the evaluation values these DMs assigned for each attribute of

each alternative.

5.2 The results of the suggested method

This subsection assesses the suitability of an innovative method

for decision-making contingent on the amalgamation of the

VIKOR and Entropy methodologies with 2TLq-ROF data to

determine how well it analyzes the impact of AI on education. The

procedures to be performed in the procedure are listed below:
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FIGURE 3

A visual outline of the methodology.

TABLE 2 Concise overview of assessment attributes.

Attributes Overview

Personalization (�1) By taking into account students’ abilities, preferences, and goals, AI can assist in developing tailored learning paths for them. Additionally, AI

has the ability to customize instruction, feedback, and advice for students and teachers to fit their learning preferences and environments.

Automation (�2) Tasks like grading, testing, scheduling, and administration that are monotonous, time-consuming, or boring for teachers and students can be

automated by AI. By giving teachers data and insights to enhance their teaching methods and student outcomes, AI can also support the

function of teachers in the classroom.

Innovation (�3) By enabling new forms of learning like gamification, simulation, virtual reality, and augmented reality, AI can promote innovation and

creativity in education. By fostering global collaboration, communication, and interaction between students, professors, and specialists, AI can

also improve the quality and accessibility of education.

Ethics (�4) Concerning issues like privacy, security, prejudice, accountability, and transparency, AI also presents certain ethical problems and risks for

education. To guarantee that AI is in line with the principles and objectives of education and upholds the rights and dignity of both students

and teachers, rigorous planning, implementation, and evaluation are necessary.

Step 1. We construct the 2TLq-ROF evaluation matrix

h̄γ = [W
γ

ψφ]6×4 = ((ℜ
γ
rψφ

, §
γ

ψφ), (ℜ
γ
tψφ

,G
γ

ψφ))6×4(ψ =

1, 2, 3, . . . , 6,φ = 1, 2, 3, 4) and γ = 1, 2, 3, 4, 5), subsequently

provides the assessments of five DMs as established in Table 3.

Step 2. Calculated using Equation (28), we have the support

k(W
γ

ψφ ,W
ε
ψφ)(ψ = 1, 2, . . . , 6; φ = 1, 2, 3, 4; γ =

1, 2, 3, 4, 5; ε = 1, 2, 3, 4, 5 and γ 6= ε). For convenience,

we present k(W
γ

ψφ ,W
ε
ψφ) by kγ ε(γ = 1, 2, 3, 4, 5; ε =

1, 2, 3, 4, 5 and γ 6= ε). Consequently, we can obtain:

k12 = k21 =

�1 �2 �3 �4
































21 0.9290 0.7880 0.6882 0.7440

22 0.8851 0.7908 0.8781 1.0000

23 1.0000 0.8699 0.7403 0.9240

24 0.8814 0.9963 0.9679 0.6442

25 0.9560 0.7555 0.8699 0.9372

26 0.9995 0.7560 0.6254 0.6286
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TABLE 3 Decision matrices by DMs utilizing the 2TLq-ROFNs.

�1 �2 �3 �4

21 ((ℜ7 , 0), (ℜ6 , 0)) ((ℜ3 , 0), (ℜ7 , 0)) ((ℜ7 , 0), (ℜ5 , 0)) ((ℜ1 , 0), (ℜ2 , 0))

22 ((ℜ5 , 0), (ℜ3 , 0)) ((ℜ5 , 0), (ℜ1 , 0)) ((ℜ3 , 0), (ℜ6 , 0)) ((ℜ4 , 0), (ℜ7 , 0))

81 23 ((ℜ4 , 0), (ℜ7 , 0)) ((ℜ4 , 0), (ℜ3 , 0)) ((ℜ1 , 0), (ℜ2 , 0)) ((ℜ5 , 0), (ℜ4 , 0))

24 ((ℜ6 , 0), (ℜ2 , 0)) ((ℜ4 , 0), (ℜ1 , 0)) ((ℜ4 , 0), (ℜ5 , 0)) ((ℜ7 , 0), (ℜ6 , 0))

25 ((ℜ3 , 0), (ℜ1 , 0)) ((ℜ3 , 0), (ℜ4 , 0)) ((ℜ2 , 0), (ℜ6 , 0)) ((ℜ4 , 0), (ℜ1 , 0))

26 ((ℜ1 , 0), (ℜ6 , 0)) ((ℜ2 , 0), (ℜ7 , 0)) ((ℜ1 , 0), (ℜ7 , 0)) ((ℜ3 , 0), (ℜ7 , 0))

21 ((ℜ7 , 0), (ℜ5 , 0)) ((ℜ2 , 0), (ℜ5 , 0)) ((ℜ4 , 0), (ℜ6 , 0)) ((ℜ1 , 0), (ℜ7 , 0))

22 ((ℜ5 , 0), (ℜ6 , 0)) ((ℜ7 , 0), (ℜ2 , 0)) ((ℜ1 , 0), (ℜ2 , 0)) ((ℜ4 , 0), (ℜ7 , 0))

82 23 ((ℜ4 , 0), (ℜ7 , 0)) ((ℜ2 , 0), (ℜ6 , 0)) ((ℜ7 , 0), (ℜ3 , 0)) ((ℜ3 , 0), (ℜ5 , 0))

24 ((ℜ1 , 0), (ℜ2 , 0)) ((ℜ4 , 0), (ℜ3 , 0)) ((ℜ5 , 0), (ℜ5 , 0)) ((ℜ3 , 0), (ℜ4 , 0))

25 ((ℜ5 , 0), (ℜ1 , 0)) ((ℜ1 , 0), (ℜ7 , 0)) ((ℜ4 , 0), (ℜ3 , 0)) ((ℜ2 , 0), (ℜ5 , 0))

26 ((ℜ2 , 0), (ℜ6 , 0)) ((ℜ3 , 0), (ℜ4 , 0)) ((ℜ6 , 0), (ℜ2 , 0)) ((ℜ6 , 0), (ℜ1 , 0))

21 ((ℜ1 , 0), (ℜ6 , 0)) ((ℜ5 , 0), (ℜ1 , 0)) ((ℜ4 , 0), (ℜ3 , 0)) ((ℜ2 , 0), (ℜ2 , 0))

22 ((ℜ3 , 0), (ℜ2 , 0)) ((ℜ1 , 0), (ℜ3 , 0)) ((ℜ3 , 0), (ℜ4 , 0)) ((ℜ4 , 0), (ℜ1 , 0))

83 23 ((ℜ2 , 0), (ℜ4 , 0)) ((ℜ3 , 0), (ℜ3 , 0)) ((ℜ2 , 0), (ℜ5 , 0)) ((ℜ5 , 0), (ℜ1 , 0))

24 ((ℜ1 , 0), (ℜ5 , 0)) ((ℜ6 , 0), (ℜ1 , 0)) ((ℜ1 , 0), (ℜ6 , 0)) ((ℜ3 , 0), (ℜ1 , 0))

25 ((ℜ4 , 0), (ℜ3 , 0)) ((ℜ5 , 0), (ℜ2 , 0)) ((ℜ4 , 0), (ℜ1 , 0)) ((ℜ2 , 0), (ℜ4 , 0))

26 ((ℜ2 , 0), (ℜ5 , 0)) ((ℜ2 , 0), (ℜ1 , 0)) ((ℜ4 , 0), (ℜ2 , 0)) ((ℜ1 , 0), (ℜ5 , 0))

21 ((ℜ2 , 0), (ℜ5 , 0)) ((ℜ3 , 0), (ℜ7 , 0)) ((ℜ4 , 0), (ℜ6 , 0)) ((ℜ2 , 0), (ℜ4 , 0))

22 ((ℜ3 , 0), (ℜ3 , 0)) ((ℜ5 , 0), (ℜ6 , 0)) ((ℜ5 , 0), (ℜ5 , 0)) ((ℜ7 , 0), (ℜ2 , 0))

84 23 ((ℜ5 , 0), (ℜ3 , 0)) ((ℜ1 , 0), (ℜ3 , 0)) ((ℜ1 , 0), (ℜ6 , 0)) ((ℜ2 , 0), (ℜ4 , 0))

24 ((ℜ6 , 0), (ℜ1 , 0)) ((ℜ7 , 0), (ℜ1 , 0)) ((ℜ3 , 0), (ℜ6 , 0)) ((ℜ1 , 0), (ℜ7 , 0))

25 ((ℜ1 , 0), (ℜ4 , 0)) ((ℜ4 , 0), (ℜ5 , 0)) ((ℜ2 , 0), (ℜ5 , 0)) ((ℜ4 , 0), (ℜ3 , 0))

26 ((ℜ7 , 0), (ℜ2 , 0)) ((ℜ2 , 0), (ℜ4 , 0)) ((ℜ6 , 0), (ℜ3 , 0)) ((ℜ5 , 0), (ℜ1 , 0))

21 ((ℜ1 , 0), (ℜ2 , 0)) ((ℜ5 , 0), (ℜ3 , 0)) ((ℜ1 , 0), (ℜ7 , 0)) ((ℜ7 , 0), (ℜ2 , 0))

22 ((ℜ2 , 0), (ℜ4 , 0)) ((ℜ6 , 0), (ℜ3 , 0)) ((ℜ3 , 0), (ℜ5 , 0)) ((ℜ4 , 0), (ℜ4 , 0))

85 23 ((ℜ3 , 0), (ℜ6 , 0)) ((ℜ7 , 0), (ℜ4 , 0)) ((ℜ1 , 0), (ℜ6 , 0)) ((ℜ1 , 0), (ℜ7 , 0))

24 ((ℜ1 , 0), (ℜ4 , 0)) ((ℜ5 , 0), (ℜ2 , 0)) ((ℜ4 , 0), (ℜ7 , 0)) ((ℜ5 , 0), (ℜ6 , 0))

25 ((ℜ5 , 0), (ℜ3 , 0)) ((ℜ4 , 0), (ℜ7 , 0)) ((ℜ5 , 0), (ℜ7 , 0)) ((ℜ5 , 0), (ℜ3 , 0))

26 ((ℜ4 , 0), (ℜ6 , 0)) ((ℜ1 , 0), (ℜ6 , 0)) ((ℜ2 , 0), (ℜ4 , 0)) ((ℜ2 , 0), (ℜ5 , 0))

k13 = k31 =

�1 �2 �3 �4
































21 0.7436 0.6996 0.7152 0.9995

22 0.9528 0.9486 0.8970 0.7436

23 0.7440 0.9881 0.9523 0.9844

24 0.8342 0.8970 0.9134 0.6286

25 0.9844 0.9409 0.8662 0.9693

26 0.9286 0.7436 0.7284 0.7875

k14 = k41 =

�1 �2 �3 �4
































21 0.6731 1.0000 0.6882 0.9844

22 0.9560 0.8814 0.8851 0.5032

23 0.7152 0.9844 0.8818 0.9528

24 0.9995 0.7592 0.9171 0.6058

25 0.9807 0.9560 0.9290 0.9963

26 0.6254 0.7592 0.6286 0.6996

k15 = k15 =

�1 �2 �3 �4
































21 0.6405 0.7001 0.5504 0.8342

22 1.0000 0.7115 0.8182 0.7152

23 0.8622 0.8694 0.9844 0.9207

24 0.8814 0.9642 0.7756 0.8818

25 0.9812 0.8731 0.9258 0.9844

26 0.9963 0.5032 0.8622 0.9963

k23 = k32 =

�1 �2 �3 �4
































21 0.6726 0.9051 0.8851 0.7436

22 0.8379 0.7403 0.9812 0.7436

23 0.7440 0.8818 0.7001 0.9084

24 0.9528 0.8933 0.8814 0.9844

25 0.9642 0.6964 0.9963 0.9679

26 0.9290 0.9812 0.8970 0.8337
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k24 = k42 =

�1 �2 �3 �4
































21 0.7440 0.7880 1.0000 0.7587

22 0.8411 0.6731 0.9051 0.5032

23 0.7152 0.8846 0.6286 0.9647

24 0.8809 0.7555 0.8851 0.7555

25 0.9367 0.7756 0.9409 0.9409

26 0.6259 0.9968 0.9968 0.9290

k25 = k52 =

�1 �2 �3 �4
































21 0.7115 0.9056 0.8622 0.8145

22 0.8851 0.5032 0.6964 0.7152

23 0.8622 0.9995 0.7321 0.9968

24 1.0000 0.9679 0.7436 0.7321

25 0.9372 0.6286 0.9441 0.9528

26 0.9968 0.7473 0.7632 0.6249

k34 = k43 =

�1 �2 �3 �4
































21 0.9286 0.6996 0.8851 0.9849

22 0.9968 0.8374 0.9240 0.7587

23 0.9409 0.9963 0.9286 0.9372

24 0.8337 0.8622 0.9963 0.7399

25 0.9725 0.9207 0.9372 0.9729

26 0.6968 0.9844 0.8938 0.9047

k35 = k53 =

�1 �2 �3 �4
































21 0.8970 0.9995 0.7473 0.8346

22 0.9528 0.7316 0.7152 0.9642

23 0.8818 0.8814 0.9679 0.9051

24 0.9528 0.9253 0.8622 0.7468

25 0.9729 0.9258 0.9404 0.9849

26 0.9258 0.7284 0.8662 0.7912

k45 = k54 =

�1 �2 �3 �4
































21 0.9675 0.7001 0.8622 0.8498

22 0.9560 0.8301 0.7912 0.7880

23 0.8530 0.8851 0.8965 0.9679

24 0.8809 0.7875 0.8585 0.4876

25 0.9995 0.8530 0.9968 0.9881

26 0.6291 0.7440 0.7664 0.6959

Step 3. We have the overall support matrices i(W
γ

ψφ) of

the 2TLq-ROFN that correspond with Equation (29).

For convenience, we depict the values i(W
γ

ψφ)(ψ =

1, 2, . . . , 6; φ = 1, 2, 3, 4; γ = 1, 2, 3, 4, 5) as a matrix

iγ (γ = 1, 2, 3, 4, 5), illustrated below:

1ג =

�1 �2 �3 �4
































21 2.9862 3.1877 2.6420 3.5621

22 3.7939 3.3323 3.4784 2.9620

23 3.3214 3.7118 3.5589 3.7819

24 3.5964 3.6167 3.5741 2.7604

25 3.9023 3.5255 3.5910 3.8871

26 3.5498 2.7619 2.8446 3.1120

2ג =

�1 �2 �3 �4
































21 3.0572 3.3868 3.4355 3.0608

22 3.4491 2.7074 3.4608 2.9620

23 3.3214 3.6359 2.8011 3.7938

24 3.7151 3.6130 3.4779 3.1162

25 3.7942 2.8561 3.7512 3.7988

26 3.5512 3.4812 3.2823 3.0163

3ג =

�1 �2 �3 �4
































21 3.2417 3.3038 3.2326 3.5626

22 3.7402 3.2580 3.5173 3.2101

23 3.3108 3.7476 3.5489 3.7351

24 3.5735 3.5778 3.6533 3.0997

25 3.8941 3.4838 3.7401 3.8950

26 3.4802 3.4375 3.3854 3.3171

4ג =

�1 �2 �3 �4
































21 3.3131 3.1877 3.4355 3.5777

22 3.7499 3.2220 3.5054 2.5531

23 3.2243 3.7503 3.3355 3.8227

24 3.5950 3.1644 3.6570 2.5887

25 3.8894 3.5054 3.8039 3.8982

26 2.5772 3.4844 3.2856 3.2292

5ג =

�1 �2 �3 �4
































21 3.2165 3.3053 3.0220 3.3331

22 3.7939 2.7765 3.0210 3.1826

23 3.4592 3.6354 3.5809 3.7906

24 3.7151 3.6451 3.2399 2.8483

25 3.8908 3.2806 3.8071 3.9101

26 3.5480 2.7229 3.2580 3.1084
++

Step 4. We utilize the weighted power matrix of the judgment

decision maker connected to the 2TLq-ROFN in accordance

with Equation (26). The values D(W
γ

ψφ)(ψ = 1, 2, . . . , 6; φ =

1, 2, 3, 4; γ = 1, 2, 3, 4, 5) are expressed by the matrix D
γ (γ =

1, 2, 3, 4, 5), which is depicted as listed below:

D
1 =

�1 �2 �3 �4
































21 0.2103 0.2148 0.1925 0.2264

22 0.2235 0.2338 0.2229 0.2186

23 0.2190 0.2199 0.2294 0.2191

24 0.2172 0.2235 0.2217 0.2122

25 0.2205 0.2293 0.2126 0.2197

26 0.2292 0.1974 0.2005 0.2170

D
2 =

�1 �2 �3 �4
































21 0.2084 0.2190 0.2283 0.1962

22 0.2019 0.1948 0.2162 0.2128

23 0.2132 0.2107 0.1862 0.2138

24 0.2169 0.2174 0.2113 0.2261

25 0.2099 0.1902 0.2142 0.2100

26 0.2232 0.2290 0.2175 0.2064
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TABLE 4 The fused 2TLq-ROF decision matrix by the 2TLq-ROFSSWPA operator.

Comprehensive decision matrix

Alternatives �1 �2

21 ((ℜ6 , 0.4743), (ℜ5 ,−0.3810)) ((ℜ4 , 0.2531), (ℜ1 , 0.1779))

22 ((ℜ5 ,−0.3810), (ℜ2 , 0.3434)) ((ℜ6 , 0.0158), (ℜ1 , 0.1563))

23 ((ℜ4 , 0.1776), (ℜ4 ,−0.4712)) ((ℜ3 , 0.1026), (ℜ3 , 0.1529))

24 ((ℜ5 , 0.2371), (ℜ1 , 0.1810)) ((ℜ6 , 0.0597), (ℜ1 , 0.0535))

25 ((ℜ4 ,−0.0304), (ℜ1 , 0.0879)) ((ℜ5 ,−0.1260), (ℜ2 , 0.3452))

26 ((ℜ6 ,−0.2882), (ℜ2 , 0.4072)) ((ℜ6 ,−0.2495), (ℜ1 , 0.1717))

Alternatives �3 �4

21 ((ℜ6 ,−0.0550), (ℜ4 ,−0.4737)) ((ℜ4 ,−0.3485), (ℜ2 , 0.1781))

22 ((ℜ4 , 0.2190), (ℜ2 , 0.3308)) ((ℜ6 ,−0.1043), (ℜ1 , 0.1719))

23 ((ℜ6 ,−0.1490), (ℜ2 , 0.3138)) ((ℜ4 , 0.2900), (ℜ1 , 0.1800))

24 ((ℜ4 ,−0.0137), (ℜ5 , 0.3560)) ((ℜ6 , 0.4353), (ℜ1 , 0.1724))

25 ((ℜ3 , 0.4453), (ℜ1 , 0.1787)) ((ℜ4 ,−0.3652), (ℜ1 , 0.1636))

26 ((ℜ5 , 0.2872), (ℜ2 , 0.1801)) ((ℜ5 ,−0.1122), (ℜ1 , 0.0958))

D
3 =

�1 �2 �3 �4
































21 0.1970 0.1943 0.1970 0.1994

22 0.1946 0.2023 0.1980 0.2045

23 0.1923 0.1951 0.2015 0.1910

24 0.1903 0.1951 0.1985 0.2037

25 0.1938 0.2001 0.1932 0.1937

26 0.1987 0.2051 0.2014 0.2006

D
4 =

�1 �2 �3 �4
































21 0.1978 0.1867 0.2039 0.1976

22 0.1926 0.1981 0.1950 0.1705

23 0.1861 0.1928 0.1897 0.1921

24 0.1888 0.1753 0.1962 0.1761

25 0.1912 0.1985 0.1934 0.1915

26 0.1567 0.2047 0.1944 0.1941

D
5 =

�1 �2 �3 �4
































21 0.1865 0.1851 0.1783 0.1803

22 0.1874 0.1709 0.1678 0.1935

23 0.1895 0.1814 0.1933 0.1840

24 0.1868 0.1886 0.1723 0.1821

25 0.1845 0.1819 0.1866 0.1851

26 0.1921 0.1638 0.1862 0.1818

Step 5. The 2TLq-ROFSSWPA aggregating operator by

Equation (21) suggests utilizing overall [W
γ

ψφ] to [Wψφ].

Table 4 depicts fused 2TLq-ROFNs matrix ℏ = [Wψφ]m̌×ň

(Suppose q = 5, ξ = −2, τ=8, and β ′ =

(0.2192, 0.2134, 0.1930, 0.1906, 0.1838)T)

Step 6. Normalize the decision matrix’s attribute values by

utilizing Equation (22) as shown below.

TABLE 5 Values generated by the entropy algorithm.

�φ Eφ dφ βφ

�1 0.9979 0.0021 0.1510

�2 0.9969 0.0031 0.2218

�3 0.9951 0.0049 0.3474

�4 0.9960 0.0040 0.2799

χψφ =

�1 �2 �3 �4
































21 0.1895 0.1515 0.1892 0.1480

22 0.1587 0.1852 0.1598 0.1846

23 0.1491 0.1402 0.1910 0.1543

24 0.1702 0.1866 0.1285 0.2022

25 0.1525 0.1587 0.1544 0.1486

26 0.1800 0.1778 0.1770 0.1624

Step 7. In consideration of the Equation (23), degree of the

Entropy Eφ for�φ(φ = 1, 2, 3, 4), which result is displayed in

Table 5.

Step 8. In consideration of the Equation (24), the degree of

differences dφ for �φ(φ = 1, 2, 3, 4), subsequently is

displayed in Table 5.

Step 9. In regard to the Equation (25), the Entropy weights βφ for

�φ(φ = 1, 2, 3, 4), which is shown in Table 5.

Step 10. In this stage, the VIKOR method’s concept is used to

assess each alternative’s anticipated effect on education using

AI. Compute PIS and NIS utilizing the Equations (26) and

(27) are displayed in Table 6.
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TABLE 6 PIS and NIS values for each attribute.

�1 �2 �3 �4

ℏ
+ ((ℜ6 , 0.4743), (ℜ5 ,−0.3810)) ((ℜ6 , 0.0597), (ℜ1 , 0.0535)) ((ℜ6 ,−0.1490), (ℜ2 , 0.3138)) ((ℜ6 , 0.4353), (ℜ1 , 0.1724))

ℏ
− ((ℜ4 , 0.1776), (ℜ4 ,−0.4712)) ((ℜ3 , 0.1026), (ℜ3 , 0.1529)) ((ℜ6 ,−0.1490), (ℜ2 , 0.3138)) ((ℜ4 ,−0.3485), (ℜ2 , 0.1781))

TABLE 7 Computed values ofRψ and Lψ .

21 22 23 24 25 26

Rψ 0.4573 0.3859 0.6201 0.4197 0.7518 0.3608

Lψ 0.2799 0.1735 0.2473 0.3474 0.2767 0.2055

TABLE 8 The values of 3ψ of alternatives.

21 22 23 24 25 26

3ψ 0.4293 0.0322 0.5437 0.5753 0.7968 0.0920

TABLE 9 Comparison of the impact of AI in education with di�erent MAGDMmethods by the 2TLq-ROFSSPWA operator.

Scoring outcome by Scoring outcome by Scoring outcome by Scoring outcome by

Alternative MABAC method
(Naz et al., 2023c)

CODAS method
(Naz et al., 2022b)

TOPSIS method
(Naz et al., 2023a)

EDAS method (Naz
et al., 2022a)

21 0.5643 0.1261 0.5640 0.5859

22 0.5848 −0.0104 0.5850 0.6782

23 0.5479 0.1113 0.5473 0.2066

24 0.4594 −0.0029 0.4599 0.6623

25 0.3165 −0.2406 0.3164 0.0356

26 0.6147 0.0540 0.6146 0.7576

Step 11. Based on the vales of ℏ+ and ℏ− and β by using

Equations (28) and (29) estimate the Rψ and Lψ . The

computation’s findings Rψ and Lψ for six alternatives are

listed in Table 7.

Step 12. Calculate the VIKOR index for every alternative

according to Equation (30) are shown in the Table 8:

Step 13. Corresponding to the VIKOR index, order possible

alternatives.

22 ≻ 26 ≻ 21 ≻ 23 ≻ 24 ≻ 25

Therefore,22 is the best alternative.

5.3 Comparative analysis

We conduct a comparative analysis in this section to

demonstrate the efficacy and validity of the novel approach

used in this research. The numerical and ranking outcomes

are listed below in Tables 9, 10 and Figure 2 illustrates the

ranking of alternatives using different MAGDMmethods. Figure 4

demonstrates alternative rankings with varied MAGDM methods.

We compare the suggested approach with several different

methods, such as the MABAC method (Naz et al., 2023c), the

TABLE 10 Ranking outcomes by the 2TLq-ROFSSPWA operator.

MAGDM
methods

Ranking results The best
alternative

The purposed

method

22 > 26 > 21 > 23 >

24 > 25

22

MABAC (Naz et al.,

2023c)

26 > 22 > 21 > 23 >

24 > 25

26

CODAS (Naz et al.,

2022b)

21 > 23 > 26 > 24 >

22 > 25

21

TOPSIS (Naz et al.,

2023a)

26 > 22 > 21 > 23 >

24 > 25

26

EDAS (Naz et al.,

2022a)

26 > 22 > 24 > 21 >

23 > 25

26

CODAS method (Naz et al., 2022b), the TOPSIS method (Naz

et al., 2023a), and the EDAS method (Naz et al., 2022a). Table 10

exhibits minor variations in judgment order, but it’s crucial to

emphasize that the top choices consistently differ. To achieve this,

we initially compare the proposed approach with the MABAC

method, resulting in the ranking 26 > 22 > 21 > 23 >

24 > 25, with 26 emerging as the best alternative. Next, we

evaluate our proposed approach against the CODASmethod, which

yields the ranking 21 > 23 > 26 > 24 > 22 > 25, and
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FIGURE 4

Rank of alternatives utilizing various MAGDM methods.

identifies 21 as the best alternative. Following that, we assess the

proposed approach against the TOPSIS method, resulting in the

ranking 26 > 22 > 21 > 23 > 24 > 25, where 26 emerges

as the top choice. Finally, our comparison with the EDAS method

leads to the ranking 26 > 22 > 24 > 21 > 23 > 25, with 26

being identified as the best alternative.

In conclusion, the comprehensive comparative analysis of

the new approach against established methods yielded intriguing

results. The purposed method stands out among the existing

MAGDM methods by balancing best and worst performance,

22 as the best alternative. Its suitability depends on specific

decision objectives and criteria importance. Under the MABAC

method, 26 is the optimal choice, showcasing the new approach’s

effectiveness in specific contexts. Conversely, the CODAS method

placed 21 at the forefront, illustrating its adaptability. The

TOPSIS method favored 26 as the best alternative, highlighting

its robustness. Likewise, the EDAS method reinforced 26 as

the optimal choice, underscoring the new approach’s versatility.

These results emphasize the importance of tailoring the choice

of alternative to the evaluation context while recognizing 22 as

a robust choice for a wide range of practical applications of the

new approach.

6 Conclusion

Teaching, learning, assessment, and administration are just a

few of the areas of education that could be drastically changed by

AI, a rapidly evolving field. However, there are also many risks and

difficulties associated with the adoption and use of AI in education,

including moral, legal, and practical concerns. Because of this, it’s

crucial to assess the impact of AI on education from a variety

of angles and using a variety of criteria, as well as to take into

account any trade-offs or unpredictability when making decisions.

The 2TLq-ROFS, also recognized as the generalized version of

2TL and q-ROFS, was utilized throughout this study to deal with

the ambiguity and imperfection related to group decision-making

challenges. This new fuzzy set conveys linguistic information at

different levels of granularity and uncertainty while being able

to deal with dynamic and complex decision-making contexts.

The SSWPA operator is a generalized aggregating operator that

can recognize relationships and correlations between decision-

makers and other characteristics. The 2TLq-ROFSSWPA operator

was proposed to combine the ambiguous evaluation findings in

order to aggregate the 2TLq-ROF information. We also developed

the 2TLq-ROF-Entropy-VIKOR model, and after combining the

traditional Entropy-VIKOR technique with 2TLq-ROF data, we

gave a thorough explanation of the calculation stages. It has

been demonstrated that the suggested model is more accurate

and useful because it considers a compromise between personal

regret minimization and group utility maximization. Following

that, the fundamental ideas and procedures of the suggested 2TLq-

ROF-Entropy-VIKOR method were discussed. Its significance

is as follows: (1) It can minimize the information loss and

distortion brought on by the conventional linguistic aggregation

operators and fuzzy number ranking methods. (2) It can handle

complicated and uncertain decision issues incorporating linguistic

and numerical information. (3) With the help of the decision-

maker’s preferences and the entropy measure, it is possible to

determine the subjective and objective weights of the criterion. (4)

A rating of all the options is also possible, as is a compromise

solution that is the furthest from the negative ideal solution and

the closest to the perfect solution. (5) Some of the shortcomings

and restrictions of the current techniques, such as the Pythagorean

fuzzy VIKOR method, the intuitionistic fuzzy VIKOR method,

and the linguistic hesitant fuzzy VIKOR method, can be addressed

by it. A group decision-making process using the 2TLq-ROF-

Entropy-VIKOR model is then utilized to calculate the weights

of the attributes finding and the most preferred alternative.

In the case study section, to exemplify the implementation of
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the developed method and emphasize its efficacy, a numerical

illustration was presented. Finally, the comparative analysis’s

findings demonstrated that the established method could be

successfully used to handle MAGDM issues in the 2TLq-ROF

environment. Even if the suggested model is superior in theory and

application, this research still has certain drawbacks. The proposed

model, for instance, includes a number of parameters, and altering

those parameters could produce different outcomes. Future studies

will focus on developing the fuzzy behavioral VIKOR approach

to the 2TLq-ROFS under the reference ideal theory. In follow-up

research, we’ll use some fresh approaches to further generalize these

operators. At the same time, we will broaden the applicability of

these AOs to a variety of uncertain fields, such as risk management,

the location of electric vehicle charging stations, and many others.
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