
TYPE Original Research
PUBLISHED 09 April 2024
DOI 10.3389/frai.2024.1371988

OPEN ACCESS

EDITED BY

Giner Alor-Hernández,
Instituto Tecnologico de Orizaba, Mexico

REVIEWED BY

Evgeny Osipov,
Luleå University of Technology, Sweden
Nelson Rangel-Valdez,
Instituto Tecnológico de Ciudad Madero,
Mexico
Gilberto Rivera,
Universidad Autónoma de Ciudad Juárez,
Mexico

*CORRESPONDENCE

Mohsen Imani
m.imani@uci.edu

RECEIVED 17 January 2024
ACCEPTED 18 March 2024
PUBLISHED 09 April 2024

CITATION

Hernández-Cano A, Ni Y, Zou Z, Zakeri A and
Imani M (2024) Hyperdimensional computing
with holographic and adaptive encoder.
Front. Artif. Intell. 7:1371988.
doi: 10.3389/frai.2024.1371988

COPYRIGHT

© 2024 Hernández-Cano, Ni, Zou, Zakeri and
Imani. This is an open-access article
distributed under the terms of the Creative
Commons Attribution License (CC BY). The
use, distribution or reproduction in other
forums is permitted, provided the original
author(s) and the copyright owner(s) are
credited and that the original publication in
this journal is cited, in accordance with
accepted academic practice. No use,
distribution or reproduction is permitted
which does not comply with these terms.

Hyperdimensional computing
with holographic and adaptive
encoder

Alejandro Hernández-Cano1, Yang Ni2, Zhuowen Zou2,

Ali Zakeri2 and Mohsen Imani2*

1Department of Computer Science, École polytechnique fédérale de Lausanne (EPFL), Lausanne,
Switzerland, 2Department of Computer Science, University of California, Irvine, Irvine, CA, United States

Introduction: Brain-inspired computing has become an emerging field, where
a growing number of works focus on developing algorithms that bring machine
learning closer to human brains at the functional level. As one of the promising
directions, Hyperdimensional Computing (HDC) is centered around the idea of
having holographic and high-dimensional representation as the neural activities
in our brains. Such representation is the fundamental enabler for the e�ciency
and robustness of HDC. However, existing HDC-based algorithms su�er from
limitations within the encoder. To some extent, they all rely onmanually selected
encoders, meaning that the resulting representation is never adapted to the tasks
at hand.

Methods: In this paper, we propose FLASH, a novel hyperdimensional learning
method that incorporates an adaptive and learnable encoder design, aiming at
better overall learning performance while maintaining good properties of HDC
representation. Current HDC encoders leverage Random Fourier Features (RFF)
for kernel correspondence and enable locality-preserving encoding.We propose
to learn the encodermatrix distribution via gradient descent and e�ectively adapt
the kernel for a more suitable HDC encoding.

Results: Our experiments on various regression datasets show that tuning the
HDC encoder can significantly boost the accuracy, surpassing the current HDC-
based algorithm and providing faster inference than other baselines, including
RFF-based kernel ridge regression.

Discussion: The results indicate the importance of an adaptive encoder and
customized high-dimensional representation in HDC.

KEYWORDS

brain-inspired computing, hyperdimensional computing, holographic representation,

vector function architecture, e�cient machine learning

1 Introduction

The human brain remains the most sophisticated yet effective learning module ever.

Running on similar power of light bulbs, our brains are in charge of almost every

learning and reasoning task in daily life with particularly great sample efficiency and

fault tolerance. On the contrary, many widely-applied Machine Learning (ML) algorithms

fail to be comparable in efficiency and robustness, despite their prolific advancement in

accomplishing practical tasks.

Therefore, research in biological vision, cognitive psychology, and neuroscience has

given rise to key concepts behind an emerging field, i.e., brain-inspired computing. In this

field, several novel computing paradigms have been developed during the last few years

that are either biologically plausible or closer to human brains at the functional level (Roy

et al., 2019; Karunaratne et al., 2020). In particular, HyperDimensional Computing (HDC)

Frontiers in Artificial Intelligence 01 frontiersin.org

https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://www.frontiersin.org/journals/artificial-intelligence#editorial-board
https://doi.org/10.3389/frai.2024.1371988
http://crossmark.crossref.org/dialog/?doi=10.3389/frai.2024.1371988&domain=pdf&date_stamp=2024-04-09
mailto:m.imani@uci.edu
https://doi.org/10.3389/frai.2024.1371988
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/frai.2024.1371988/full
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

mimics human brain functionalities when learning and reasoning

in high-dimensional spaces (i.e., the hyperspace in HDC), which

is motivated by the observation that the human brain operates on

high-dimensional neural representations. Similarly in the brain-

inspired HDC, a high-dimensional vector-based representation is

designed to represent different atomic concepts such as letters,

objects, sensor readings, and general features. Typically, an HDC

encoder will encode inputs from the original lower-dimensional

space to very high-dimensional vectors (i.e., hypervectors in

HDC) with several thousand dimensions. Centered on the

hypervectors, HDC is also capable of describing the location of

objects, their relations, and the structured combination of several

individual concepts through a set of HDC operations designed for

hypervectors (more details in Section 2).

As the basic building block of HDC, hypervectors own several

unique properties that have been crucial for practical applications,

especially in terms of representing and manipulating atomic

symbols. Specifically, hypervector representation is (1) holographic,

that information is distributed evenly across components of the

hypervector (Kleyko et al., 2023), (2) robust, that hypervectors

are extremely noise tolerant as a natural result of hypervector

redundancy (Kanerva, 2009; Poduval et al., 2022b; Barkam

et al., 2023a), and (3) simple, that only lightweight operations

are needed to perform learning tasks (Hernandez-Cane et al.,

2021; Ni et al., 2022b). In addition, the ability for hypervectors

to operate symbolically through simple arithmetic has granted

HDC the ability to perform cognitive tasks in a transparent

and compositional way, e.g., memorization, learning, and

association (Poduval et al., 2022a; Hersche et al., 2023). Given

the importance of the properties aforementioned, most HDC

frameworks have a dedicated and specially designed HDC encoder

for mapping original inputs to corresponding hypervectors. The

quality of encoded hyperdimensional representations can be

decisive for performance in learning and cognitive tasks.

While the HDC encoder has had many variants (Rachkovskij,

2015; Kleyko et al., 2018, 2021; Imani et al., 2019; Frady et al.,

2021), most of them innovate on the encoding scheme, i.e., the way

symbolically different entities are encoded together. One common

example is Position-ID encoding (Thomas et al., 2020): each

feature is assigned a (key) hypervector representing its position

in the vector, and the value of the feature is quantized to a set

of discrete levels and assigned the corresponding (level or value)

hypervector. The representation of a feature vector is thus a

bundling of several binding key-value pairs. Despite the success of

mentioned encoding, the quality of HDC representation of atomic

hypervectors is ambiguous: their design is barely discussed due

to the already competitive richness in representation (Park and

Sandberg, 1991) and performance in practice (Ge and Parhi, 2020).

In the case of Position-ID encoding, for example, key hypervectors

are assumed to be independent of each other, while value

hypervectors preserve a discrete linear similarity with each other.

Such manually selected similarity metrics, linear mapping, and

discrete atomic compositions naturally lack flexibility. Recognizing

this gap, we ask in this paper a fundamental question in improving

HDC learning: how can we generate good HDC representation for

atomic data? And also, how can we create an encoding scheme that

adapts to the problem at hand?

Recent research proposes Vector Function

Architecture (Kleyko et al., 2021; Frady et al., 2022) (VFA)

that provides a general approach for better representation of

continuous data and functions in the hyperspace. Its encoder,

instead of presetting discrete levels of similarity for each feature

in the original space, directly targets a meaningful similarity in

the whole hyperspace such as the Gaussian radial basis function.

To do so, VFA relies on fractional power encoding and Random

Fourier Features (Rahimi and Recht, 2007) (RFF) parameterized

by a high-dimensional encoding matrix through a predefined

random distribution. The resulting hyperspace then holds a

high-dimensional and non-linear representation that maintains

the distance relationship in much finer granularity. We notice

that HDC representation quality relies heavily on the choice of

hyperspace mapping and similarity metric, which are manifested

directly via the distribution from which every component of the

encoding matrix is sampled. Recognizing this connection, we

expect that selecting a distribution well-adapted to the task will

essentially enhance the quality of the HDC encoder as well as

learning performance.

In this paper, we bring FLASH, to the best of our

knowledge, the first HDC representation that is Fast, Learnable,

Adaptive, and Stays Holographic. FLASH leads to an innovative

hyperdimensional regression algorithm featuring an optimizable

HDC encoder. Unlike all the previous algorithms that limit

themselves to either prefixed atomic hypervectors or static

encoding mechanisms, our method (1) generates atomic

hypervectors that truly adapt to the training data at hand, (2)

efficiently optimizes the HDC representation for downstream

tasks, and (3) maintains the major benefits of HDC, i.e.,

holographic representation. We take inspiration from the prior

VFA work and propose a novel mechanism to enhance the

representation in hyperspace by finding the optimal distribution

from which the random matrix is drawn. Moreover, this approach

does not require us to use explicitly the kernel function nor the

probability density, nor to perform expensive Fourier transforms.

This allows the encoding process of FLASH to be as efficient

as the static one with the exception of a one-time overhead

for optimization.

Our experimental results show that FLASH is about 5.5×

faster in inference than RFF-based ridge regression while

providing comparable or better accuracy. We also test a variant

called “Accurate FLASH” that is optimized for accuracy, and

this approach consistently outperforms other ML baselines,

including the previous state-of-the-art HDC regression

algorithm (Hernández-Cano et al., 2021) based on VFA. At

the same time, we observe a linear increase in our approach with

respect to the number of samples in the dataset, making this

proposal particularly well-suited for large-scale data.

The rest of this article is organized as follows. In the “HDC

Background” section, the basics of HDC are described. And the

prior arts VFA-based hyperdimensional regression algorithm is

analyzed in the “Regression” section. Our proposed FLASH is

formulated in the “Main Methods” section. The “Experimental

Results” section presents results for experiments carried out on

multiple regression datasets. Finally, the “Conclusion” section

concludes this article.

Frontiers in Artificial Intelligence 02 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

2 Related works

In the past few years, prior HDC research works have applied

the brain-like functionalities of HDC to diverse applications,

for example, outlier detection (Wang et al., 2022), biosignal

processing (Rahimi et al., 2020; Ni et al., 2022c; Pale et al., 2022),

speech recognition (Hernandez-Cane et al., 2021), and gesture

recognition (Rahimi et al., 2016). Apart from classification learning

tasks, it has also been applied to genomic sequencing (Zou et al.,

2022; Barkam et al., 2023b), nonlinear regression (Hernández-

Cano et al., 2021; Ni et al., 2023b), reinforcement learning (Chen

et al., 2022; Issa et al., 2022; Ni et al., 2022a, 2023a), and graph

reasoning (Poduval et al., 2022a; Chen et al., 2023).With or without

hardware acceleration, these HDC algorithms bring a significant

efficiency benefit to each application, facilitating online training,

few-shot learning, and edge-friendly operation. However, their

performance is inevitably limited by a poorly-optimized encoding

process. The mapping to hyperspace is either manually devised for

a specific task or directly reuses a fixed design such as VFA (Rahimi

et al., 2020; Hernández-Cano et al., 2021). In this paper, we focus on

improving the HDC encoder design and thus learning performance

by proposing a novel encoder that is optimizable and adaptive.

3 Regression with vector function
architecture

In this section, we first briefly revisit the hyperdimensional

encoding technique proposed in VFA. As mentioned in the

introduction, the VFA encoding mounts to a well-defined and

continuous mapping to hyperspace. We then discuss its usage in

the current state-of-the-art HDC regression algorithm and point

out the limitation of this method due to the static encoding.

3.1 Hyperdimensional encoding in VFA

As a symbolic paradigm, many HDC algorithms operate on a

set of dissimilar atomic hypervectors that are randomly generated

and near-orthogonal, assuming that symbols are not related at all.

However, the assumption will not always be appropriate in practical

tasks. Therefore, we have seen HDC algorithms, when handling

bio-signals and images, explicitly manipulate the similarity among

atomic hypervectors such as maintaining a discrete set of similarity

levels. However, the manual assignment of these hypervectors can

be problematic, which inevitably causes information loss during

quantization, not to mention that such an arbitrarily assumed

similarity relationship may not be helpful for learning.

To explain how the VFA encoding captures the relation

between data, we note that this encoding coincides with

the Random Fourier Features (RFF) encoding, an efficient

approximation of kernel methods. The following theorem by

Salomon Bochner (1899–1982) serves as the foundation for this

well-defined similarity relationship (Rudin, 2017).

Theorem 1 (Bochner). For any continuous shift-invariant and

positive definite kernel K(x1 − x2) :R
M → R, there must exist a

non-negative measure p(ω) such that K is the Fourier transform of

a non-negative measure p(ω). Additionally, if K is properly scaled,

p(ω) is a proper probability measure.

The proof of this theorem is provided in Rudin (2017). If we

assume ζ (x) = ejω
Tx, then Theorem 1 leads to the following

equation: K(x1 − x2) =
∫

RM p(ω)ejω
T (x1−x2) = Eω

[

ζ (x1)ζ (x2)
]

.

This means that, with the correspondence between kernel K and

measure p(x), we can transform original inputs to a space where

dot products are unbiased estimates of kernel similarities. In other

words, there exist sequences of transformations φD :R
M → CD

such that φD(x1)
TφD(x2) converges uniformly to the given kernel

K(x1 − x2):

φD(x1)
TφD(x2)

large D
−−−→ K(x1 − x2) (1)

Rahimi and Recht (2007) proposed an alternative set of

Random Fourier Features (RFF) such that the components of the

encoded vectors are real and the kernel approximation converges

equally fast. To construct a real-valued RFF, we can leverage this

high-dimensional mapping for HDC encoder as the following:

φD(x;�, b) =

√

2

D
cos.(�x+ b) (2)

where cos. represents the element-wise cosine function,� ∈ R
D×M

is a randomly generated encoding matrix, and b ∈ R
D is the

offset hypervector. Row vectors in � are generated by drawing

D i.i.d. samples ω1, . . . ,ωD from p(ω) and elements in b are

sampled from U[0, 2π]. The random distribution p is selected

through Theorem 1 given a preferred kernel K(1). In other words,

the probability density is calculated with a Fourier transform:

p(ω) = 1
2π

∫

RM exp(−iωT1)K(1)d1. For example, previous HDC

work (Hernández-Cano et al., 2021) uses Normal distribution

N(0, 1) for p(ω) since it wants to approximate the Gaussian RBF

kernel.

There are key lessons from the theory of VFA encoding

discussed above:

1. HDC encoding as in Equation (2) incorporates a high-

dimensional non-linear mapping through the cosine activation.

2. Due to RFF, it supports a meaningful similarity metric in

hyperspace without quantizing individual features or generating

ambiguous correlated base hypervectors.

3. By Bochner’s theorem, there is a correspondence between kernel

K and measure p(x). This implies that we can leverage the

measure for the estimation of kernel similarities.

While the current VFA method brings many benefits, the

biggest drawback of this method is that φD(x) is essentially a static

mapping, which makes the encoding less adaptive. Our work aims

to leverage the insight from Bochner’s theorem to learn the kernel

adaptively through its random Fourier features.

3.2 Regression on a static HDC encoder

Ideally, we expect the HDC encoder to provide a useful high-

dimensional representation that helps separate the data points for

classification or linearize the inherent non-linear regression tasks.

Particularly in hyperdimensional regression, we are interested in

Frontiers in Artificial Intelligence 03 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

finding the best hypervector w ∈ R
D such that the linear regression

after encoding y(x) = φ(x)Tw are, in average across the training

set, as close as possible to the true labels in terms of ℓ2 norm.

Additionally, we introduce an ℓ2 regularization coefficient λ to get

more stable estimators. Thus the loss function is the dampened least

squares, which can be expressed as

LR(w) : = ‖Zw− y‖2 + λ‖w‖2, (3)

where y = (y1, y2, . . . , yN)
N are the known response variables, and

Z = 8(X;�, b) ∈ R
N×D are the encoded hypervectors of the input

data x1, . . . , xN :

8(X;�, b) =







φ(x1;�, b)T

...

φ(xN;�, b)T






=

√

2

D
cos.(X�

T + b). (4)

In previous approaches for HDC regression (Hernández-Cano

et al., 2021; Kleyko et al., 2021), the model hypervector w is learned

in an iterative fashion, where hypervectors are bundled together

guided by regression errors. However, they face issues with proper

hyperparameter selection to achieve the highest prediction quality.

On the other hand, the loss function in Equation (3) has a known

minimizer ŵ which is known as the ridge estimator:

ŵ = (ZTZ+ λI)
−1

ZTy. (5)

In this paper, we leverage this statistical approach to obtain

better stability during learning and more direct parameter tuning.

As we mentioned in the previous section, the encoding in

VFA, the closed solution in Equation (5) has an assumption that

the regression problem on Z is linearly solvable, as the result of

mapping to hyperspace. However, for an arbitrary regression task,

it is very likely that the static VFA encoding (due to the fixed K(1)

and p(ω)) becomes sub-optimal. This work looks to address this

problem by presenting an adaptive HDC encoder design.

4 Main methods

In this paper, we proposeFLASH, a way to learn a good

encoding function φ(x) before solving the regression task in

hyperdimensional space.

In Figure 1, we present an outline of our proposed FLASH,

including both HDC inference and encoder learning processes.

In the inference process, we start from a query data point x ∈

R
M in the original space •1 , which is then passed through the

encoding module •2 to obtain the encoded data point z ∈

R
D in the hyperspace. Once we have this query hypervector,

getting the prediction ŷ reduces to perform dot product with the

regression hypervector•3 . The overall inference process depicted

here is similar to VFA-based regression; what distinguishes FLASH

from prior algorithms is that the encoding module (� matrix,

specifically) is obtained through a parameterized distribution pθ .

During the encoder learning •4 , parameters in pθ are updated

given the feedback from the regression loss defined in Equation (3).

In the following sections, we will introduce how to sample from this

parameterized distribution and learn its parameters.

4.1 Generating the encoding matrix

Care must be taken when designing the HDC encoder, as it

needs to ensure that the appealing properties of the hypervectors

are sustained. To ensure the holographic representation, we require

the randomized instantiation of the encoder, and thus we cannot

directly perform gradient descent upon an instantiated encoding

matrix, as it may destroy both: information about the data may be

distributed locally and partially in the output vector, and the trained

encoder have minimum randomization.

To circumvent this, we take inspiration from the VFA

work that highlights the encoder-kernel correspondence and the

importance of selecting a proper distribution p(ω). Recall from

Section 3.1 that there is a correspondence between kernel K and

measure p(x). In addition, it induces families of encoders {φD}D∈N

parameterized by the samples from the distribution such that

the inner product between the encoded vectors approximates the

kernel. This approximation improves increasingly well with the

dimension of the encoder (codomain). By learning the distribution

from which we sample the encoding matrix, we will be able to

construct an adaptive HDC encoder that provides a more suitable

hyperdimensional representation, adding to existing appealing

HDC properties.

In FLASH, we define a parametric family of functions F =

{fθ : fθ :R
M → R

M , θ ∈ 2}, which will be referred to as generators.

Upon receiving random inputs, it can be used to sample random

vectors ω1, . . . ,ωD required in the encoding function (Equation 4).

Compared to parameterized distributions such as the Gaussian

reparameterization approach, this approach encapsulates a more

expressive family of distributions. Because of Bochner’s theorem,

exploring F is equivalent to exploring a corresponding set of

continuous shift-invariant kernels, and thus the encoding family we

consider is expected to be rich as long as F is.

Inherited from the RFF methods, a key benefit of this

arrangement is that FLASH encoding does not require us to use

explicitly the kernel K(1) function, nor the probability density

p(ω), nor to perform expensive Fourier transforms. Our goal is

to find f ∈ F that, with a high probability, gives the optimal or

near-optimal encoding matrix of solving the regression problem at

hand; this ensures the quality and robustness of the encoder that it

generates.

4.2 Learning the encoder matrix
distribution

To learn the distribution efficiently, we restrict F to be a family

of fθ :R
M → R

M differentiable neural networks, i.e., the network

input size equals the output size. To sample ωs using fθ , we first

draw a random vector ǫ ∼ N(0, I) as the input, and then obtain

a transformed random vector using ω = fθ (ǫ). Sampling D i.i.d.

random noises and passing them through the generator can give

us a matrix of base hypervectors (i.e., �), which can be used to

perform the encoding. This can be understood as a generalized

reparameterization, where we learn a surrogate function fθ (ǫ)

instead. Note that we chose to sample noise vectors from the

standard normal distribution for convenience, but different choices

can be made as well. This architecture gives us a very rich family

of generators F, which are cheap to evaluate and cheap to train,

Frontiers in Artificial Intelligence 04 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

FIGURE 1

Overview of our proposed FLASH: the area with shade represents the inference process; the rest modules are related to adapting the HDC encoder,
where we learn the distribution of the encoding matrix.

as we will see in the next few sections. In addition, because ǫ is a

random vector, ω = fθ (ǫ) is one too, which means that there exists

a probability density (or mass) function pθ (ω) for each generator fθ .

In FLASH, we aim to maximize encoder performance in

generating a good HDC representation of our data for the

regression task. In particular, we opt to evaluate the learned encoder

using the loss function proposed in Equation (3). However, because

random sampling is involved at the moment of generating the

encoding, we chose to minimize the expected value instead. Note

that this expected value is taken with respect to all the possible

encoding 8, whose encoding matrix � and offset hypervectors b

are randomly sampled. Thus, in Equation 6, we seek to find the

parameters in fθ that minimize the following loss term for adapting

the HDC encoder:

LE(θ) = E
�,b

[

min
w∈RD

LR(w)

]

(6)

where LR(w) is the regression loss defined in Equation (3). In

Equation 7, using the ridge estimator ŵ and the law of the

unconscious statistician, we can expand the previous expectation

term to:

E
�,b

[

LR(ŵ)
]

= E
ω1 ..ωD∼pθ

b1 ..bD∼U

[

‖8(X;�, b)ŵ− y‖2 + ‖ŵ‖2
]

= E
ǫ1 ..ǫD∼N
b1 ..bD∼U

[

‖8(X; fθ (E), b)ŵ− y‖2 + ‖ŵ‖2
] (7)

where E is the matrix containing the D random vectors ǫ1, . . . , ǫD.

Thus, we can obtain an unbiased estimator of the encoding loss

using a simple Monte Carlo estimator with a single sample. That is,

if we sample E and b from their respective distributions, we obtain

an unbiased estimator of LE(θ):

L̂E(θ) = ‖8(X; fθ (E), b)ŵ− y‖2 + ‖ŵ‖2 (8)

Note that it is possible to sample multiple noise matrices

E1,E2, . . . to lower the variance of the estimator, but in order to

accelerate the computation we don’t explore this alternative.

4.3 Adapt the encoder via generator
training

We explore the parameter space of the generator fθ using

stochastic gradient descent, where θ ← θ − η∇θ L̂E(θ). Its easy

to show that ∇θ L̂(θ) is an unbiased estimator of the true gradient

∇θL(θ) because the expectation in LE does not depend on the

parameters θ . It is important to note that L̂E is differentiable

with respect to its parameters θ . Indeed, every operation shown in

Equation (8) is well behaved:� = fθ (E) is clearly differentiable, and

so is Z = 8(X;�, b) because ϕ(x;�, b) =
√

2
D cos.(�x+ b).

Until here, we have covered how to parameterize and learn

the sampling distribution. This equips FLASH with an encoding

module well-adapted. Still, people may wonder if learning the

encoding matrix � and offset b through gradient descent is a

good alternative. We acknowledge that this might be a more direct

measure, however, it will jeopardize the holographic property of

HDC since it cannot guarantee that the encoding matrix is i.i.d.

This means that the information in the encoded hypervector is

no longer evenly distributed, and errors or noise in the encoding

process will lead to higher performance loss due to the lack of

hyperdimensional redundancy. Our proposed measure will ensure

that FLASH will maintain the holographic HDC representation

after tuning the encoder.

4.4 Balance the cost in training

The training in FLASH is a two-stage process where we first

learn the generator fθ (ǫ), i.e., in place of sampling from pθ (ω)).

Based on the first training stage, we then perform the model

training that gives the regression hypervector w. In the second

stage, the encoder will be generated using fθ and remain static as

it has been optimized. Notice that the dimensionality D can be the

same or different in these two training stages. As mentioned in the

previous section, our optimization method for generator training

Frontiers in Artificial Intelligence 05 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

is well-defined; but in practice, it can be further approximated

to obtain faster convergence. Several algorithms have been widely

used to accelerate the computation of ridge estimator (Paige and

Saunders, 1982; Defazio et al., 2014). However, computing LR(θ)

at every iteration for encoder learning ends up adding up the

overhead. Recall that in prior HDC algorithms (Hernandez-Cane

et al., 2021; Hernández-Cano et al., 2021; Ni et al., 2022a), D is

supposed to be a high dimensionality such that model hypervectors

have a larger capacity. In FLASH, we instead propose to decouple

the high dimensionality requirement from the encoder/generator

training since the generator fθ itself operates in R
M . When training

fθ , we encode data to R
D′ instead, where D′ < D in order

to accelerate the process. As for the regression process, we use

a slightly larger dimensionality D for better regression accuracy.

In fact, adapting the HDC encoder at first will also lower the

requirement for model hypervector dimensionality D and thus

reduce the training cost. Our results in the experiment show that

FLASH, with a lower dimensionality, has comparable regression

quality to the prior HDC method.

4.5 Time complexity

In this section, we discuss the time complexity of training our

proposed method. Below we describe at a high level the steps

required in our approach.

1. Train the surrogate sampling function fθ .

(a) Encode data to D′-dimensional space.

(b) Compute the loss LE(θ).

(c) Compute the gradient and update the parameters in fθ .

(d) Iterate this process until convergence.

2. Generate encoding matrix � using fθ .

3. Encode data to D-dimensional with the adapted HDC encoder.

4. Learn the regressing hypervector w.

In the first step, the overhead of computing LE is considered

minor as we encode data to D′-dimensional space, limiting the

cost of computing the estimator ŵ. Generating random bases

ωi = fθ (εi) requires D forward passes of fθ , which will give a

hyperdimensional mapping.

Encoding the data Z = 8(X;�, b) =
√

2
D cos.(X�

T + b),

requires O(NMD) operations, corresponding to the asymptotic of

the most taxing operation - matrix multiplication of the N × M

matrix X with a M × D matrix �
T , where N is the number of

samples andM the number of features in original space.

The last step, computing w = (ZTZ+ λI)
−1

ZTy is, according

to experimental evaluation, the most time-consuming step in

our design. The theoretical time complexity is dominated by the

ZTZ multiplication and the inverse operation, requiring O(ND2)

and O(D3) operations, respectively. Thankfully, the dampened

linear least squares loss, Equation 3), has been heavily studied

and several algorithms that approximate its solution exist such

as LSQR (Paige and Saunders, 1982). Moreover, the experimental

evaluation suggests that with relatively small values of D (500 ≤

D ≤ 2000) we can obtain very accurate predictions (as shown in

Figure 5); with this configuration, we observe linear training time

in the number of samples.

4.6 Formal derivation of encoding loss

In this section, we show that minimizing LE with respect to θ

is equivalent to maximizing a lower bound of the log-likelihood of

the posterior distribution with joint parameters (θ ,w).

Recall that given a dataset of independent observations D,

random parameters θ ∈ 2 with prior distribution θ ∼ p(θ) the

posterior distribution is p(θ | D), which by Bayes’ Theorem can be

expressed as p(θ | D) ∝ p(D | θ)p(θ), where p(D | θ) is called the

likelihood.

In regression analysis, we assume the relation y = Xw + ε,

where ε is a random unobserved noise. Ordinary least squares

regression sets the likelihood to be normally distributed y |

w ∼ N(Xw, σ 2I). As shown in Equation 9, maximizing the log-

likelihood is equivalent to minimizing the squared error loss:

max
w

ln p(y | w) = max
w

ln

(
1

Z
exp

(

−
1

2
(y− Xw)T (σ 2I)

−1
(y− Xw)

))

= max
w

{

ln exp

(

−
1

2
(y− Xw)T (σ 2I)

−1
(y− Xw)

)

− lnZ

}

= min
w

1

2σ 2
(y− Xw)T (y− Xw) = min

w
‖y− Xw‖2.

(9)

In order to work in the high-dimensional space, we must

add the encoding to the equation, or in this case the generator

parameters θ . We instead assume the relation y = Zw + ε,

where Z = 8(X;�, b). Because the regression coefficients depend

on � and b, we use the conditional likelihood y | �, b,w ∼

N(Zw, σ 2I). We add the independence assumption between θ and

b. In Equation 10, the maximum log posterior is shown to be

bounded using Jensen’s inequality:

max
θ ,w

{

ln p(θ ,w | y)
}

= max
θ ,w

{

ln
(

p(y | θ ,w)p(θ)p(w)
)}

= max
θ ,w









ln E
ω1 ..ωD∼pθ

b1 ..bD∼U

[

p(y | �, b,w)p(θ)p(w)
]









≥ max
θ ,w











E
ω1 ..ωD∼pθ

b1 ..bD∼U






ln p(y | �, b,w)+ ln p(w)
︸ ︷︷ ︸

−LR(w)

+ ln p(θ)

















= min
θ

min
w









E
ω1 ..ωD∼pθ

b1 ..bD∼U

[

LR(w)− ln p(θ)
]









= min
θ









E
ω1 ..ωD∼pθ

b1 ..bD∼U

[

LR(ŵ)+ R(θ)
]









= min
θ

LE(θ).

(10)

5 Experimental results

5.1 Experimental settings

We implement the proposed design using Python on the Intel

Core i7-12700K CPU platform. The core process of adapting the

encoder is implemented using Pytorch, and the regression process

is based on the implementation provided by Scikit-Learn. We

Frontiers in Artificial Intelligence 06 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

evaluate the accuracy of our design on several practical regression

datasets listed in Table 1, with up to 20,000 samples and 80

features. Table 2 describes the baseline models used to compare

TABLE 1 Various regression datasets available on OpenML (Vanschoren

et al., 2013).

Dataset N M Description

kin8nm 8,192 9 Forward kinematics of an 8 link robot

arm

MiamiHousing2016 13,932 17 Sale price of houses

pol 15,000 49 Telecommunication problem

Houses 20,640 9 Predict house value

Superconduct 21,263 82 Predict critical temperature of

superconductors

N, Number of samples; M, number of features.

TABLE 2 Regression models used in experiments: the last two are our

proposed design, and the rest are baseline methods.

Model Description

SVR Support vector regression with RBF kernel

Kernel Ridge Analytical solution of kernel regression with RBF kernel

Linear Regression Ordinary least squares

RFF + Ridge RFF approximation of RBF kernel, followed by ridge

regression

RegHD HDC regression based on VFA (Hernández-Cano et al.,

2021)

FLASH Our design optimized for better inference runtime

A-FLASH Our design optimized for better regression accuracy

with our design, including ridge regression that also leverages

RFF approximation and the previous state-of-the-art HDC-based

regression algorithm RegHD. During the experiments, we test two

settings for our design (FLASH and A-FLASH), slightly different

in model size and dimensionality. The name of the second setting

stands for “Accurate FLASH,” which has larger dimensionality and

model size. In Table 3, we provide the hyperparameters used for the

different regression models in our experiments.

TABLE 3 Hyperparameters used for the regression models.

Model Hyperparameter Value

FLASH

(A-FLASH)

D 500 (resp. 2000)

D′ 75 (resp. 250)

α† 0.01 ≤ α ≤ 0.1

fθ layers [32, 32] (resp. [64, 64, 64, 64])

fθ activation tanh

fθ learning rate
† 0.001 ≤ lr ≤ 0.01

*RegHD D 2000

Number of models 1

Learning rate 0.035

RFF + Ridge D 2000

*SVR C 0.1 ≤ C ≤ 100

ε 0.01 ≤ ε ≤ 1

γ 1
n_features∗Var(X)

†This hyperparameter was tuned using grid search. ∗SVR means support vector regression

and RegHD is the name of a prior HDC-based regression framework.

FIGURE 2

The top row corresponds to the data created, in green is the training data, in orange is the prediction of FLASH, and in blue is the prediction of SVR.
The second row corresponds to the distribution pθ (ω) of the random bases in the encoder. The last row shows the (approximate) kernel associated
with the distribution as in Equation (1).

Frontiers in Artificial Intelligence 07 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

FIGURE 3

Comparison of our approach against other methods in several datasets. The top plot shows the prediction quality using the r2 metric (larger is
better). The bottom plot shows the inference time. We exclude the linear regression runtime for better visualization since the value is relatively small.
Note that SVR performs poorly on the MiamiHousing dataset even after grid search (thus not visible in the figure) and the log scale is used in the
bottom plot. We report the ±95% confidence interval and use the Nadeau and Bengio’s corrected t-test (Nadeau and Bengio, 1999) for significance
in prediction quality comparison: ∗∗∗P < 0.001, ∗∗P < 0.01, ∗P < 0.05; NS, not significant.

5.2 Performance on synthetic data

In this section, we analyze the performance of the proposed

design in custom 1D regression problems of the form y =

f (x) + ε with ε ∼ N(0, 1) and different choices of target

function f . In Figure 2, we also show the encoder’s probability

distribution pθ (ω) learnt in the process and the actual kernel

function K(1) = E[φ(x)Tφ(0)]. For comparison, RBF kernel has

associated a GaussianN(0, 1
γ
I) distribution.

From this experiment, we conclude that our optimization

proposal for the encoder loss LE works well in practice and

the shapes of learned distributions are varied for each dataset.

Moreover, we observe that our proposal adapts to different scales in

the data making a clear distinction with SVR. For instance, the first

predicted function f (x) = 10x2, where SVR clearly underperforms

where |x| > 1.1.

5.3 Regression quality and e�ciency
comparison

In this section, we compare the performance of FLASH (as well

as A-FLASH) against several baseline regression algorithms using

multiple regression datasets. We perform 5 times repeated 5-fold

cross-validation in each dataset and report the average prediction

quality, confidence intervals, statistical tests for significance, and

runtime taken for each fold. We select the most important

hyperparameters in SVR and our design using grid search. Our

results are summarized in Figure 3.

We observe that our approach is always comparable in accuracy

with other state-of-the-art approaches. The accurate version of our

approach (A-FLASH) is consistently ranked at the top. Particularly,

because our encoder is learnable and well-adapted, we are generally

more accurate than other algorithms leveraging static encoder or

Frontiers in Artificial Intelligence 08 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

FIGURE 4

The left graph plots the prediction quality (root MSE) against the number of samples in di�erent regression models. The second and third plot

shows the time taken to train and do inference on a logarithmic scale, respectively. Note the slower growth rate of our approach compared with
other kernel approaches.

FIGURE 5

Impact of dimensionality. Each graph shows the trade-o� obtained when increasing the dimensionality D. The metrics measured are the coe�cient
of determination (r2), training time, and inference time, respectively across the three plots. Notice the fast convergence of accuracy even with low
dimensionality and the approximately linear scale in the time measured.

fixed kernel. In comparison with the prior HDC-based method, A-

FLASH achieves significantly better quality without adding notable

overhead for inference. In addition, the fast version of our approach

(FLASH) is generally among the fastest models. During inference,

it is faster than other baselines, including classical kernel-based

approaches such as SVR and Kernel Ridge. This is because our

prediction complexity is constant with respect to the number of

samples. On average, FLASH is about 3.7× faster inference than

the RegHD, 5.5× faster than kernel ridge/RFF ridge, and 13.75×

faster than SVR.

5.4 Scalability results

In this section, we create the Friedman regression

datasets (Friedman, 1991) with an increasing number of samples to

test the scalability of the proposed algorithm and compare it with

other approaches. We observe that our approach is well-suited

for large-scale data as we have a linear trend in the time taken to

train and also inference time. Meanwhile, the time taken to train

classical kernel approaches such as SVR and kernel ridge grows

noticeably faster due to their higher computational complexity.

Our results are summarized in Figure 4. The leftmost plot shows

that our approach is the fastest to achieve high prediction quality

even with a small number of samples; in fact, FLASH constantly

achieves better accuracy when the training set grows. In terms

of inference speed, FLASH is about twice as fast as the other

approaches with 5000 training samples, and the gap in between

continues to expand.

5.5 Impact of dimensionality

In this section, we explore the impact of dimensionality (D)

in our design for various datasets. Figure 5 displays our results in

terms of prediction quality (MSE) and time taken to train themodel

Frontiers in Artificial Intelligence 09 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

for different values of D. In the section on “Time Complexity,” we

derived the time complexity of our approach to be O(ND2), which

is consistent with our experimental results. However, it is worth

mentioning that even for relatively small dimensionality (e.g., D =

500) the gain of accuracy for further increasing dimensionality

is not significant. Thus, even if the theoretical complexity of the

approach is large, in practice, we can obtain acceptable results

rapidly.

6 Conclusion

In this paper, we present a novel HDC algorithm that features

an adaptive and learnable encoder design. Unlike previous HDC

works that solely focus on the learning of model hypervectors, our

work also aims at providing a hyperdimensional representation

that is more suitable to current tasks. Instead of learning the

encoder directly, we construct a parameterized distribution that

helps preserve the holographic property of HDC encoding. The

results of several regression tasks show that our proposed algorithm

can significantly boost the accuracy, surpassing the existing HDC-

based arts and providing lower inference time.

Data availability statement

Publicly available datasets were analyzed in this study. This data

can be found here: https://www.openml.org/search?type=data.

Author contributions

AH-C: Conceptualization, Data curation, Formal analysis,

Investigation, Methodology, Project administration, Software,

Supervision, Validation, Visualization, Writing – original draft,

Writing – review & editing. YN: Conceptualization, Data

curation, Formal analysis, Investigation, Methodology, Software,

Validation, Visualization, Writing – original draft, Writing

– review & editing. ZZ: Conceptualization, Formal analysis,

Investigation, Methodology, Validation, Writing – original draft,

Writing – review & editing. AZ: Data curation, Formal analysis,

Investigation, Methodology, Validation, Writing – original draft,

Writing – review & editing. MI: Conceptualization, Data curation,

Formal analysis, Funding acquisition, Investigation, Methodology,

Project administration, Resources, Software, Supervision,

Validation, Visualization, Writing – original draft, Writing –

review & editing.

Funding

The author(s) declare financial support was received for the

research, authorship, and/or publication of this article. This work

was supported in part by DARPA Young Faculty Award, National

Science Foundation #2127780, #2319198, #2321840, #2312517, and

#2235472, Semiconductor Research Corporation (SRC), Office of

Naval Research through the Young Investigator Program Award,

and grants #N00014-21-1-2225 and #N00014-22-1-2067, the Air

Force Office of Scientific Research, grants #FA9550-22-1-0253, and

generous gifts from Cisco. This study received funding from SRC.

The funders were not involved in the study design, collection,

analysis, interpretation of data, the writing of this article or the

decision to submit it for publication.

Conflict of interest

The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be

construed as a potential conflict of interest.

Publisher’s note

All claims expressed in this article are solely those of the

authors and do not necessarily represent those of their affiliated

organizations, or those of the publisher, the editors and the

reviewers. Any product that may be evaluated in this article, or

claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

References

Barkam, H. E., Jeon, S. E., Yun, S., Yeung, C., Zou, Z., Jiao, X., et
al. (2023a). “Hyperdimensional computing for resilient edge learning,” in 2023
IEEE/ACM International Conference on Computer Aided Design (ICCAD) (IEEE), 1–8.
doi: 10.1109/ICCAD57390.2023.10323671

Barkam, H. E., Yun, S., Genssler, P. R., Zou, Z., Liu, C.-K., Amrouch,
H., et al. (2023b). “Hdgim: hyperdimensional genome sequence matching on
unreliable highly scaled fefet,” in 2023 Design, Automation Test in Europe
Conference Exhibition (DATE) (IEEE), 1–6. doi: 10.23919/DATE56975.2023.101
37331

Chen, H., Issa, M., Ni, Y., and Imani, M. (2022). “Darl: distributed reconfigurable
accelerator for hyperdimensional reinforcement learning,” in Proceedings of
the 41st IEEE/ACM International Conference on Computer-Aided Design, 1–9.
doi: 10.1145/3508352.3549437

Chen, H., Zakeri, A., Wen, F., Barkam, H. E., and Imani, M. (2023). “Hypergraf:
Hyperdimensional graph-based reasoning acceleration on fpga,” in 2023 33rd
International Conference on Field-Programmable Logic and Applications (FPL) (IEEE),
34–41. doi: 10.1109/FPL60245.2023.00013

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). “Saga: a fast incremental gradient
method with support for non-strongly convex composite objectives,” in Advances in
Neural Information Processing Systems 27.

Frady, E. P., Kleyko, D., Kymn, C. J., Olshausen, B. A., and Sommer, F. T. (2022).
“Computing on functions using randomized vector representations (in brief),” in
Proceedings of the 2022 Annual Neuro-Inspired Computational Elements Conference
115–122. doi: 10.1145/3517343.3522597

Frady, E. P., Kleyko, D., and Sommer, F. T. (2021). Variable binding for sparse
distributed representations: theory and applications. IEEE Trans. Neural Netw. Learn.
Syst. 34, 2191–2204. doi: 10.1109/TNNLS.2021.3105949

Friedman, J. H. (1991). Multivariate adaptive regression splines. Ann. Statist. 19,
1–67. doi: 10.1214/aos/1176347963

Ge, L., and Parhi, K. K. (2020). Classification using hyperdimensional computing: a
review. IEEE Circ. Syst. Magaz. 20, 30–47. doi: 10.1109/MCAS.2020.2988388

Hernandez-Cane, A., Matsumoto, N., Ping, E., and Imani, M. (2021). “Onlinehd:
robust, efficient, and single-pass online learning using hyperdimensional system,” in

Frontiers in Artificial Intelligence 10 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://www.openml.org/search?type=data
https://doi.org/10.1109/ICCAD57390.2023.10323671
https://doi.org/10.23919/DATE56975.2023.10137331
https://doi.org/10.1145/3508352.3549437
https://doi.org/10.1109/FPL60245.2023.00013
https://doi.org/10.1145/3517343.3522597
https://doi.org/10.1109/TNNLS.2021.3105949
https://doi.org/10.1214/aos/1176347963
https://doi.org/10.1109/MCAS.2020.2988388
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

Hernández-Cano et al. 10.3389/frai.2024.1371988

2021 Design, Automation Test in Europe Conference Exhibition (DATE) (IEEE), 56–61.
doi: 10.23919/DATE51398.2021.9474107

Hernández-Cano, A., Zhuo, C., Yin, X., and Imani, M. (2021). “Reghd:
robust and efficient regression in hyper-dimensional learning system,” in
2021 58th ACM/IEEE Design Automation Conference (DAC) (IEEE), 7–12.
doi: 10.1109/DAC18074.2021.9586284

Hersche, M., Zeqiri, M., Benini, L., Sebastian, A., and Rahimi, A. (2023). A neuro-

vector-symbolic architecture for solving ravenâĂŹs progressive matrices. Nat. Mach.
Intell. 5, 363–375. doi: 10.1038/s42256-023-00630-8

Imani, M., Morris, J., Messerly, J., Shu, H., Deng, Y., and Rosing, T. (2019).
“Bric: locality-based encoding for energy-efficient brain-inspired hyperdimensional
computing,” in Proceedings of the 56th Annual Design Automation Conference 2019,
1–6. doi: 10.1145/3316781.3317785

Issa, M., Shahhosseini, S., Ni, Y., Hu, T., Abraham, D., Rahmani, A. M., et al.
(2022). “Hyperdimensional hybrid learning on end-edge-cloud networks,” in 2022
IEEE 40th International Conference on Computer Design (ICCD) (IEEE), 652–655.
doi: 10.1109/ICCD56317.2022.00100

Kanerva, P. (2009). Hyperdimensional computing: an introduction to computing
in distributed representation with high-dimensional random vectors. Cogn. Comput. 1,
139–159. doi: 10.1007/s12559-009-9009-8

Karunaratne, G., Le Gallo, M., Cherubini, G., Benini, L., Rahimi, A., and
Sebastian, A. (2020). In-memory hyperdimensional computing.Nat. Electr. 3, 327–337.
doi: 10.1038/s41928-020-0410-3

Kleyko, D., Davies, M., Frady, E. P., Kanerva, P., Kent, S. J., Olshausen, B. A.,
et al. (2021). Vector symbolic architectures as a computing framework for nanoscale
hardware. arXiv preprint arXiv:2106.05268.

Kleyko, D., Rachkovskij, D., Osipov, E., and Rahimi, A. (2023). A survey on
hyperdimensional computing aka vector symbolic architectures, part ii: applications,
cognitive models, and challenges. ACM Comput. Surv. 55, 1–52. doi: 10.1145/3558000

Kleyko, D., Rahimi, A., Rachkovskij, D. A., Osipov, E., and Rabaey, J. M. (2018).
Classification and recall with binary hyperdimensional computing: tradeoffs in choice
of density and mapping characteristics. IEEE Trans. Neural Netw. Learn. Syst. 29,
5880–5898. doi: 10.1109/TNNLS.2018.2814400

Nadeau, C., and Bengio, Y. (1999). “Inference for the generalization error,” in
Advances in Neural Information Processing Systems 12.

Ni, Y., Abraham, D., Issa, M., Kim, Y., Mercati, P., and Imani, M. (2023a). “Efficient
off-policy reinforcement learning via brain-inspired computing,” in Proceedings of the
Great Lakes Symposium on VLSI 2023, 449–453. doi: 10.1145/3583781.3590298

Ni, Y., Chen, H., Poduval, P., Zou, Z., Mercati, P., and Imani, M. (2023b).
“Brain-inspired trustworthy hyperdimensional computing with efficient uncertainty
quantification,” in 2023 IEEE/ACM International Conference on Computer Aided Design
(ICCAD) (IEEE), 01–09. doi: 10.1109/ICCAD57390.2023.10323657

Ni, Y., Issa, M., Abraham, D., Imani, M., Yin, X., and Imani, M. (2022a). “Hdpg:
Hyperdimensional policy-based reinforcement learning for continuous control,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference 1141–1146.
doi: 10.1145/3489517.3530668

Ni, Y., Kim, Y., Rosing, T., and Imani, M. (2022b). “Algorithm-hardware co-
design for efficient brain-inspired hyperdimensional learning on edge,” in 2022
Design, Automation Test in Europe Conference Exhibition (DATE) (IEEE), 292–297.
doi: 10.23919/DATE54114.2022.9774524

Ni, Y., Lesica, N., Zeng, F.-G., and Imani, M. (2022c). “Neurally-inspired
hyperdimensional classification for efficient and robust biosignal processing,” in
Proceedings of the 41st IEEE/ACM International Conference on Computer-Aided Design
1–9. doi: 10.1145/3508352.3549477

Paige, C. C., and Saunders, M. A. (1982). Lsqr: an algorithm for sparse
linear equations and sparse least squares. ACM Trans. Mathem. Softw. 8, 43–71.
doi: 10.1145/355984.355989

Pale, U., Teijeiro, T., and Atienza, D. (2022). “Exg signal feature selection
using hyperdimensional computing encoding,” in 2022 IEEE International
Conference on Bioinformatics and Biomedicine (BIBM) (IEEE), 1688–1693.
doi: 10.1109/BIBM55620.2022.9995107

Park, J., and Sandberg, I. W. (1991). Universal approximation using radial-basis-
function networks. Neur. Comput. 3, 246–257. doi: 10.1162/neco.1991.3.2.246

Poduval, P., Alimohamadi, H., Zakeri, A., Imani, F., Najafi, M. H., Givargis, T.,
et al. (2022a). Graphd: Graph-based hyperdimensional memorization for brain-like
cognitive learning. Front. Neurosci. 16:757125. doi: 10.3389/fnins.2022.757125

Poduval, P., Ni, Y., Kim, Y., Ni, K., Kumar, R., Cammarota, R., et al.
(2022b). “Adaptive neural recovery for highly robust brain-like representation,”
in Proceedings of the 59th ACM/IEEE Design Automation Conference 367–372.
doi: 10.1145/3489517.3530659

Rachkovskij, D. (2015). Formation of similarity-reflecting binary
vectors with random binary projections. Cybern. Syst. Analy. 51, 313–323.
doi: 10.1007/s10559-015-9723-z

Rahimi, A., Benatti, S., Kanerva, P., Benini, L., and Rabaey, J. M. (2016).
“Hyperdimensional biosignal processing: a case study for emg-based hand gesture
recognition,” in 2016 IEEE International Conference on Rebooting Computing (ICRC)
(IEEE), 1–8. doi: 10.1109/ICRC.2016.7738683

Rahimi, A., and Recht, B. (2007). “Random features for large-scale kernel machines,”
in Advances in Neural Information Processing Systems 20.

Rahimi, A., Tchouprina, A., Kanerva, P., Millán, J. D. R., and Rabaey, J. M.
(2020). Hyperdimensional computing for blind and one-shot classification of EEG
error-related potentials. Mobile Netw. Applic. 25, 958–1969. doi: 10.1007/s11036-017-
0942-6

Roy, K., Jaiswal, A., and Panda, P. (2019). Towards spike-basedmachine intelligence
with neuromorphic computing. Nature 575, 607–617. doi: 10.1038/s41586-019-
1677-2

Rudin, W. (2017). Fourier Analysis on Groups. Mineola, NY: Courier Dover
Publications.

Thomas, A., Dasgupta, S., and Rosing, T. (2020). Theoretical foundations of
hyperdimensional computing. arXiv preprint arXiv:2010.07426.

Vanschoren, J., van Rijn, J. N., Bischl, B., and Torgo, L. (2013). Openml: networked
science inmachine learning. SIGKDDExplor. 15, 49–60. doi: 10.1145/2641190.2641198

Wang, R., Jiao, X., and Hu, X. S. (2022). “Odhd: one-class brain-inspired
hyperdimensional computing for outlier detection,” in Proceedings of the 59th
ACM/IEEE Design Automation Conference 43–48.

Zou, Z., Chen, H., Poduval, P., Kim, Y., Imani, M., Sadredini, E., et al. (2022).
“Biohd: an efficient genome sequence search platform using hyperdimensional
memorization,” in Proceedings of the 49th Annual International Symposium on
Computer Architecture 656–669. doi: 10.1145/3470496.3527422

Frontiers in Artificial Intelligence 11 frontiersin.org

https://doi.org/10.3389/frai.2024.1371988
https://doi.org/10.23919/DATE51398.2021.9474107
https://doi.org/10.1109/DAC18074.2021.9586284
https://doi.org/10.1038/s42256-023-00630-8
https://doi.org/10.1145/3316781.3317785
https://doi.org/10.1109/ICCD56317.2022.00100
https://doi.org/10.1007/s12559-009-9009-8
https://doi.org/10.1038/s41928-020-0410-3
https://doi.org/10.1145/3558000
https://doi.org/10.1109/TNNLS.2018.2814400
https://doi.org/10.1145/3583781.3590298
https://doi.org/10.1109/ICCAD57390.2023.10323657
https://doi.org/10.1145/3489517.3530668
https://doi.org/10.23919/DATE54114.2022.9774524
https://doi.org/10.1145/3508352.3549477
https://doi.org/10.1145/355984.355989
https://doi.org/10.1109/BIBM55620.2022.9995107
https://doi.org/10.1162/neco.1991.3.2.246
https://doi.org/10.3389/fnins.2022.757125
https://doi.org/10.1145/3489517.3530659
https://doi.org/10.1007/s10559-015-9723-z
https://doi.org/10.1109/ICRC.2016.7738683
https://doi.org/10.1007/s11036-017-0942-6
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1145/2641190.2641198
https://doi.org/10.1145/3470496.3527422
https://www.frontiersin.org/journals/artificial-intelligence
https://www.frontiersin.org

	Hyperdimensional computing with holographic and adaptive encoder
	1 Introduction
	2 Related works
	3 Regression with vector function architecture
	3.1 Hyperdimensional encoding in VFA
	3.2 Regression on a static HDC encoder

	4 Main methods
	4.1 Generating the encoding matrix
	4.2 Learning the encoder matrix distribution
	4.3 Adapt the encoder via generator training
	4.4 Balance the cost in training
	4.5 Time complexity
	4.6 Formal derivation of encoding loss

	5 Experimental results
	5.1 Experimental settings
	5.2 Performance on synthetic data
	5.3 Regression quality and efficiency comparison
	5.4 Scalability results
	5.5 Impact of dimensionality

	6 Conclusion
	Data availability statement
	Author contributions
	Funding
	Conflict of interest
	Publisher's note
	References

